Comparative Diagnostic Performance of Ultrasound-Based Risk Stratification Systems in Thyroid Nodule Evaluations by Otolaryngologists
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Methods
- -
- The American Thyroid Association (ATA) guidelines [6];
- -
- The American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) [7];
- -
- The Korean Thyroid Imaging Reporting and Data System (K-TIRADS) [8];
- -
- The European Thyroid Association TI-RADS (EU-TIRADS) [9];
- -
- The computerized scoring system developed at our institution [14].
2.2. Statistical Analysis
3. Results
3.1. Main Results
3.2. Comparison Between Malignant and Benign Lesions
- -
- Sensitivity: 95.6% (95% CI: 87.3–100%);
- -
- Specificity: 78.9% (95% CI: 60.6–97.3%);
- -
- Positive Predictive Value (PPV): 84.6% (95% CI: 70.7–98.5%);
- -
- Negative Predictive Value (NPV): 93.7% (95% CI: 81.9–100%);
- -
- Accuracy: 88.1% (95% CI: 78.3–97.9%).
- -
- Sensitivity: 73.9% (95% CI: 56.0–91.9%);
- -
- Specificity: 100%;
- -
- PPV: 100%;
- -
- NPV: 76.0% (95% CI: 59.3–92.7%);
- -
- Accuracy: 85.7% (95% CI: 75.1–93.6%).
4. Discussion
4.1. Diagnostic Performance of Major International Risk Stratification Systems
4.2. The Unique Value of Otolaryngologist-Performed Real-Time Ultrasonography
4.3. Role of the Computerized Real-Time Scoring System
4.4. Clinical Implications in the Context of Contemporary Management Trends
4.5. Future Directions: Improving Reproducibility and Integrating Advanced Technologies
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| US | Ultrasound |
| ATA | American Thyroid Association |
| ACR-TIRADS | American College of Radiology Thyroid Imaging Reporting and Data System |
| K-TIRADS | Korean Society of Thyroid Radiology system |
| EU-TIRADS | European Thyroid Association system |
| FNAC | Fine-needle aspiration cytology |
| PPV | Negative predictive value |
| NPV | Positive predictive value |
| TBSRTC | The Bethesda System for Reporting Thyroid Cytopathology |
| GUI | Graphical User Interface |
References
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very High Prevalence of Thyroid Nodules Detected by High Frequency (13 MHz) Ultrasound Examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.; Welch, H.G. Increasing Incidence of Thyroid Cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.J.; Jung, S.L.; Lee, J.H.; Na, D.G.; Baek, J.-H.; Lee, Y.H.; Kim, J.; Kim, H.S.; Byun, J.S.; Lee, D.H.; et al. Benign and Malignant Thyroid Nodules: Us Differentiation—Multicenter Retrospective Study. Radiology 2008, 247, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Kim, H.J.; Welch, H.G. Korea’s Thyroid-Cancer “Epidemic”—Screening and Overdiagnosis. N. Engl. J. Med. 2014, 371, 1765–1767. [Google Scholar] [CrossRef]
- Li, M.; Dal Maso, L.; Vaccarella, S. Global Trends in Thyroid Cancer Incidence and the Impact of Overdiagnosis. Lancet Diabetes Endocrinol. 2020, 8, 468–470. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. Acr Thyroid Imaging, Reporting and Data System (Ti-Rads): White Paper of the Acr Ti-Rads Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.-H.; Lee, Y.H.; Lim, H.K.; Moon, W.-J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The Eu-Tirads. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef]
- Burgos, N.; Zhao, J.; Brito, J.P.; Hoang, J.K.; Pitoia, F.; Maraka, S.; Castro, M.R.; Lee, J.-H.; Ospina, N.S. Clinician Agreement on the Classification of Thyroid Nodules Ultrasound Features: A Survey of 2 Endocrine Societies. J. Clin. Endocrinol. Metab. 2022, 107, e3288–e3294. [Google Scholar] [CrossRef]
- de Carlos, J.; Garcia, J.; Basterra, F.J.; Pineda, J.J.; Ollero, M.D.; Toni, M.; Munarriz, P.; Anda, E. Interobserver Variability in Thyroid Ultrasound. Endocrine 2024, 85, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Alfuraih, A.M.; Alotaibi, A.M.; Alshammari, A.K.; Alrashied, B.F.; Mashhor, Y.M.; Mahmoud, M.; Alsaadi, M.J. Evaluating Diagnostic Accuracy and Agreement of Ti-Rads Scoring in Thyroid Nodules: A Comparative Analysis between Sonographers and Radiologists. PLoS ONE 2024, 19, e0312121. [Google Scholar] [CrossRef] [PubMed]
- Remonti, L.R.; Kramer, C.K.; Leitão, C.B.; Pinto, L.C.F.; Gross, J.L. Thyroid Ultrasound Features and Risk of Carcinoma: A Systematic Review and Meta-Analysis of Observational Studies. Thyroid 2015, 25, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.J.; Far Eastern Memorial Hospital. An Easy Sonographic Scoring System for Predicting Malignant Thyroid Nodules. 2011; unpublished institutional study. [Google Scholar]
- Namsena, P.; Songsaeng, D.; Keatmanee, C.; Klabwong, S.; Kunapinun, A.; Soodchuen, S.; Tarathipayakul, T.; Tanasoontrarat, W.; Ekpanyapong, M.; Dailey, M.N. Diagnostic Performance of Artificial Intelligence in Interpreting Thyroid Nodules on Ultrasound Images: A Multicenter Retrospective Study. Quant. Imaging Med. Surg. 2024, 14, 3676–3694. [Google Scholar] [CrossRef]
- Warm, J.J.; Melchiors, J.; Kristensen, T.T.; Aabenhus, K.; Charabi, B.W.; Eberhard, K.; Konge, L.; von Buchwald, C.; Todsen, T. Head and Neck Ultrasound Training Improves the Diagnostic Performance of Otolaryngology Residents. Laryngoscope Investig. Otolaryngol. 2024, 9, e1201. [Google Scholar] [CrossRef]
- Fernández Velasco, P.; Pérez López, P.; Torres Torres, B.; Delgado, E.; de Luis, D.; Soto, G.D. Clinical Evaluation of an Artificial Intelligence-Based Decision Support System for the Diagnosis and American College of Radiology Thyroid Imaging Reporting and Data System Classification of Thyroid Nodules. Thyroid 2024, 34, 510–518. [Google Scholar] [CrossRef]
- Edström, A.B.; Makouei, F.; Wennervaldt, K.; Lomholt, A.F.; Kaltoft, M.; Melchiors, J.; Hvilsom, G.B.; Bech, M.; Tolsgaard, M.; Todsen, T. Human-Ai Collaboration for Ultrasound Diagnosis of Thyroid Nodules: A Clinical Trial. Eur. Arch. Otorhinolaryngol. 2025, 282, 3221–3231. [Google Scholar] [CrossRef]
- Liao, L.J.; Chen, H.W.; Hsu, W.L.; Chen, Y.S. Comparison of Strain Elastography, Shear Wave Elastography, and Conventional Ultrasound in Diagnosing Thyroid Nodules. J. Med. Ultrasound 2019, 27, 26–32. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.W.; Basurrah, M.A.; Lee, J.; Hwang, S.H. Diagnostic Performance of Six Ultrasound Risk Stratification Systems for Thyroid Nodules: A Systematic Review and Network Meta-Analysis. AJR Am. J. Roentgenol. 2023, 220, 791–803. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009, 19, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, A.; Filardi, T.; Simonelli, I.; Grani, G.; Virili, C.; Stramazzo, I.; Santaguida, M.G.; Locantore, P.; Maurici, M.; Gianfrilli, D.; et al. Diagnostic Accuracy of Ultrasonographic Features in Detecting Thyroid Cancer in the Transition Age: A Meta-Analysis. Eur. Thyroid J. 2022, 11, e220039. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, B.G.; Stybayeva, G.; Hwang, S.H. Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis. Cancers 2023, 15, 424. [Google Scholar] [CrossRef] [PubMed]
- Wildman-Tobriner, B.; Yang, J.; Allen, B.C.; Ho, L.M.; Miller, C.M.; Mazurowski, M.A. Simplifying Risk Stratification for Thyroid Nodules on Ultrasound: Validation and Performance of an Artificial Intelligence Thyroid Imaging Reporting and Data System. Curr. Probl. Diagn. Radiol. 2024, 53, 695–699. [Google Scholar] [CrossRef]
- Piticchio, T.; Russ, G.; Radzina, M.; Frasca, F.; Durante, C.; Trimboli, P. Head-to-Head Comparison of American, European, and Asian Tiradss in Thyroid Nodule Assessment: Systematic Review and Meta-Analysis. Eur. Thyroid J. 2024, 13, e230242. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” Tirads. J. Clin. Endocrinol. Metab. 2019, 104, 95–102. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.K. Thyroid Imaging Reporting and Data System for Us Features of Nodules: A Step in Establishing Better Stratification of Cancer Risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef]
- Trimboli, P.; Ngu, R.; Royer, B.; Giovanella, L.; Bigorgne, C.; Simo, R.; Carroll, P.; Russ, G. A Multicentre Validation Study for the Eu-Tirads Using Histological Diagnosis as a Gold Standard. Clin. Endocrinol. 2019, 91, 340–347. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, J.; Sun, W.; Zhang, L. Comparison of Diagnostic Performance between the American College of Radiology Thyroid Imaging Reporting and Data System and American Thyroid Association Guidelines: A Systematic Review. Endocr. Pract. 2020, 26, 552–563. [Google Scholar] [CrossRef]
- Dobruch-Sobczak, K.S.; Krauze, A.; Migda, B.; Mlosek, K.; Słapa, R.Z.; Bakuła-Zalewska, E.; Adamczewski, Z.; Lewiński, A.; Jakubowski, W.; Dedecjus, M. Integration of Sonoelastography into the Tirads Lexicon Could Influence the Classification. Front. Endocrinol. 2019, 10, 127. [Google Scholar] [CrossRef]
- Bhushan, S.; Mahesan, R.; Vijayasekar, I.; Shah, B.B. Diagnostic Performance of the American College of Radiology Thyroid Imaging Reporting and Data System. World J. Endoc. Surg. 2020, 12, 113–116. [Google Scholar]
- Ha, E.J.; Na, D.G.; Baek, J.H.; Sung, J.Y.; Kim, J.-H.; Kang, S.Y. Us Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules. Radiology 2018, 287, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Hegedüs, L. Clinical Practice. The Thyroid Nodule. N. Engl. J. Med. 2004, 351, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Baek, J.H.; Ha, E.J.; Sung, J.Y.; Shin, J.H.; Kim, J.-H.; Lee, M.K.; Jung, S.L.; Lee, Y.H.; Ahn, H.S.; et al. 2020 Imaging Guidelines for Thyroid Nodules and Differentiated Thyroid Cancer: Korean Society of Thyroid Radiology. Korean J. Radiol. 2021, 22, 840–860. [Google Scholar] [CrossRef]
- Bernet, V.J.; Chindris, A.M. Update on the Evaluation of Thyroid Nodules. J. Nucl. Med. 2021, 62, 13s–19s. [Google Scholar] [CrossRef]
- Bohacek, L.; Milas, M.; Mitchell, J.; Siperstein, A.; Berber, E. Diagnostic Accuracy of Surgeon-Performed Ultrasound-Guided Fine-Needle Aspiration of Thyroid Nodules. Ann. Surg. Oncol. 2012, 19, 45–51. [Google Scholar] [CrossRef]
- Liao, L.J.; Wen, M.H.; Yang, T.L. Point-of-Care Ultrasound in Otolaryngology And head and Neck Surgery: A Prospective Survey Study. J. Formos. Med. Assoc. 2021, 120, 1547–1553. [Google Scholar] [CrossRef]
- Kwok, M.M.K.; Choong, K.W.K.; Virk, J.; Magarey, M.J.R.; Flatman, S. Surgeon-Performed Ultrasound in a Head and Neck Surgical Oncology Clinic: Saving Time and Improving Patient Care. Eur. Arch. Otorhinolaryngol. 2021, 278, 2455–2460. [Google Scholar] [CrossRef]
- Grant, E.G.; Tessler, F.N.; Hoang, J.K.; Langer, J.E.; Beland, M.D.; Berland, L.L.; Cronan, J.J.; Desser, T.S.; Frates, M.C.; Hamper, U.M.; et al. Thyroid Ultrasound Reporting Lexicon: White Paper of the Acr Thyroid Imaging, Reporting and Data System (Tirads) Committee. J. Am. Coll. Radiol. 2015, 12, 1272–1279. [Google Scholar] [CrossRef]
- Cantisani, V.; De Silvestri, A.; Scotti, V.; Fresilli, D.; Tarsitano, M.G.; Polti, G.; Guiban, O.; Polito, E.; Pacini, P.; Durante, C.; et al. Us-Elastography with Different Techniques for Thyroid Nodule Characterization: Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 845549. [Google Scholar] [CrossRef]
- Biondi, B. A Systematic Review on the Benefits and Harms of Active Surveillance Versus Immediate Surgery for Low-Risk Differentiated Thyroid Cancer. Clin. Thyroidol. 2022, 34, 169–173. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, D.; Chen, Y.N.; Yu, X.J.; Pan, M.F.; Lian, L. The Value of Conventional Ultrasound Combined with Superb Microvascular Imaging and Color Doppler Flow Imaging in the Diagnosis of Thyroid Malignant Nodules: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2023, 14, 1182259. [Google Scholar] [CrossRef]




| Item | N%/Mean ± SD | |
|---|---|---|
| Sex | Male | 32 (25%) |
| Female | 98 (75%) | |
| Age | Years | 51.3 ± 12.5 (17–75) |
| Side | L | 71 (55%) |
| R | 59 (45%) | |
| Size (short) | 1.57 ± 0.79 (0.32–3.52) | |
| Size (long) | 2.36 ± 1.46 (0.42–6.45) | |
| ATA | 1–3 | 64 (49%) |
| 4 or 5 | 66 (51%) | |
| ACR TIRADS | 1–3 | 64 (49%) |
| 4 or 5 | 66 (51%) | |
| K-TIRADS | 1–3 | 63 (48%) |
| 4 or 5 | 67 (52%) | |
| EU-TIRADS | 1–3 | 64 (49%) |
| 4 or 5 | 66 (51%) | |
| Computerized score (3.3) $ | <3.3 ≥3.3 | 77 (63%) 45 (37%) |
| Bethesda System | I: Non diagnostic/unsatisfactory | 4 (3.08%) |
| II: Benign | 52 (40%) | |
| III: Atypia | 36 (27.69%) | |
| IV: Follicular nodule/suspicious follicular nodule | 1 (0.77%) | |
| V: Suspicious for malignancy | 25 (19.23%) | |
| VI: Malignancy | 12 (9.23%) | |
| Pathology | Benign | 68 (52.31%) |
| Malignancy | 62 (47.69%) |
| Benign N = 68 | Malignancy N = 62 | p Value | ||
|---|---|---|---|---|
| Sex | Male/Female | 14 (21%)/54 (79%) | 18 (17%)/44 (83%) | 0.264 |
| Age | 52.6 ± 12.3 | 49.9 ± 12.8 | 0.108 | |
| Boundary | Clear | 56 (88%) | 29 (48%) | <0.01 |
| Vague | 8 (12%) | 31 (52%) | ||
| Internal echo | Homogenous | 42 (66%) | 18 (30%) | <0.01 |
| Heterogeneous | 22 (34%) | 42 (70%) | ||
| Echogenicity | Hypoechoic | 34 (54%) | 57 (95%) | <0.01 |
| Isoechoic | 29 (46%) | 3 (5%) | ||
| Calcification | No | 60 (91%) | 27 (45%) | <0.01 |
| Yes | 6 (9%) | 33 (55%) | ||
| Architecture | Cystic | 20 (30%) | 6 (10%) | 0.005 |
| Solid | 46 (70%) | 54 (90%) | ||
| Hilar echo | Absent | 62 (97%) | 57 (95%) | 0.341 |
| Oval | 2 (3%) | 3 (5%) | ||
| Vascular pattern | Avascular | 64 (100%) | 56 (93%) | 0.036 |
| Spotted | 0 (0%) | 4 (7%) | ||
| Bethesda system @ | I-IV | 68 (100%) | 25 (40%) | <0.01 |
| V | 0 (0%) | 25 (40%) | ||
| VI | 0 (0%) | 12 (19%) | ||
| ATA | 1–3 | 35 (51%) | 29 (47%) | 0.763 |
| 4 | 21 (31%) | 19 (31%) | ||
| 5 | 12 (18%) | 14 (22%) | ||
| ACR TIRADS | 1–3 | 33 (49%) | 30 (49%) | 0.870 |
| 4 | 24 (35%) | 20 (32%) | ||
| 5 | 11 (16%) | 12 (19%) | ||
| K-TIRADS | 1–3 | 35 (52%) | 29 (47%) | 0.849 |
| 4 | 20 (29%) | 19 (31%) | ||
| 5 | 13 (19%) | 14 (23%) | ||
| EU-TIRADS | 1–3 | 35 (52%) | 29 (47%) | 0.765 |
| 4 | 20 (29%) | 18 (29%) | ||
| 5 | 13 (19%) | 15 (24%) | ||
| Computerized score (3.3) $ | <3.3 | 56 (88%) | 21 (36%) | <0.01 |
| ≥3.3 | 8 (12%) | 37 (64%) |
| Sensitivity (%; 95% CI) | Specificity (%; 95% CI) | Positive Predictive Value (%; 95% CI) | Negative Predictive Value (%; 95% CI) | Overall Accuracy (%; 95% CI) | |
|---|---|---|---|---|---|
| ATA | 95.6 (87.3–100.0) | 78.9 (60.6–97.3) | 84.6 (70.7–98.5) | 93.7 (81.9–100) | 88.1 (78.3–97.9) |
| ACR TIRADS | 95.6 (87.3–100.0) | 78.9 (60.6–97.3) | 84.6 (70.7–98.5) | 93.7 (81.9–100) | 88.1 (78.3–97.9) |
| K-TIRADS | 95.6 (87.3–100.0) | 78.9 (60.6–97.3) | 84.6 (70.7–98.5) | 93.7 (81.9–100) | 88.1 (78.3–97.9) |
| EU-TIRADS | 95.6 (87.3–100.0) | 78.9 (60.6–97.3) | 84.6 (70.7–98.5) | 93.7 (81.9–100) | 88.1 (78.3–97.9) |
| Computerized score (3.3) $ | 73.9 (56.0–91.9) | 100.0 (100.0–100.0) | 100.0 (100.0–100.0) | 76.0 (59.3–92.7) | 85.7 (75.1–96.3) |
| US-FNA Bethesda (5 or 6) cytology [21] | 73.9 (56.0–91.9) | 100.0 (100.0–100.0) | 100.0 (100.0–100.0) | 76.0 (59.3–92.7) | 85.7 (75.1–96.3) |
| Assessment Item | ATA | ACR-TIRADS | K-TIRADS | EU-TIRADS | Computerized Score |
|---|---|---|---|---|---|
| Composition | Yes | Yes | Yes | Yes | Yes |
| Echogenicity | Yes | Yes | Yes | Yes | No |
| Shape (Taller-than-wide) | Yes | Yes | Yes | Yes | Yes |
| Margin | Yes | Yes | Yes | Yes | Yes |
| Microcalcifications | Yes | Yes | Yes | Yes | Yes |
| Macrocalcifications | Yes | Yes | Yes | No | No |
| Vascularity | No | No | No | No | No |
| Scoring Method * | Pattern | Point-based | Pattern | Pattern | Weighted Equation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, J.-Y.; Cheng, P.-C.; Wen, M.-H.; Chang, C.-M.; Lo, W.-C.; Cheng, P.-W.; Wu, P.-H.; Liao, L.-J. Comparative Diagnostic Performance of Ultrasound-Based Risk Stratification Systems in Thyroid Nodule Evaluations by Otolaryngologists. Diagnostics 2026, 16, 128. https://doi.org/10.3390/diagnostics16010128
Wu J-Y, Cheng P-C, Wen M-H, Chang C-M, Lo W-C, Cheng P-W, Wu P-H, Liao L-J. Comparative Diagnostic Performance of Ultrasound-Based Risk Stratification Systems in Thyroid Nodule Evaluations by Otolaryngologists. Diagnostics. 2026; 16(1):128. https://doi.org/10.3390/diagnostics16010128
Chicago/Turabian StyleWu, Jiun-Yi, Ping-Chia Cheng, Ming-Hsun Wen, Chih-Ming Chang, Wu-Chia Lo, Po-Wen Cheng, Po-Hsuan Wu, and Li-Jen Liao. 2026. "Comparative Diagnostic Performance of Ultrasound-Based Risk Stratification Systems in Thyroid Nodule Evaluations by Otolaryngologists" Diagnostics 16, no. 1: 128. https://doi.org/10.3390/diagnostics16010128
APA StyleWu, J.-Y., Cheng, P.-C., Wen, M.-H., Chang, C.-M., Lo, W.-C., Cheng, P.-W., Wu, P.-H., & Liao, L.-J. (2026). Comparative Diagnostic Performance of Ultrasound-Based Risk Stratification Systems in Thyroid Nodule Evaluations by Otolaryngologists. Diagnostics, 16(1), 128. https://doi.org/10.3390/diagnostics16010128

