Imaging Approaches for the Diagnosis of Dry Eye: A Review
Abstract
1. Introduction
2. Method of Literature Search
2.1. Tear Fluorescein Clearance
2.2. AS-OCT

2.3. In Vivo Confocal Microscopy

2.4. Meibography
2.5. Meibographic Image Analysis
2.6. Artificial Intelligence (AI) in MG Evaluation
2.7. Non-Invasive Breakup Time (NIBUT)
2.8. Interferometry
2.9. Thermography
2.10. Impression Cytology (IC)
2.11. Multifunctional Imaging Device and AI
3. Brief Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TFC | tear fluorescein clearance |
| AS-OCT | anterior segment optical coherence tomography |
| TMH | tear meniscus height |
| TMV | tear meniscus volume |
| TFT | pre-corneal tear film thickness |
| IVCM | in vivo confocal microscopy |
| DED | dry eye disease |
| TBUT | tear film break up time |
| OST | ocular surface temperature |
| IC | impression cytology |
| GCD | goblet cell density |
| AI | artificial intelligence |
References
- Koh, S. Exploring New and Global Therapeutic Options for Dry Eye Disease: What You Need to Know. Eye Contact Lens 2025, 51, 312–317. [Google Scholar] [CrossRef]
- Golden, M.I.; Meyer, J.J.; Zeppieri, M.; Patel, B.C. Dry Eye Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470411/ (accessed on 16 June 2025).
- Rao, S.K.; Mohan, R.; Gokhale, N.; Matalia, H.; Mehta, P. Inflammation and dry eye disease—Where are we? Int. J. Ophthalmol. 2022, 15, 820–827. [Google Scholar] [CrossRef]
- Rolando, M.; Barabino, S. Dry Eye Disease: What Is the Role of Vitamin D? Int. J. Mol. Sci. 2023, 24, 1458. [Google Scholar] [CrossRef]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Keith, M.S.; Sudharshan, L.; Snedecor, S.J. Associations between signs and symptoms of dry eye disease: A systematic review. Clin. Ophthalmol. Auckl. N.Z. 2015, 9, 1719–1730. [Google Scholar] [CrossRef]
- Villani, E.; Barabino, S.; Giannaccare, G.; Di Zazzo, A.; Aragona, P.; Rolando, M. From Symptoms to Satisfaction: Optimizing Patient-Centered Care in Dry Eye Disease. J. Clin. Med. 2025, 14, 196. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.; Chong, K.; Shih, K.; Wan, K.H.; Cheng, A. Optimizing Diagnosis and Management of Dry Eye Disease: A Practical Framework for Hong Kong. Ophthalmol. Ther. 2025, 14, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, A.; Carnero, E.; Bleau, A.-M.; López de Aguileta Castaño, N.; Llorente Ortega, M.; Moreno-Montañés, J. Ocular surface analysis and automatic non-invasive assessment of tear film breakup location, extension and progression in patients with glaucoma. BMC Ophthalmol. 2020, 20, 12. [Google Scholar] [CrossRef]
- Qazi, Y.; Aggarwal, S.; Hamrah, P. Image-guided evaluation and monitoring of treatment response in patients with dry eye disease. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 857–872. [Google Scholar] [CrossRef]
- Di Cello, L.; Pellegrini, M.; Vagge, A.; Borselli, M.; Ferro Desideri, L.; Scorcia, V.; Traverso, C.E.; Giannaccare, G. Advances in the Noninvasive Diagnosis of Dry Eye Disease. Appl. Sci. 2021, 11, 10384. [Google Scholar] [CrossRef]
- Garaszczuk, I.K.; Montes Mico, R.; Iskander, D.R.; Expósito, A.C. The tear turnover and tear clearance tests—A review. Expert Rev. Med. Devices 2018, 15, 219–229. [Google Scholar] [CrossRef]
- Garaszczuk, I.K.; Mousavi, M.; Cervino Exposito, A.; Bartuzel, M.M.; Montes-Micó, R.; Iskander, D.R. Evaluating tear clearance rate with optical coherence tomography. Contact Lens Anterior Eye 2018, 41, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Chhadva, P.; McClellan, A.L.; Alabiad, C.R.; Feuer, W.J.; Batawi, H.; Galor, A. Impact of Eyelid Laxity on Symptoms and Signs of Dry Eye Disease. Cornea 2016, 35, 531–535. [Google Scholar] [CrossRef]
- Macri, A.; Rolando, M.; Pflugfelder, S. A standardized visual scale for evaluation of tear fluorescein clearance. Ophthalmology 2000, 107, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.L.B.; Li, Y.; Huang, D. Clinical and research applications of anterior segment optical coherence tomography—A review. Clin. Exp. Ophthalmol. 2009, 37, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Niedernolte, B.; Trunk, L.; Wolffsohn, J.S.; Pult, H.; Bandlitz, S. Evaluation of tear meniscus height using different clinical methods. Clin. Exp. Optom. 2021, 104, 583–588. [Google Scholar] [CrossRef]
- Wang, J.; Fonn, D.; Simpson, T.L.; Jones, L. Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2524–2528. [Google Scholar] [CrossRef]
- Yeter, V.; Koçak, N.; Kalyoncu, M.; Can, E.; Arıtürk, N. The relationship of tear osmolarity with tear meniscus curvature and contact angles in healthy subjects: Anterior segment optical coherence tomography study. Int. Ophthalmol. 2022, 42, 261–268. [Google Scholar] [CrossRef]
- Valdes, G.; Romaguera, M.; Serramito, M.; Cerviño, A.; Gonzalo Carracedo, G. OCT applications in contact lens fitting. Contact Lens Anterior Eye 2022, 45, 101540. [Google Scholar] [CrossRef]
- Diana, M.P.; Ana, B. Tear evaluation by anterior segment OCT in dry eye disease. Rom. J. Ophthalmol. 2021, 65, 25–30. [Google Scholar] [CrossRef]
- Bucsan, R.; Coroleucă, R.; Garhöfer, G.; Popa-Cherecheanu, A.; Schmetterer, L.; Iancu, R. Confocal Microscopy of the Cornea in Aqueous-Deficient Dry Eye Disease—A Literature Review. Diagnostics 2024, 14, 1613. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.C.B.; Roy, M.; Kim, J.; Markoulli, M.; Krishnan, A.V. In-vivo corneal confocal microscopy: Imaging analysis, biological insights and future directions. Commun. Biol. 2023, 6, 652. [Google Scholar] [CrossRef]
- Shetty, R.; Dua, H.S.; Tong, L.; Kundu, G.; Khamar, P.; Gorimanipalli, B.; D’Souza, S. Role of in vivo confocal microscopy in dry eye disease and eye pain. Indian J. Ophthalmol. 2023, 71, 1099–1104. [Google Scholar] [CrossRef]
- Labbé, A.; Liang, Q.; Wang, Z.; Zhang, Y.; Xu, L.; Baudouin, C.; Sun, X. Corneal nerve structure and function in patients with non-sjogren dry eye: Clinical correlations. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5144–5150. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kheirkhah, A.; Cavalcanti, B.M.; Cruzat, A.; Jamali, A.; Hamrah, P. Correlation of corneal immune cell changes with clinical severity in dry eye disease: An in vivo confocal microscopy study. Ocul. Surf. 2021, 19, 183–189. [Google Scholar] [CrossRef]
- Han, S.B.; Liu, Y.-C.; Mohamed-Noriega, K.; Tong, L.; Mehta, J.S. Objective Imaging Diagnostics for Dry Eye Disease. J. Ophthalmol. 2020, 2020, 3509064. [Google Scholar] [CrossRef]
- Villani, E.; Magnani, F.; Viola, F.; Santaniello, A.; Scorza, R.; Nucci, P.; Ratiglia, R. In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2013, 90, 576–586. [Google Scholar] [CrossRef]
- Arita, R.; Itoh, K.; Inoue, K.; Amano, S. Noncontact infrared meibography to document age-related changes of the meibomian glands in a normal population. Ophthalmology 2008, 115, 911–915. [Google Scholar] [CrossRef]
- Swiderska, K.; Read, M.L.; Blackie, C.A.; Maldonado-Codina, C.; Morgan, P.B. Latest developments in meibography: A review. Ocul. Surf. 2022, 25, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.J.; Sobel, R.K.; Allen, R.C. Meibography: A review of techniques and technologies. Saudi J. Ophthalmol. 2012, 26, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Bizheva, K.; Lee, P.; Sorbara, L.; Hutchings, N.; Simpson, T. In vivo volumetric imaging of the human upper eyelid with ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 2010, 15, 040508. [Google Scholar] [CrossRef]
- Ha, M.; Oh, S.-E.; Whang, W.-J.; Na, K.-S.; Kim, E.C.; Kim, H.-S.; Kim, J.S.; Hwang, H.S. Relationship between meibomian gland loss in infrared meibography and meibum quality in dry eye patients. BMC Ophthalmol. 2022, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiao, K.; Shang, X.; Hu, W.; Yusufu, M.; Chen, R.; Wang, Y.; Liu, J.; Lai, T.; Guo, L.; et al. Advances in artificial intelligence for meibomian gland evaluation: A comprehensive review. Surv. Ophthalmol. 2024, 69, 945–956. [Google Scholar] [CrossRef]
- Vigo, L.; Pellegrini, M.; Bernabei, F.; Carones, F.; Scorcia, V.; Giannaccare, G. Diagnostic Performance of a Novel Noninvasive Workup in the Setting of Dry Eye Disease. J. Ophthalmol. 2020, 2020, 5804123. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, Y.; Lv, T.; Xiao, C.; Wang, Y.; Zhao, S. Advances in AI-assisted quantification of dry eye indicators. Front. Med. 2025, 12, 1628311. [Google Scholar] [CrossRef]
- da Cruz, L.B.; Souza, J.C.; de Sousa, J.A.; Santos, A.M.; de Paiva, A.C.; de Almeida, J.D.S.; Silva, A.C.; Junior, G.B.; Gattass, M. Interferometer eye image classification for dry eye categorization using phylogenetic diversity indexes for texture analysis. Comput. Methods Programs Biomed. 2020, 188, 105269. [Google Scholar] [CrossRef]
- Hosaka, E.; Kawamorita, T.; Ogasawara, Y.; Nakayama, N.; Uozato, H.; Shimizu, K.; Dogru, M.; Tsubota, K.; Goto, E. Interferometry in the Evaluation of Precorneal Tear Film Thickness in Dry Eye. Am. J. Ophthalmol. 2011, 151, 18–23.e1. [Google Scholar] [CrossRef]
- Bai, Y.; Ngo, W.; Nichols, J.J. Characterization of the thickness of the tear film lipid layer using high resolution microscopy. Ocul. Surf. 2019, 17, 356–359. [Google Scholar] [CrossRef]
- da Cruz, L.B.; Souza, J.C.; de Paiva, A.C.; de Almeida, J.D.S.; Junior, G.B.; Aires, K.R.T.; Silva, A.C.; Gattass, M. Tear Film Classification in Interferometry Eye Images Using Phylogenetic Diversity Indexes and Ripley’s K Function. IEEE J. Biomed. Health Inform. 2020, 24, 3491–3498. [Google Scholar] [CrossRef]
- Paik, J.-S.; Kwon, M.J.; Nam, G.H.; Han, K.; Whang, W.-J.; Hwang, H.S.; Yang, S.-W.; Kim, H.-S.; Na, K.S.; Cho, W.-K. Tear film lipid layer thickness and blink dynamics in patients with blepharospasm. BMC Ophthalmol. 2025, 25, 22. [Google Scholar] [CrossRef]
- Yokoi, N.; Yamada, H.; Mizukusa, Y.; Bron, A.J.; Tiffany, J.M.; Kato, T.; Kinoshita, S. Rheology of tear film lipid layer spread in normal and aqueous tear-deficient dry eyes. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5319–5324. [Google Scholar] [CrossRef]
- Bai, Y.; Ngo, W.; Gu, B.; Zhang, Y.; Nichols, J.J. An imaging system integrating optical coherence tomography and interferometry for in vivo measurement of the thickness and dynamics of the tear film. Biomed. Eng. Online 2018, 17, 164. [Google Scholar] [CrossRef]
- Tattersall, G.J. Infrared thermography: A non-invasive window into thermal physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Purslow, C.; Wolffsohn, J.S. Ocular Surface Temperature: A Review. Eye Contact Lens 2005, 31, 117. [Google Scholar] [CrossRef]
- Versura, P.; Giannaccare, G.; Fresina, M.; Campos, E.C. Subjective Discomfort Symptoms Are Related to Low Corneal Temperature in Patients with Evaporative Dry Eye. Cornea 2015, 34, 1079. [Google Scholar] [CrossRef] [PubMed]
- Gulias-Cañizo, R.; Rodríguez-Malagón, M.E.; Botello-González, L.; Belden-Reyes, V.; Amparo, F.; Garza-Leon, M. Applications of Infrared Thermography in Ophthalmology. Life 2023, 13, 723. [Google Scholar] [CrossRef]
- Morgan, P.B.; Tullo, A.B.; Efron, N. Infrared thermography of the tear film in dry eye. Eye 1995, 9, 615–618. [Google Scholar] [CrossRef]
- Craig, J.P.; Singh, I.; Tomlinson, A.; Morgan, P.B.; Efron, N. The role of tear physiology in ocular surface temperature. Eye 2020, 14, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Kamao, T.; Yamaguchi, M.; Kawasaki, S.; Mizoue, S.; Shiraishi, A.; Ohashi, Y. Screening for dry eye with newly developed ocular surface thermographer. Am. J. Ophthalmol. 2011, 151, 782–791.e1. [Google Scholar] [CrossRef]
- Moshtaghion, S.M.; Abolhosseini, M.; Rezaei Kanavi, M.; Hosseini, S.B.; Rezaei Kanavi, M. Impression cytology for detection of clinically suspected ocular surface disorders: A cross-sectional study. Eur. J. Ophthalmol. 2021, 31, 943–950. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, Z.; Yuan, J.; Xiao, P. Imaging assessment of conjunctival goblet cells in dry eye disease. Clin. Exp. Ophthalmol. 2024, 52, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Haller-Schober, E.-M.; Schwantzer, G.; Berghold, A.; Fischl, M.; Theisl, A.; Horwath-Winter, J. Evaluating an impression cytology grading system (IC score) in patients with dry eye syndrome. Eye 2006, 20, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.D. Impression cytology. Cornea 1988, 7, 71–81. [Google Scholar] [CrossRef] [PubMed]


| Imaging Technique | Main Diagnostic Parameters | Advantages | Limitations | Clinical Usefulness |
|---|---|---|---|---|
| TFC | Tear clearance time, tear film stability. | Simple, inexpensive, validated visual scale available. | Operator-dependent, limited reproducibility. | Useful for screening for delayed tear clearance and ocular surface inflammation. |
| AS-OCT | TMH, TMV, TFT, Corneal Epithelial Profile. | High-resolution, non-contact, reproducible. | Costly equipment, interpretation expertise needed, limited TFT repeatability. | Quantitative evaluation of tear film. |
| IVCM | Epithelial integrity, keratocyte activity, nerve density, dendritic cells. | Cellular-level visualization, detects inflammation and nerve changes, monitors therapy. | Small field of view, time-consuming, operator expertise required. | Detailed evaluation of ocular surface pathology and inflammation in DED. |
| Interferometry | Lipid layer thickness, spreading time, TBUT. | Non-invasive, analyses tear film dynamics and lipid quality. | Sensitive to environment, specialized devices needed. | Quantifies lipid deficiency and evaporation-related dry eye. |
| Thermography | OST gradients, post-blink temperature decay. | Rapid, non-contact, real-time monitoring. | Influenced by environment and blinking, limited availability. | Detects evaporative instability and evaluates treatment response. |
| IC | GCD, epithelial morphology. | Minimally invasive, provides cytological confirmation of ocular surface alterations, useful in research for evaluating cellular changes and goblet cell loss. | Overlap of GCD between healthy and DED eyes, variability in sampling, limited diagnostic reliability, requires laboratory processing. | Valuable for studying ocular surface pathology and monitoring therapeutic effects, primarily a research tool rather than a routine diagnostic test. |
| Multifunctional Imaging Devices | Integrated tear film and gland parameters. | Comprehensive evaluation, efficient workflow, AI integration possible. | High cost, complexity, limited accessibility. | Personalized management of DED. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Macri, A.; Tarallo, M.; Iester, M. Imaging Approaches for the Diagnosis of Dry Eye: A Review. Diagnostics 2026, 16, 126. https://doi.org/10.3390/diagnostics16010126
Macri A, Tarallo M, Iester M. Imaging Approaches for the Diagnosis of Dry Eye: A Review. Diagnostics. 2026; 16(1):126. https://doi.org/10.3390/diagnostics16010126
Chicago/Turabian StyleMacri, Angelo, Margherita Tarallo, and Michele Iester. 2026. "Imaging Approaches for the Diagnosis of Dry Eye: A Review" Diagnostics 16, no. 1: 126. https://doi.org/10.3390/diagnostics16010126
APA StyleMacri, A., Tarallo, M., & Iester, M. (2026). Imaging Approaches for the Diagnosis of Dry Eye: A Review. Diagnostics, 16(1), 126. https://doi.org/10.3390/diagnostics16010126

