Simple Clinical Prediction Rules for Identifying Significant Liver Fibrosis: Evaluation of Established Scores and Development of the Aspartate Aminotransferase-Thrombocytopenia-Albumin (ATA) Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Magnetic Resonance Elastography (MRE)
- <2.5 kPa → Normal liver stiffness.
- 2.5–3.0 kPa → Normal or potential inflammation.
- 3.0–3.5 kPa → Early fibrosis (Stage 1–2).
- 3.5–5.0 kPa → Significant fibrosis (F2–F3).
- >5.0 kPa → Cirrhosis (F4).
2.3. Clinical Variables
2.4. Statistical Analysis
2.5. Sample Size Calculation
2.6. Ethics Approval
3. Results
3.1. Patient Characteristics
3.2. Development of a Diagnostic Model for Significant Fibrosis
- Thrombocytopenia (platelet count < 150 × 103/mm3).
- AST ≥ 30 U/L.
- Hypoalbuminemia (serum albumin ≤ 3.5 g/dL).
3.3. Diagnostic Performance of the Prediction Scoring System
3.4. Calibration and Internal Validation
4. Discussion
4.1. Non-Invasive Tools for Liver Fibrosis Assessment
4.2. Diagnostic Performance of Existing Clinical Prediction Scores
4.2.1. AST/ALT Ratio
4.2.2. AST-to-Platelet Ratio Index (APRI)
4.2.3. FIB-4 Index
4.3. The ATA Score Compared to Existing Scores
- Thrombocytopenia in liver fibrosis is primarily attributed to hypersplenism due to portal hypertension, as well as reduced thrombopoietin production by the liver [52]. Studies have demonstrated a strong inverse correlation between platelet count and fibrosis severity, making it a reliable surrogate marker for non-invasive fibrosis staging [53,54].
- AST, an enzyme released by the liver during hepatocyte injury, is commonly used as a biomarker for monitoring liver fibrosis progression. AST elevation correlates with ongoing inflammation and hepatocyte turnover, making it a sensitive indicator of significant fibrosis. Several studies have identified AST as an independent predictor of fibrosis, with persistently high AST levels being associated with faster fibrosis progression [55,56,57]. Although ALT is considered more specific to hepatocellular injury [58], we selected AST for inclusion based on both statistical performance and its closer association with hepatic fibrosis. AST is present in both the cytoplasm and mitochondria of hepatocytes, and mitochondrial AST release has been linked to chronic hepatic injury and fibrogenesis. Prior studies have demonstrated that elevated AST levels—and particularly a higher AST/ALT ratio—are predictive of advanced fibrosis and cirrhosis in patients with chronic liver disease [25,59,60]. In our cohort, AST showed stronger predictive value for significant fibrosis than ALT, supporting its inclusion in the final model. This selection also aligns with our goal of optimizing diagnostic performance while minimizing redundancy in closely related biochemical markers.
- Serum albumin, a liver-synthesized protein, is an essential marker of liver function. A decline in albumin levels signifies hepatic dysfunction and is frequently detected in patients with advanced fibrosis and cirrhosis [61]. Studies have shown that lower albumin levels are associated with severe fibrosis and liver-related complications. Additionally, albuminuria has been linked to liver fibrosis severity, suggesting that hypoalbuminemia may indicate systemic consequences of chronic liver disease [62,63,64].
4.4. Sample Size Considerations
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo, R.C.; Kim, H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin. Mol. Hepatol. 2017, 23, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Batts, K.P.; Ludwig, J. Chronic hepatitis. An update on terminology and reporting. Am. J. Surg. Pathol. 1995, 19, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P.; Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996, 24, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Scheuer, P.J. Classification of chronic viral hepatitis: A need for reassessment. J. Hepatol. 1991, 13, 372–374. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yu, J.H.; Chon, Y.E.; Kim, S.U.; Kim, M.N.; Han, J.W.; Lee, H.A.; Jin, Y.J.; An, J.; Choi, M.; et al. Prevalence of clinically significant liver fibrosis in the general population: A systematic review and meta-analysis. Clin. Mol. Hepatol. 2024, 30, S199–S213. [Google Scholar] [CrossRef]
- Rockey, D.C.; Caldwell, S.H.; Goodman, Z.D.; Nelson, R.C.; Smith, A.D.; American Association for the Study of Liver, D. Liver biopsy. Hepatology 2009, 49, 1017–1044. [Google Scholar] [CrossRef]
- Chowdhury, A.B.; Mehta, K.J. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin. Exp. Med. 2023, 23, 273–285. [Google Scholar] [CrossRef]
- Venkatesh, S.K.; Torbenson, M.S. Liver fibrosis quantification. Abdom. Radiol. 2022, 47, 1032–1052. [Google Scholar] [CrossRef]
- Bedossa, P.; Dargere, D.; Paradis, V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003, 38, 1449–1457. [Google Scholar] [CrossRef]
- Scheuer, P.J. Liver biopsy size matters in chronic hepatitis: Bigger is better. Hepatology 2003, 38, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Venkatesh, S.K.; Wang, Z.; Miller, F.H.; Motosugi, U.; Low, R.N.; Hassanein, T.; Asbach, P.; Godfrey, E.M.; Yin, M.; et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: A systematic review and meta-analysis of individual participant data. Clin. Gastroenterol. Hepatol. 2015, 13, 440–451.e6. [Google Scholar] [CrossRef]
- Venkatesh, S.K.; Wang, G.; Teo, L.L.; Ang, B.W. Magnetic resonance elastography of liver in healthy Asians: Normal liver stiffness quantification and reproducibility assessment. J. Magn. Reson. Imaging 2014, 39, 1–8. [Google Scholar] [CrossRef]
- Serai, S.D.; Obuchowski, N.A.; Venkatesh, S.K.; Sirlin, C.B.; Miller, F.H.; Ashton, E.; Cole, P.E.; Ehman, R.L. Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology 2017, 285, 92–100. [Google Scholar] [CrossRef]
- Trout, A.T.; Serai, S.; Mahley, A.D.; Wang, H.; Zhang, Y.; Zhang, B.; Dillman, J.R. Liver Stiffness Measurements with MR Elastography: Agreement and Repeatability across Imaging Systems, Field Strengths, and Pulse Sequences. Radiology 2016, 281, 793–804. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.M.; Lee, J.E.; Lee, K.B.; Lee, E.S.; Yoon, J.H.; Yu, M.H.; Baek, J.H.; Shin, C.I.; Han, J.K.; et al. MR elastography for noninvasive assessment of hepatic fibrosis: Reproducibility of the examination and reproducibility and repeatability of the liver stiffness value measurement. J. Magn. Reson. Imaging 2014, 39, 326–331. [Google Scholar] [CrossRef]
- Mannelli, L.; Godfrey, E.; Graves, M.J.; Patterson, A.J.; Beddy, P.; Bowden, D.; Joubert, I.; Priest, A.N.; Lomas, D.J. Magnetic resonance elastography: Feasibility of liver stiffness measurements in healthy volunteers at 3T. Clin. Radiol. 2012, 67, 258–262. [Google Scholar] [CrossRef]
- Wang, K.; Manning, P.; Szeverenyi, N.; Wolfson, T.; Hamilton, G.; Middleton, M.S.; Vaida, F.; Yin, M.; Glaser, K.; Ehman, R.L.; et al. Repeatability and reproducibility of 2D and 3D hepatic MR elastography with rigid and flexible drivers at end-expiration and end-inspiration in healthy volunteers. Abdom. Radiol. 2017, 42, 2843–2854. [Google Scholar] [CrossRef]
- Yasar, T.K.; Wagner, M.; Bane, O.; Besa, C.; Babb, J.S.; Kannengiesser, S.; Fung, M.; Ehman, R.L.; Taouli, B. Interplatform reproducibility of liver and spleen stiffness measured with MR elastography. J. Magn. Reson. Imaging 2016, 43, 1064–1072. [Google Scholar] [CrossRef]
- Venkatesh, S.K.; Yin, M.; Ehman, R.L. Magnetic resonance elastography of liver: Clinical applications. J. Comput. Assist. Tomogr. 2013, 37, 887–896. [Google Scholar] [CrossRef]
- Pepin, K.M.; Welle, C.L.; Guglielmo, F.F.; Dillman, J.R.; Venkatesh, S.K. Magnetic resonance elastography of the liver: Everything you need to know to get started. Abdom. Radiol. 2022, 47, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Liang, L.Y.; Wong, G.L. Noninvasive tests for liver fibrosis in 2024: Are there different scales for different diseases? Gastroenterol. Rep. 2024, 12, goae024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ma, Y.; Cai, J.; Sun, M.; Zeng, L.; Wu, F.; Zhang, Y.; Hu, M. Serum biomarkers for liver fibrosis. Clin. Chim. Acta 2022, 537, 16–25. [Google Scholar] [CrossRef]
- Williams, A.L.; Hoofnagle, J.H. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. Gastroenterology 1988, 95, 734–739. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Mark, S.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Nagi, S.A.M.; Zakaria, H.M.; Elkhadry, S.W.; Hamed, W.E.; Gaballa, N.K.; Elkholy, S.S. APRI and FIB-4 indices as diagnostic noninvasive scores for prediction of severe fibrosis in patients with biliary atresia. Clin. Exp. Hepatol. 2023, 9, 251–264. [Google Scholar] [CrossRef]
- Tagliaferro, M.; Marino, M.; Basile, V.; Pocino, K.; Rapaccini, G.L.; Ciasca, G.; Basile, U.; Carnazzo, V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? J. Pers. Med. 2024, 14, 798. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Yamada, G.; Vuppalanchi, R.; Van Natta, M.; Loomba, R.; Guy, C.; Brandman, D.; Tonascia, J.; Chalasani, N.; Neuschwander-Tetri, B.; et al. Diagnostic Accuracy of Noninvasive Fibrosis Models to Detect Change in Fibrosis Stage. Clin. Gastroenterol. Hepatol. 2019, 17, 1877–1885.e5. [Google Scholar] [CrossRef]
- Eloranta, S.; Boman, M. Predictive models for clinical decision making: Deep dives in practical machine learning. J. Intern. Med. 2022, 292, 278–295. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Peng, Y.; Kang, L. Advancements of non-invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024, 5, 20240010. [Google Scholar] [CrossRef]
- QIBA MR Biomarker Committee. MR Elastography of the Liver, Quantitative Imaging Biomarkers Alliance; QIBA MR Biomarker Committee: Oak Brook, IL, USA, 2022. [Google Scholar]
- Idilman, I.S.; Li, J.; Yin, M.; Venkatesh, S.K. MR elastography of liver: Current status and future perspectives. Abdom. Radiol. 2020, 45, 3444–3462. [Google Scholar] [CrossRef] [PubMed]
- Moura Cunha, G.; Fan, B.; Navin, P.J.; Olivie, D.; Venkatesh, S.K.; Ehman, R.L.; Sirlin, C.B.; Tang, A. Interpretation, Reporting, and Clinical Applications of Liver MR Elastography. Radiology 2024, 310, e231220. [Google Scholar] [CrossRef]
- Guglielmo, F.F.; Venkatesh, S.K.; Mitchell, D.G. Liver MR Elastography Technique and Image Interpretation: Pearls and Pitfalls. Radiographics 2019, 39, 1983–2002. [Google Scholar] [CrossRef]
- Venkatesh, S.K.; Ehman, R.L. Magnetic resonance elastography of liver. Magn. Reson. Imaging Clin. N. Am. 2014, 22, 433–446. [Google Scholar] [CrossRef]
- Hoodeshenas, S.; Yin, M.; Venkatesh, S.K. Magnetic Resonance Elastography of Liver: Current Update. Top. Magn. Reson. Imaging 2018, 27, 319–333. [Google Scholar] [CrossRef]
- Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef]
- Sharma, S.; Khalili, K.; Nguyen, G.C. Non-invasive diagnosis of advanced fibrosis and cirrhosis. World J. Gastroenterol. 2014, 20, 16820–16830. [Google Scholar] [CrossRef]
- Wu, L.; Shen, Y.; Li, F. Non-invasive diagnosis of liver fibrosis: A review of current imaging modalities. Gastroenterol. Hepatol. 2020, 43, 211–221. [Google Scholar] [CrossRef]
- De Ritis, F.; Coltorti, M.; Giusti, G. An enzymic test for the diagnosis of viral hepatitis; the transaminase serum activities. Clin. Chim. Acta 1957, 2, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Nyblom, H.; Bjornsson, E.; Simren, M.; Aldenborg, F.; Almer, S.; Olsson, R. The AST/ALT ratio as an indicator of cirrhosis in patients with PBC. Liver Int. 2006, 26, 840–845. [Google Scholar] [CrossRef]
- Giannini, E.; Risso, D.; Botta, F.; Chiarbonello, B.; Fasoli, A.; Malfatti, F.; Romagnoli, P.; Testa, E.; Ceppa, P.; Testa, R. Validity and clinical utility of the aspartate aminotransferase-alanine aminotransferase ratio in assessing disease severity and prognosis in patients with hepatitis C virus-related chronic liver disease. Arch. Intern. Med. 2003, 163, 218–224. [Google Scholar] [CrossRef]
- Sorbi, D.; Boynton, J.; Lindor, K.D. The ratio of aspartate aminotransferase to alanine aminotransferase: Potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am. J. Gastroenterol. 1999, 94, 1018–1022. [Google Scholar] [CrossRef]
- Shaheen, A.A.; Myers, R.P. Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis C-related fibrosis: A systematic review. Hepatology 2007, 46, 912–921. [Google Scholar] [CrossRef]
- Lin, Z.H.; Xin, Y.N.; Dong, Q.J.; Wang, Q.; Jiang, X.J.; Zhan, S.H.; Sun, Y.; Xuan, S.Y. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: An updated meta-analysis. Hepatology 2011, 53, 726–736. [Google Scholar] [CrossRef]
- Davyduke, T.; Tandon, P.; Al-Karaghouli, M.; Abraldes, J.G.; Ma, M.M. Impact of Implementing a “FIB-4 First” Strategy on a Pathway for Patients with NAFLD Referred From Primary Care. Hepatol. Commun. 2019, 3, 1322–1333. [Google Scholar] [CrossRef]
- Tun, K.M.; Noureddin, N.; Noureddin, M. Noninvasive tests in the evaluation of nonalcoholic fatty liver disease: A review. Clin Liver Dis 2023, 22, 103–112. [Google Scholar] [CrossRef]
- Lurie, Y.; Webb, M.; Cytter-Kuint, R.; Shteingart, S.; Lederkremer, G.Z. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J. Gastroenterol. 2015, 21, 11567–11583. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention Care and Treatment of Persons with Chronic Hepatitis B Infection: March 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Peck-Radosavljevic, M. Thrombocytopenia in chronic liver disease. Liver Int. 2017, 37, 778–793. [Google Scholar] [CrossRef]
- Gotlieb, N.; Schwartz, N.; Zelber-Sagi, S.; Chodick, G.; Shalev, V.; Shibolet, O. Longitudinal decrease in platelet counts as a surrogate marker of liver fibrosis. World J. Gastroenterol. 2020, 26, 5849–5862. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.N.; Zhang, S.T.; Wang, N.; Yu, W.J.; Chen, M.; Xiao, N.; Duan, Y.; Pan, L.Z.; Song, W.Q.; Xia, Y.X.; et al. Platelet indices significantly correlate with liver fibrosis in HCV-infected patients. PLoS ONE 2020, 15, e0227544. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Keach, J.C.; Batts, K.P.; Lindor, K.D. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999, 30, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, L.L.; Schiavon, J.L.; Filho, R.J.; Sampaio, J.P.; Lanzoni, V.P.; Silva, A.E.; Ferraz, M.L. Simple blood tests as noninvasive markers of liver fibrosis in hemodialysis patients with chronic hepatitis C virus infection. Hepatology 2007, 46, 307–314. [Google Scholar] [CrossRef]
- Thong, V.D.; Quynh, B.T.H. Correlation of Serum Transaminase Levels with Liver Fibrosis Assessed by Transient Elastography in Vietnamese Patients with Nonalcoholic Fatty Liver Disease. Int. J. Gen. Med. 2021, 14, 1349–1355. [Google Scholar] [CrossRef]
- Thakur, S.; Kumar, V.; Das, R.; Sharma, V.; Mehta, D.K. Biomarkers of Hepatic Toxicity: An Overview. Curr. Ther. Res. Clin. Exp. 2024, 100, 100737. [Google Scholar] [CrossRef]
- Sheth, S.G.; Flamm, S.L.; Gordon, F.D.; Chopra, S. AST/ALT ratio predicts cirrhosis in patients with chronic hepatitis C virus infection. Am. J. Gastroenterol. 1998, 93, 44–48. [Google Scholar] [CrossRef]
- Castera, L.; Forns, X.; Alberti, A. Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 2008, 48, 835–847. [Google Scholar] [CrossRef]
- Sharma, P. Value of Liver Function Tests in Cirrhosis. J. Clin. Exp. Hepatol. 2022, 12, 948–964. [Google Scholar] [CrossRef]
- Fujita, K.; Yamasaki, K.; Morishita, A.; Shi, T.; Tani, J.; Nishiyama, N.; Kobara, H.; Himoto, T.; Yatsuhashi, H.; Masaki, T. Albumin platelet product as a novel score for liver fibrosis stage and prognosis. Sci. Rep. 2021, 11, 5345. [Google Scholar] [CrossRef]
- Takahashi, H.; Kawanaka, M.; Fujii, H.; Iwaki, M.; Hayashi, H.; Toyoda, H.; Oeda, S.; Hyogo, H.; Morishita, A.; Munekage, K.; et al. Association of Serum Albumin Levels and Long-Term Prognosis in Patients with Biopsy-Confirmed Nonalcoholic Fatty Liver Disease. Nutrients 2023, 15, 2014. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.R.; Verdelho Machado, M. New Insights About Albumin and Liver Disease. Ann. Hepatol. 2018, 17, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Kim, D.Y.; Park, J.Y.; Ahn, S.H.; Chon, C.Y.; Kim, J.K.; Paik, Y.H.; Lee, K.S.; Park, Y.N.; Han, K.H. Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int. 2010, 30, 546–553. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef]
- Khan, D.A.; Fatima Tuz, Z.; Khan, F.A.; Mubarak, A. Evaluation of diagnostic accuracy of APRI for prediction of fibrosis in hepatitis C patients. J. Ayub Med. Coll. Abbottabad 2008, 20, 122–126. [Google Scholar]
- Ogundimu, E.O.; Altman, D.G.; Collins, G.S. Adequate sample size for developing prediction models is not simply related to events per variable. J. Clin. Epidemiol. 2016, 76, 175–182. [Google Scholar] [CrossRef]
- van Smeden, M.; Moons, K.G.; de Groot, J.A.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat. Methods Med. Res. 2019, 28, 2455–2474. [Google Scholar] [CrossRef]
- Austin, P.C.; Steyerberg, E.W. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat. Methods Med. Res. 2017, 26, 796–808. [Google Scholar] [CrossRef]
- Berger, D.; Desai, V.; Janardhan, S. Con: Liver Biopsy Remains the Gold Standard to Evaluate Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2019, 13, 114–116. [Google Scholar] [CrossRef]
Characteristics | Normal or Mild Fibrosis n = 48 (68.6%) | Significant Fibrosis n = 22 (31.4%) | p-Value |
---|---|---|---|
Age (years), median (range) | 52.5 (23–74) | 58.5 (40–70) | 0.15 |
Sex (male, %) | 25 (52.08%) | 16 (72.73%) | 0.12 |
Body Mass Index, median (IQR) | 24.69 (21.96–26.73) | 23.79 (20.90–28.39) | 0.89 |
Platelet count (×103/mm3), median (IQR) | 215.5 (170.5–271.5) | 138.5 (89.0–191.0) | <0.001 |
Total Protein (g/dL), median (IQR) | 7.75 (7.5–8.0) | 7.80 (7.7–8.1) | 0.34 |
Serum Albumin (g/dL), median (IQR) | 4.5 (4.4–4.6) | 4.35 (3.9–4.4) | <0.001 |
AST (U/L), median (IQR) | 24 (21–28) | 38 (30–84) | <0.001 |
ALT (U/L), median (IQR) | 21.5 (15.5–30.5) | 32.5 (22–58) | 0.007 |
Cholesterol (mg/dL), median (IQR) | 197 (164.5–219.5) | 146 (122–169) | <0.001 |
AST/ALT ratio, median (IQR) | 1.05 (0.85–1.43) | 1.29 (1.00–1.74) | 0.08 |
APRI score, median (IQR) | 0.28 (0.20–0.39) | 0.74 (0.46–1.42) | <0.001 |
FIB-4 score, median (IQR) | 1.26 (0.89–1.81) | 2.99 (1.56–5.37) | <0.001 |
Predictor | Coefficient | Odds Ratio | 95% CI for OR | p-Value |
---|---|---|---|---|
Thrombocytopenia | 1.96 | 7.10 | 1.74–28.99 | 0.006 |
AST ≥ 30 U/L | 2.23 | 9.28 | 2.42–35.62 | 0.001 |
Albumin ≤ 3.5 g/dL | 1.92 | 6.84 | 0.39–121.34 | 0.190 |
Score | Cut-Off | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | LR (+) | AUROC (95% CI) | Accuracy (%) |
---|---|---|---|---|---|---|---|---|
AST/ALT | 1.0 | 77.3 | 39.6 | 37.0 | 79.2 | 1.28 | 0.58 (0.47–0.70) | 51.4 |
1.2 | 59.1 | 60.4 | 40.6 | 76.3 | 1.49 | 0.60 (0.47–0.72) | 60.0 | |
1.25 | 54.5 | 66.7 | 42.9 | 76.2 | 1.64 | 0.61 (0.48–0.73) | 62.9 | |
APRI | 0.245 | 95.5 | 41.7 | 42.9 | 95.2 | 1.64 | 0.69 (0.60–0.77) | 58.6 |
0.39 | 81.8 | 75.0 | 60.0 | 90.0 | 3.27 | 0.78 (0.68–0.89) | 77.1 | |
0.50 | 68.2 | 89.6 | 75.0 | 86.0 | 6.55 | 0.79 (0.68–0.90) | 82.9 | |
0.70 | 50.0 | 93.8 | 78.6 | 80.4 | 8.00 | 0.72 (0.61–0.83) | 80.0 | |
0.80 | 45.5 | 93.8 | 76.9 | 78.9 | 7.27 | 0.70 (0.58–0.81) | 78.6 | |
1.0 | 45.5 | 100.0 | 100.0 | 80.0 | - | 0.73 (0.62–0.83) | 82.9 | |
FIB-4 | 1.0 | 95.5 | 35.4 | 40.4 | 94.4 | 1.48 | 0.65 (0.57–0.74) | 54.3 |
1.2 | 95.5 | 43.8 | 43.8 | 95.5 | 1.70 | 0.70 (0.61–0.78) | 60.0 | |
1.3 | 90.9 | 54.2 | 47.6 | 92.9 | 1.98 | 0.73 (0.63–0.82) | 65.7 | |
1.4 | 90.9 | 58.3 | 50.0 | 93.3 | 2.18 | 0.75 (0.65–0.84) | 68.6 | |
1.5 | 81.8 | 64.6 | 51.4 | 88.6 | 2.31 | 0.73 (0.62–0.84) | 70.0 | |
2.0 | 72.7 | 81.3 | 64.0 | 86.7 | 3.88 | 0.77 (0.66–0.88) | 78.6 | |
ATA | 1 | 95.5 | 66.7 | 56.8 | 97.0 | 2.86 | 0.81 (0.73–0.89) | 75.7 |
2–3 | 50.0 | 95.8 | 84.6 | 80.8 | 12.00 | 0.73 (0.62–0.84) | 81.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoenchue, P.; Khorana, J.; Tantraworasin, A.; Pojchamarnwiputh, S.; Na Chiangmai, W.; Amantakul, A.; Chitapanarux, T.; Inmutto, N. Simple Clinical Prediction Rules for Identifying Significant Liver Fibrosis: Evaluation of Established Scores and Development of the Aspartate Aminotransferase-Thrombocytopenia-Albumin (ATA) Score. Diagnostics 2025, 15, 1119. https://doi.org/10.3390/diagnostics15091119
Charoenchue P, Khorana J, Tantraworasin A, Pojchamarnwiputh S, Na Chiangmai W, Amantakul A, Chitapanarux T, Inmutto N. Simple Clinical Prediction Rules for Identifying Significant Liver Fibrosis: Evaluation of Established Scores and Development of the Aspartate Aminotransferase-Thrombocytopenia-Albumin (ATA) Score. Diagnostics. 2025; 15(9):1119. https://doi.org/10.3390/diagnostics15091119
Chicago/Turabian StyleCharoenchue, Puwitch, Jiraporn Khorana, Apichat Tantraworasin, Suwalee Pojchamarnwiputh, Wittanee Na Chiangmai, Amonlaya Amantakul, Taned Chitapanarux, and Nakarin Inmutto. 2025. "Simple Clinical Prediction Rules for Identifying Significant Liver Fibrosis: Evaluation of Established Scores and Development of the Aspartate Aminotransferase-Thrombocytopenia-Albumin (ATA) Score" Diagnostics 15, no. 9: 1119. https://doi.org/10.3390/diagnostics15091119
APA StyleCharoenchue, P., Khorana, J., Tantraworasin, A., Pojchamarnwiputh, S., Na Chiangmai, W., Amantakul, A., Chitapanarux, T., & Inmutto, N. (2025). Simple Clinical Prediction Rules for Identifying Significant Liver Fibrosis: Evaluation of Established Scores and Development of the Aspartate Aminotransferase-Thrombocytopenia-Albumin (ATA) Score. Diagnostics, 15(9), 1119. https://doi.org/10.3390/diagnostics15091119