Risks of Stroke and Transient Cerebral Ischemia up to 4 Years Post-SARS-CoV-2 Infection in Large Diverse Urban Population in the Bronx
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Cohort
2.3. Variables
2.4. Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell 2020, 183, 16–27.e11. [Google Scholar] [CrossRef]
- Koralnik, I.J.; Tyler, K.L. COVID-19: A global threat to the nervous system. Ann. Neurol. 2020, 88, 1–11. [Google Scholar] [CrossRef]
- Conklin, J.; Frosch, M.P.; Mukerji, S.S.; Rapalino, O.; Maher, M.D.; Schaefer, P.W.; Lev, M.H.; Gonzalez, R.G.; Das, S.; Champion, S.N.; et al. Susceptibility-weighted imaging reveals cerebral microvascular injury in severe COVID-19. J. Neurol. Sci. 2021, 421, 117308. [Google Scholar] [CrossRef]
- Alquisiras-Burgos, I.; Peralta-Arrieta, I.; Alonso-Palomares, L.A.; Zacapala-Gomez, A.E.; Salmeron-Barcenas, E.G.; Aguilera, P. Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Mol. Neurobiol. 2020, 58, 520–535. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; DiBiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085. [Google Scholar] [CrossRef]
- Anand, H.; Ende, V.; Singh, G.; Qureshi, I.; Duong, T.Q.; Mehler, M.F. Nervous system-systemic crosstalk in SARS-CoV-2/COVID-19: A unique dyshomeostasis syndrome. Front. Neurosci. 2021, 15, 727060. [Google Scholar] [CrossRef] [PubMed]
- Shakil, S.S.; Emmons-Bell, S.; Rutan, C.; Walchok, J.; Navi, B.; Sharma, R.; Sheth, K.; Roth, G.A.; Elkind, M.S.V. Stroke Among Patients Hospitalized With COVID-19: Results From the American Heart Association COVID-19 Cardiovascular Disease Registry. Stroke 2022, 53, 800–807. [Google Scholar] [CrossRef]
- Marti-Fabregas, J.; Guisado-Alonso, D.; Delgado-Mederos, R.; Martinez-Domeno, A.; Prats-Sanchez, L.; Guasch-Jimenez, M.; Cardona, P.; Nunez-Guillen, A.; Requena, M.; Rubiera, M.; et al. Impact of COVID-19 Infection on the Outcome of Patients With Ischemic Stroke. Stroke 2021, 52, 3908–3917. [Google Scholar] [CrossRef]
- Acanfora, D.; Acanfora, C.; Ciccone, M.M.; Scicchitano, P.; Bortone, A.S.; Uguccioni, M.; Casucci, G. The Cross-Talk between Thrombosis and Inflammatory Storm in Acute and Long-COVID-19: Therapeutic Targets and Clinical Cases. Viruses 2021, 13, 1904. [Google Scholar] [CrossRef]
- Ahmad, F.; Kannan, M.; Ansari, A.W. Role of SARS-CoV-2 -induced cytokines and growth factors in coagulopathy and thromboembolism. Cytokine Growth Factor Rev. 2022, 63, 58–68. [Google Scholar] [CrossRef]
- Appelman, B.; Michels, E.H.A.; de Brabander, J.; Peters-Sengers, H.; van Amstel, R.B.E.; Noordzij, S.M.; Klarenbeek, A.M.; van Linge, C.C.A.; Chouchane, O.; Schuurman, A.R.; et al. Thrombocytopenia is associated with a dysregulated host response in severe COVID-19. Thromb. Res. 2023, 229, 187–197. [Google Scholar] [CrossRef]
- Chang, R.; Mamun, A.; Dominic, A.; Le, N.T. SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress. Front. Physiol. 2020, 11, 605908. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, F.; Sandoval Valencia, H.; Barbella-Aponte, R.A.; Collado-Jimenez, R.; Ayo-Martin, O.; Barrena, C.; Molina-Nuevo, J.D.; Garcia-Garcia, J.; Lozano-Setien, E.; Alcahut-Rodriguez, C.; et al. Cerebrovascular disease in patients with COVID-19: Neuroimaging, histological and clinical description. Brain 2020, 143, 3089–3103. [Google Scholar] [CrossRef]
- Jagst, M.; Pottkamper, L.; Gomer, A.; Pitarokoili, K.; Steinmann, E. Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection. Curr. Opin. Microbiol. 2024, 79, 102474. [Google Scholar] [CrossRef]
- Avdonin, P.P.; Blinova, M.S.; Serkova, A.A.; Komleva, L.A.; Avdonin, P.V. Immunity and Coagulation in COVID-19. Int. J. Mol. Sci. 2024, 25, 11267. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, B.; Sudry, T.; Flaks-Manov, N.; Yehezkelli, Y.; Kalkstein, N.; Akiva, P.; Ekka-Zohar, A.; Ben David, S.S.; Lerner, U.; Bivas-Benita, M.; et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: Nationwide cohort study. Br. Med. J. 2023, 380, e072529. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, C.Y.; Wang, S.I.; Wei, J.C. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine 2022, 53, 101619. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.Y.F.; Mathur, S.; Zhang, R.; Yan, V.K.C.; Lai, F.T.T.; Chui, C.S.L.; Li, X.; Wong, C.K.H.; Chan, E.W.Y.; Yiu, K.H.; et al. Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: A prospective cohort in UK Biobank. Cardiovasc. Res. 2023, 119, 1718–1727. [Google Scholar] [CrossRef]
- Raisi-Estabragh, Z.; Cooper, J.; Salih, A.; Raman, B.; Lee, A.M.; Neubauer, S.; Harvey, N.C.; Petersen, S.E. Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank. Heart 2022, 109, 119–126. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Changela, S.; Ashraf, S.; Lu, J.Y.; Duong, K.E.; Henry, S.; Wang, S.H.; Duong, T.Q. New-onset gastrointestinal disorders in COVID-19 patients 3.5 years post-infection in the inner-city population in the Bronx. Sci. Rep. 2024, 14, 31850. [Google Scholar] [CrossRef]
- Hadidchi, R.; Pakan, R.; Alamuri, T.; Cercizi, N.; Al-Ani, Y.; Wang, S.H.; Henry, S.; Duong, T.Q. Long COVID-19 outcomes of patients with pre-existing dementia. J. Alzheimers Dis. 2024, 103, 605–615. [Google Scholar] [CrossRef]
- Pakan, R.; Hadidchi, R.; Al-Ani, Y.; Piskun, H.; Duong, K.S.; Henry, S.; Wang, S.; Maurer, C.W.; Duong, T.Q. Long-Term Outcomes of Patients with Pre-Existing Essential Tremor After SARS-CoV-2 Infection. Diagnostics 2024, 14, 2774. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Y.; Buczek, A.; Fleysher, R.; Hoogenboom, W.S.; Hou, W.; Rodriguez, C.J.; Fisher, M.C.; Duong, T.Q. Outcomes of Hospitalized Patients With COVID-19 With Acute Kidney Injury and Acute Cardiac Injury. Front. Cardiovasc. Med. 2021, 8, 798897. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Y.; Buczek, A.; Fleysher, R.; Musheyev, B.; Henninger, E.M.; Jabbery, K.; Rangareddy, M.; Kanawade, D.; Nelapat, C.; Soby, S.; et al. Characteristics of COVID-19 patients with multiorgan injury across the pandemic in a large academic health system in the Bronx, New York. Heliyon 2023, 9, e15277. [Google Scholar] [CrossRef] [PubMed]
- Hadidchi, R.; Wang, S.H.; Rezko, D.; Henry, S.; Coyle, P.K.; Duong, T.Q. SARS-CoV-2 infection increases long-term multiple sclerosis disease activity and all-cause mortality in an underserved inner-city population. Mult. Scler. Relat. Disord. 2024, 86, 105613. [Google Scholar] [CrossRef]
- Mahesh, T.; Changela, S.; Duong, K.S.; Henry, S.; Wang, S.H.; Duong, T.Q. New-onset conjunctivitis 3.5 years post SARS-CoV-2 infection in an inner-city population in the Bronx. BMJ Open Ophthalmol. 2025, 10, e001993. [Google Scholar] [CrossRef]
- Chesnaye, N.C.; Stel, V.S.; Tripepi, G.; Dekker, F.W.; Fu, E.L.; Zoccali, C.; Jager, K.J. An introduction to inverse probability of treatment weighting in observational research. Clin. Kidney J. 2022, 15, 14–20. [Google Scholar] [CrossRef]
- Hilser, J.R.; Spencer, N.J.; Afshari, K.; Gilliland, F.D.; Hu, H.; Deb, A.; Lusis, A.J.; Wilson Tang, W.; Hartiala, J.A.; Hazen, S.L. COVID-19 is a coronary artery disease risk equivalent and exhibits a genetic interaction with ABO blood type. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2321–2333. [Google Scholar] [CrossRef]
- Zuin, M.; Mazzitelli, M.; Rigatelli, G.; Bilato, C.; Cattelan, A.M. Risk of ischemic stroke in patients recovered from COVID-19 infection: A systematic review and meta-analysis. Eur. Stroke J. 2023, 8, 915–922. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef]
- Siegler, J.; Heslin, M.; Thau, L.; Smith, A.; Jovin, T. Falling stroke rates during COVID-19 pandemic at a comprehensive stroke center. J. Stroke Cerebrovasc. Dis. 2020, 29, 104953. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Sillett, R.; Zhu, L.; Mendel, J.; Camplisson, I.; Dercon, Q.; Harrison, P.J. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 2022, 9, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Sashindranath, M.; Nandurkar, H.H. Endothelial Dysfunction in the Brain: Setting the Stage for Stroke and Other Cerebrovascular Complications of COVID-19. Stroke 2021, 52, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, K.E.; Rosenberg, G.A. Shared Inflammatory Pathology of Stroke and COVID-19. Int. J. Mol. Sci. 2022, 23, 5150. [Google Scholar] [CrossRef]
- Lim, J.T.; Liang En, W.; Tay, A.T.; Pang, D.; Chiew, C.J.; Ong, B.; Lye, D.C.B.; Tan, K.B. Long-term Cardiovascular, Cerebrovascular, and Other Thrombotic Complications in COVID-19 Survivors: A Retrospective Cohort Study. Clin. Infect. Dis. 2024, 78, 70–79. [Google Scholar] [CrossRef]
- Georgieva, E.; Ananiev, J.; Yovchev, Y.; Arabadzhiev, G.; Abrashev, H.; Abrasheva, D.; Atanasov, V.; Kostandieva, R.; Mitev, M.; Petkova-Parlapanska, K.; et al. COVID-19 Complications: Oxidative Stress, Inflammation, and Mitochondrial and Endothelial Dysfunction. Int. J. Mol. Sci. 2023, 24, 14876. [Google Scholar] [CrossRef]
- Mehboob, R.; von Kries, J.P.; Ehsan, K.; Almansouri, M.; Bamaga, A.K. Role of endothelial cells and angiotensin converting enzyme-II in COVID-19 and brain damages post-infection. Front. Neurol. 2023, 14, 1210194. [Google Scholar] [CrossRef]
- Stein, L.K.; Mayman, N.A.; Dhamoon, M.S.; Fifi, J.T. The emerging association between COVID-19 and acute stroke. Trends Neurosci. 2021, 44, 527–537. [Google Scholar] [CrossRef]
- Kakarla, V.; Kaneko, N.; Nour, M.; Khatibi, K.; Elahi, F.; Liebeskind, D.S.; Hinman, J.D. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J. Cereb. Blood Flow Metab. 2021, 41, 1179–1192. [Google Scholar] [CrossRef]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef]
- Nicolai, L.; Kaiser, R.; Stark, K. Thromboinflammation in long COVID-the elusive key to postinfection sequelae? J. Thromb. Haemost. 2023, 21, 2020–2031. [Google Scholar] [CrossRef]
- Ranucci, M.; Baryshnikova, E.; Anguissola, M.; Pugliese, S.; Falco, M.; Menicanti, L. The Long Term Residual Effects of COVID-Associated Coagulopathy. Int. J. Mol. Sci. 2023, 24, 5514. [Google Scholar] [CrossRef]
- Pons, S.; Fodil, S.; Azoulay, E.; Zafrani, L. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care 2020, 24, 353. [Google Scholar] [CrossRef]
- Higashikuni, Y.; Liu, W.; Obana, T.; Sata, M. Pathogenic Basis of Thromboinflammation and Endothelial Injury in COVID-19: Current Findings and Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 12081. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zuo, Q.; Li, Y.; Oduro, P.K.; Tan, F.; Wang, Y.; Liu, X.; Li, J.; Wang, Q.; Guo, F.; et al. A Vicious Cycle: In Severe and Critically Ill COVID-19 Patients. Front. Immunol. 2022, 13, 930673. [Google Scholar] [CrossRef] [PubMed]
- Eljilany, I.; Elzouki, A.-N. D-dimer, fibrinogen, and IL-6 in COVID-19 patients with suspected venous thromboembolism: A narrative review. Vasc. Health Risk Manag. 2020, 16, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Galland, J.; Thoreau, B.; Delrue, M.; Neuwirth, M.; Stepanian, A.; Chauvin, A.; Dellal, A.; Nallet, O.; Roriz, M.; Devaux, M. White blood count, D-dimers, and ferritin levels as predictive factors of pulmonary embolism suspected upon admission in noncritically ill COVID-19 patients: The French multicenter CLOTVID retrospective study. Eur. J. Haematol. 2021, 107, 190–201. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Gu, H.-Q.; Mo, J.-L.; Yang, K.-X.; Jiang, Y.-Y.; Yang, X.; Wang, C.-J.; Xu, J.; Meng, X.; Jiang, Y. U-shaped association between low-density lipoprotein cholesterol levels and risk of all-cause mortality mediated by post-stroke infection in acute ischemic stroke. Sci. Bull. 2023, 68, 1327–1335. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, J.; Xu, J.; Wang, A.; Dai, L.; Cheng, A.; Yalkun, G.; Meng, X.; Zhao, X.; Li, H. Effects of individual and integrated cumulative burden of blood pressure, glucose, low-density lipoprotein cholesterol, and C-reactive protein on cardiovascular risk. Eur. J. Prev. Cardiol. 2022, 29, 127–135. [Google Scholar] [CrossRef]
- Mo, J.; Chen, Z.; Xu, J.; Wang, A.; Meng, X.; Zhao, X.; Li, H.; Wu, S.; Wang, Y. The impact of the cumulative burden of LDL-c and hs-CRP on cardiovascular risk: A prospective, population-based study. Aging 2020, 12, 11990. [Google Scholar] [CrossRef]
- Ragnoli, B.; Da Re, B.; Galantino, A.; Kette, S.; Salotti, A.; Malerba, M. Interrelationship between COVID-19 and Coagulopathy: Pathophysiological and Clinical Evidence. Int. J. Mol. Sci. 2023, 24, 8945. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.; Najjar, A.; Chong, D.J.; Pramanik, B.K.; Kirsch, C.; Kuzniecky, R.I.; Pacia, S.V.; Azhar, S. Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 2020, 17, 231. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Aenlle, K.K.; Cohen, J.; Mathew, A.; Isler, D.; Pangeni, R.P.; Nathanson, L.; Theoharides, T.C.; Klimas, N.G. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024, 30, 421–439. [Google Scholar] [CrossRef] [PubMed]


| Covariates | Hospitalized COVID+ N = 13,983 | Non-Hospitalized COVID+ N = 38,134 | COVID− N = 837,395 | Absolute Standardized Difference | ||
|---|---|---|---|---|---|---|
| A vs. C | B vs. C | A vs. B | ||||
| Age, mean ± standard deviation | 61.64 ± 20.48 | 39.60 ± 22.89 | 42.01± 24.20 | 0.85 | 0.1 | 0.98 |
| Age categorical ≥ 60 years | 8448 (60.41%) | 8391 (22.01%) | 232,917 (27.81%) | 0.69 | 0.14 | 0.85 |
| Male, n (%) | 6491 (46.42%) | 14,970 (39.25%) | 363,624 (43.42%) | 0.06 | 0.08 | 0.15 |
| Race, n (%) | ||||||
| White | 1858 (13.29%) | 4028 (10.56%) | 111,584 (13.32%) | 0.001 | 0.08 | 0.08 |
| Black | 4764 (34.07%) | 11,581 (30.37%) | 223,519 (26.69%) | 0.16 | 0.08 | 0.08 |
| Asian | 470 (3.36%) | 1830 (4.80%) | 25,125 (3.00%) | 0.02 | 0.09 | 0.07 |
| Others | 6891 (49.28%) | 20,695 (54.27%) | 477,167 (57.00%) | 0.15 | 0.05 | 0.1 |
| Ethnicity Hispanic, n (%) | 6767 (48.39%) | 20,706 (54.30%) | 482,816 (57.65%) | 0.19 | 0.07 | 0.12 |
| ZIP Code Median Income, n (%) | ||||||
| 1st Quartile (0–25) | 3481 (24.89%) | 10,504 (27.54%) | 253,843 (30.31%) | 0.12 | 0.06 | 0.06 |
| 2nd Quartile (25–50) | 3992 (28.55%) | 10,044 (26.34%) | 197,267 (23.56%) | 0.11 | 0.06 | 0.05 |
| 3rd Quartile (50–75) | 4205 (30.07%) | 10,169 (26.67%) | 204,023 (24.37%) | 0.13 | 0.05 | 0.07 |
| 4th Quartile (75–100) | 2305 (16.48%) | 7417 (19.45%) | 182,262 (21.76%) | 0.13 | 0.06 | 0.07 |
| Insurance, n (%) | ||||||
| Medicare | 4676 (33.44%) | 2858 (7.49%) | 96,880 (11.57%) | 0.54 | 0.14 | 0.68 |
| Medicaid | 5253 (37.57%) | 17,556 (46.06%) | 378,601 (45.21%) | 0.16 | 0.02 | 0.17 |
| Private | 3621 (25.90%) | 13,441 (35.25%) | 281,785 (33.64%) | 0.17 | 0.03 | 0.21 |
| Self-pay | 433 (3.10%) | 4279 (11.22%) | 80,129 (9.57%) | 0.27 | 0.05 | 0.32 |
| Vaccination (at least one dose) | 5824 (41.70%) | 20,245 (53.10%) | 312,152 (37.30%) | 0.09 | 0.32 | 0.23 |
| Comorbidities, n (%) | ||||||
| Type-2 Diabetes | 7110 (50.85%) | 8385 (21.99%) | 118,590 (14.16%) | 0.85 | 0.2 | 0.63 |
| Hypertension | 9340 (66.80%) | 10,753 (28.20%) | 170,682 (20.39%) | 1.06 | 0.18 | 0.84 |
| COPD | 1786 (12.77%) | 892 (2.34%) | 12,482 (1.49%) | 0.45 | 0.06 | 0.40 |
| Chronic Kidney Disease | 4214 (30.14%) | 2282 (5.98%) | 33,623 (4.02%) | 0.74 | 0.09 | 0.66 |
| Cardiovascular Disease | 4747 (33.95%) | 2751 (7.21%) | 43,799 (5.23%) | 0.77 | 0.08 | 0.70 |
| Asthma | 3150 (22.53%) | 7630 (20.01%) | 87,846 (10.49%) | 0.33 | 0.27 | 0.06 |
| Outcome | ||||||
| Stroke | 401 (2.87%) | 326 (0.85%) | 8546 (1.02%) | - | - | - |
| Transient Cerebral Ischemia | 107 (0.77%) | 192 (0.50%) | 3175 (0.38%) | - | - | - |
| Covariates | Hospitalized COVID+ N = 12,652 | Non-Hospitalized COVID+ N = 37,838 | COVID− N = 837,551 | Absolute Standardized Difference | ||
|---|---|---|---|---|---|---|
| A vs. C | B vs. C | A vs. B | ||||
| Age, mean ± standard deviation | 44.04 (±23.68) | 41.59 ((±23.16) | 42.22 (±24.30) | 0.07 | 0.03 | 0.1 |
| Age categorical ≥ 60 years | 3556 (28.1%) | 9236 (24.4%) | 236,740 (28.3%) | 0.003 | 0.09 | 0.08 |
| Male, n (%) | 5094 (40.3%) | 16,637 (43.9%) | 362,844 (43.3%) | 0.06 | 0.01 | 0.07 |
| Race, n (%) | ||||||
| White | 1596 (12.6%) | 4825 (12.7%) | 110,592 (13.2%) | 0.02 | 0.01 | 0.003 |
| Black | 3524 (27.9%) | 10,404 (27.4%) | 225,901 (27.0%) | 0.02 | 0.01 | 0.009 |
| Asian | 382 (3.0%) | 1174 (3.1%) | 25,829 (3.1%) | 0.004 | 0.001 | 0.004 |
| Others | 7148 (56.5%) | 21,498 (56.7%) | 475,231 (56.7%) | 0.005 | 0.001 | 0.004 |
| Ethnicity Hispanic, n (%) | 7356 (58.1%) | 21,647 (57.1%) | 480,434 (57.4%) | 0.02 | 0.005 | 0.02 |
| ZIP Code Median Income, n (%) | ||||||
| 1st Quartile (0–25) | 4093 (32.4%) | 11,458 (30.2%) | 252,189 (30.1%) | 0.05 | 0.003 | 0.05 |
| 2nd Quartile (25–50) | 3028 (23.9%) | 9161 (24.2%) | 198,986 (23.8%) | 0.004 | 0.01 | 0.006 |
| 3rd Quartile (50–75) | 3073 (24.3%) | 9323 (24.6%) | 205,656 (24.6%) | 0.006 | 0.001 | 0.007 |
| 4th Quartile (75–100) | 2456 (19.4%) | 7960 (21.0%) | 180,721 (21.6%) | 0.05 | 0.01 | 0.04 |
| Insurance, n (%) | ||||||
| Medicare | 1649 (13.0%) | 4202 (11.1%) | 98,418 (11.8%) | 0.04 | 0.02 | 0.06 |
| Medicaid | 5677 (44.9%) | 17,186 (45.3%) | 377,910 (45.1%) | 0.005 | 0.004 | 0.009 |
| Private | 4423 (35.0%) | 12,953 (34.2%) | 281,384 (33.6%) | 0.03 | 0.01 | 0.02 |
| Self-pay | 901 (7.1%) | 3561 (9.4%) | 79,841 (9.5%) | 0.09 | 0.005 | 0.08 |
| Vaccination (at least one dose) | 4907 (38.8%) | 14,503 (38.3%) | 318,470 (38.0%) | 0.02 | 0.006 | 0.009 |
| Comorbidities, n (%) | ||||||
| Type-2 Diabetes | 2543 (20.1%) | 5797 (15.3%) | 126,431 (15.1%) | 0.13 | 0.006 | 0.13 |
| Hypertension | 3269 (25.8%) | 8152 (21.5%) | 179,777 (21.5%) | 0.1 | 0.001 | 0.1 |
| COPD | 342 (2.7%) | 691 (1.8%) | 14,406 (1.7%) | 0.06 | 0.008 | 0.06 |
| Chronic Kidney Disease | 754 (6.0%) | 1760 (4.6%) | 37,922 (4.5%) | 0.06 | 0.006 | 0.05 |
| Cardiovascular Disease | 952 (7.5%) | 2146 (5.7%) | 48,439 (5.8%) | 0.07 | 0.005 | 0.07 |
| Asthma | 2019 (16.0%) | 4302 (11.3%) | 93,019 (11.1%) | 0.14 | 0.008 | 0.14 |
| Stroke | Stroke | TCI | TCI | |
|---|---|---|---|---|
| Hospitalized COVID+ vs. COVID− | Non-Hospitalized COVID+ vs. COVID− | Hospitalized COVID+ vs. COVID− | Non-Hospitalized COVID+ vs. COVID− | |
| Up to 12 months | 1.58 [1.28–1.97] | 1.14 [0.95–1.37] | 1.09 [0.65–1.82] | 2.36 [1.88–2.97] |
| Up to 24 months | 1.45 [1.20–1.75] | 1.19 [1.03–1.37] | 1.02 [0.71–1.47] | 2.31 [1.93–2.76] |
| Up to 36 months | 1.39 [1.18–1.65] | 1.16 [1.02–1.33] | 1.05 [0.78–1.41] | 2.11 [1.78–2.49] |
| Entire period (Up to 47.7 months) | 1.32 [1.12–1.55] | 1.21 [1.05–1.39] | 1.00 [0.75–1.33] | 2.15 [1.81–2.56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Changela, S.; Hadidchi, R.; Vichare, A.; Rahmani, L.; Henry, S.; Duong, T.Q. Risks of Stroke and Transient Cerebral Ischemia up to 4 Years Post-SARS-CoV-2 Infection in Large Diverse Urban Population in the Bronx. Diagnostics 2025, 15, 3183. https://doi.org/10.3390/diagnostics15243183
Changela S, Hadidchi R, Vichare A, Rahmani L, Henry S, Duong TQ. Risks of Stroke and Transient Cerebral Ischemia up to 4 Years Post-SARS-CoV-2 Infection in Large Diverse Urban Population in the Bronx. Diagnostics. 2025; 15(24):3183. https://doi.org/10.3390/diagnostics15243183
Chicago/Turabian StyleChangela, Sagar, Roham Hadidchi, Aditi Vichare, Liora Rahmani, Sonya Henry, and Tim Q. Duong. 2025. "Risks of Stroke and Transient Cerebral Ischemia up to 4 Years Post-SARS-CoV-2 Infection in Large Diverse Urban Population in the Bronx" Diagnostics 15, no. 24: 3183. https://doi.org/10.3390/diagnostics15243183
APA StyleChangela, S., Hadidchi, R., Vichare, A., Rahmani, L., Henry, S., & Duong, T. Q. (2025). Risks of Stroke and Transient Cerebral Ischemia up to 4 Years Post-SARS-CoV-2 Infection in Large Diverse Urban Population in the Bronx. Diagnostics, 15(24), 3183. https://doi.org/10.3390/diagnostics15243183

