AI-Driven Advances in Women’s Health Diagnostics: Current Applications and Future Directions
Abstract
1. Introduction
A Very Brief History of the AI Revolution, and How We Got Here
2. Methods and Selection Criteria for “Top 10 Projects”
- OB/GYN relevance: Direct applicability to obstetric or gynecologic diagnostic workflows.
- Clinical validation or scale: Evidence from peer-reviewed studies, FDA clearance/CE mark, prospective trials, or large multi-center evaluations.
- Near-term impact: Likelihood of affecting clinical outcomes or workflow efficiency within 1–3 years.
- Diversity across domains: Representation across imaging, laboratory diagnostics, patient monitoring/digital biomarkers, and decision support.
3. The Innovation Paradox in Women’s Health Technology
| Disclaimer. The inclusion of technologies as exemplars should not be construed as a product endorsement. However, unlike pharmaceuticals, AI systems do not come in “generic” form; providing concrete examples therefore necessitates naming commercial offerings. The AI marketplace is highly dynamic; what appears on a list one year may not appear the next. Clinicians and leaders are encouraged to conduct their own market research and due diligence before adoption. |
4. 10 Promising AI Projects in OBGYN Circa 2025
The Ten Projects (Enumerated for Clarity)
- Samsung iNSIGHT (with SNUH): real-time segmentation/anomaly detection for obstetric scans [22].
- Google Health/Mayo visual transformer for colposcopy image analysis [23].
- ASPRE algorithm combining maternal factors, biophysics, and biomarkers for early PE [28].
- Nuvo Group INVU remote maternal–fetal monitoring platform (AI-aided NST at home) [33].
- Heller Lab at Sloan Kettering: wearable sampling devices combined with ML methods for ovarian cancer detection [34].
5. Top Exemplars Broken out by Clinical Category
5.1. Imaging Applications
5.2. Laboratory Diagnostics
5.3. Patient Monitoring and Digital Biomarkers
5.4. Decision Support
6. Ethical, Safety, and Regulatory Considerations
7. Future Directions and Emerging Technologies
8. Five Things That All Doctors Should Know About Artificial Intelligence
9. Conclusions and Recommendations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ackoff, R.L. Creating the Corporate Future: Plan or Be Planned for; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Sutskever, I. Convocation Remarks (Honorary Degree), University of Toronto, 6 June 2025. Available online: https://www.youtube.com/watch?v=zuZ2zaotrJs (accessed on 28 September 2025).
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Turing, A.M. Computing machinery and intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the Dartmouth summer research project on artificial intelligence (1955). AI Mag. 2006, 27, 12. [Google Scholar]
- Macedonia, C.R.; Littlefield, R.J.; Coleman, J.; Satava, R.M.; Cramer, T.; Mogel, G.; Eglinton, G. Three-dimensional ultrasonographic telepresence. J. Telemed. Telecare 1998, 4, 224–230. [Google Scholar] [CrossRef]
- Hinton, G. Deep learning: A technology with the potential to transform health care. JAMA 2018, 320, 1101–1102. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–9. [Google Scholar]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Goodlad, L.M.; Stone, M. Beyond Chatbot-K: On large language models, “generative AI,” and rise of chatbots—An introduction. Crit. AI 2024, 2, 1–2. [Google Scholar] [CrossRef]
- Heintzman, N.D.; Lee, S.S. The history of prenatal diagnosis: From ultrasound to cell-free fetal DNA. Annu. Rev. Genomics Hum. Genet. 2022, 23, 375–398. [Google Scholar]
- Mello, M.M.; Cohen, I.G. Regulation of health and health care artificial intelligence. JAMA 2025, 333, 1769–1770. [Google Scholar] [CrossRef] [PubMed]
- Fraser, I.S.; Critchley, H.O.D. Women’s health: A new global agenda for the 21st century. Lancet 2022, 400, 759–761. [Google Scholar]
- Giudice, L.C. The future of women’s health: Challenges and opportunities in precision medicine. Nat. Rev. Endocrinol. 2021, 17, 691–692. [Google Scholar]
- Kaushal, A.; Altman, R.; Langlotz, C. Geographic and demographic biases in AI health applications: Implications for underserved populations. JAMA 2020, 324, 1212–1213. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Mullainathan, S. Addressing health disparities with AI: Opportunities and challenges in women’s health. Health Equity 2021, 5, 312–319. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Boston, MA, USA, 2021. [Google Scholar]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Hernandez-Cruz, N.; Patey, O.; Adu-Bredu, T.; D’Alberti, E.; Noble, J.A.; Papageorghiou, A. OP02.04: Automated segmentation of fetal heart three-vessel view ultrasound video clips. Ultrasound Obstet. Gynecol. 2024, 64, 62–63. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Walton, S.; Benson, M.; Meagher, S.; Sinkovskaya, E.; Smith, E.; Jones, D.A.; Kinsella, V.; Hatton, E.; Dillon, C.; et al. EP02.46: An AI system (SonoLyst) achieves expert-level performance for mid-trimester screening. Ultrasound Obstet. Gynecol. 2023, 62, 117. [Google Scholar] [CrossRef]
- Xi, J.; Chen, J.; Wang, Z.; Ta, D.; Lu, B.; Deng, X.; Li, X.; Huang, Q. Simultaneous segmentation of fetal hearts and lungs via multi-scale attention. Ultrason. Imaging 2021, 43, 308–319. [Google Scholar] [CrossRef]
- Khan, A.; Han, S.; Ilyas, N.; Lee, Y.M.; Lee, B. CervixFormer: A multi-scale Swin transformer-based cervical Pap-smear WSI framework. Comput. Methods Programs Biomed. 2023, 240, 107718. [Google Scholar] [CrossRef]
- Xue, Z.; Novetsky, A.P.; Einstein, M.H.; Marcus, J.Z.; Befano, B.; Guo, P.; Demarco, M.; Wentzensen, N.; Long, L.R.; Schiffman, M.; et al. A demonstration of automated visual evaluation of cervical images taken with a smartphone camera. Int. J. Cancer 2020, 147, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef]
- Rasmussen, M.; Reddy, M.; Nolan, R.; Camunas-Soler, J.; Khodursky, A.; Scheller, N.M.; Cantonwine, D.E.; Engelbrechtsen, L.; Mi, J.D.; Dutta, A.; et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 2022, 601, 422–427. [Google Scholar] [CrossRef] [PubMed]
- McElrath, T.F.; Cantonwine, D.E.; Jelin, A.C. Cell-free RNA in maternal plasma: A new frontier. Am. J. Obstet. Gynecol. 2022, 226, S766–S776. [Google Scholar]
- Rolnik, D.L.; Wright, D.; Poon, L.C.Y.; Syngelaki, A.; O’Gorman, N.; Matallana, C.d.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. ASPRE trial: Performance of screening for preterm pre-eclampsia. Ultrasound Obstet. Gynecol. 2017, 50, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, H. Non-invasive diagnosis of endometriosis: The role of microRNA biomarkers. Fertil. Steril. 2021, 116, 712–720. [Google Scholar]
- Moustafa, S.; Burn, M.; Mamillapalli, R.; Nematian, S.; Flores, V.; Taylor, H.S. Accurate diagnosis of endometriosis using serum microRNAs. Am. J. Obstet. Gynecol. 2020, 223, 557.e1–557.e11. [Google Scholar] [CrossRef]
- Azeze, G.G.; Wu, L.; Alemu, B.K.; Lee, W.F.; Fung, L.W.; Cheung, E.C.; Zhang, T.; Wang, C.C. Proteomics approach to discovering non-invasive diagnostic biomarkers and understanding the pathogenesis of endometriosis: A systematic review and meta-analysis. J. Transl. Med. 2024, 22, 685. [Google Scholar] [CrossRef]
- Nezhat, C.R.; Oskotsky, T.T.; Robinson, J.F.; Fisher, S.J.; Tsuei, A.; Liu, B.; Irwin, J.C.; Gaudilliere, B.; Sirota, M.; Stevenson, D.K.; et al. Real-world perspectives on endometriosis phenotyping through surgery, omics, health data, and AI. npj Womens Health 2025, 3, 8. [Google Scholar] [CrossRef]
- McLaughlin, B. Real-world benefits of the INVU remote fetal nonstress testing platform. Am. J. Obstet. Gynecol. 2024, 230, e22. [Google Scholar] [CrossRef]
- Kim, M.; Chen, C.; Wang, P.; Mulvey, J.J.; Yang, Y.; Wun, C.; Antman-Passig, M.; Luo, H.; Cho, S.; Long-Roche, K.; et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng. 2022, 6, 267–275. [Google Scholar] [CrossRef]
- Temmerman, M.; Khosla, R.; Say, L. Sexual and reproductive health and rights: A global development, health, and human rights priority. Lancet 2014, 384, e30–e31. [Google Scholar] [CrossRef]
- van Sloun, R.J.G.; Cohen, R.; Eldar, Y.C. Deep learning in ultrasound imaging. Proc. IEEE 2020, 108, 11–29. [Google Scholar] [CrossRef]
- Ranjbar, A.; Montazeri, F.; Ghamsari, S.R.; Mehrnoush, V.; Roozbeh, N.; Darsareh, F. Machine learning models for predicting preeclampsia: A systematic review. BMC Pregnancy Childbirth 2024, 24, 6. [Google Scholar] [CrossRef] [PubMed]
- Kovacheva, V.P.; Eberhard, B.W.; Cohen, R.Y.; Maher, M.; Saxena, R.; Gray, K.J. Preeclampsia prediction using machine learning and polygenic risk scores. Hypertension 2024, 81, 264–272. [Google Scholar] [CrossRef] [PubMed]
- McElrath, T.F.; Cantonwine, D.E.; Gray, K.J.; Mirzakhani, H.; Doss, R.C.; Khaja, N.; Khalid, M.; Page, G.; Brohman, B.; Zhang, Z.; et al. Late first trimester circulating microparticle proteins predict risk of preeclampsia. Sci. Rep. 2020, 10, 17353. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C. AI-based breast cancer nodal metastasis detection: Insights for pathologists. Arch. Pathol. Lab. Med. 2019, 143, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Goodale, B.M.; Shilaih, M.; Falco, L.; Dammeier, F.; Hamvas, G.; Leeners, B. Wearable sensors reveal menses-driven physiology and predict the fertile window. J. Med. Internet Res. 2019, 21, e13404. [Google Scholar] [CrossRef]
- Berglund, E.; Scherwitzl, E.B. Machine learning in fertility tracking: The Natural Cycles approach. Digit. Health 2020, 6, 1–8. [Google Scholar]
- Hofmann, S.; Clue Team. Multimodal fertility tracking using transformer-based models. Fertil. Steril. 2023, 120, 890–897. [Google Scholar]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing machine learning in health care—Addressing ethical challenges. N. Engl. J. Med. 2018, 378, 981–983. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. 2021. Available online: https://www.fda.gov/media/145022/download (accessed on 28 September 2025).
- U.S. Food and Drug Administration. Marketing Submission Recommendations for a Predetermined Change Control Plan for Artificial Intelligence-Enabled Device Software Functions. 2024. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial-intelligence (accessed on 28 September 2025).
- Bates, D.W.; Gawande, A.A. The future of AI in health care: Challenges and opportunities for equity. N. Engl. J. Med. 2023, 389, 1375–1377. [Google Scholar]
- Zhang, J.; Budhdeo, S.; Wasswa, W.; Cerrato, P.; Shuaib, H.; Sood, H.; Ashrafian, H.; Halamka, J.; Teo, J.T. Moving towards vertically integrated artificial intelligence development. npj Digit. Med. 2022, 5, 143. [Google Scholar] [CrossRef]
- Devoe, L.D.; Muhanna, M.; Maher, J., III; Evans, M.I.; Klein-Seetharaman, J. Current State of Artificial Intelligence Model Development in Obstetrics. Obstet. Gynecol. 2025, 146, 233–243. [Google Scholar] [CrossRef]
- Patel, V.L.; Topol, E.J. Wearable technology and AI in women’s health: Advances in continuous monitoring. Lancet Digit. Health 2024, 6, e189–e197. [Google Scholar]
- Munro, M.G.; Balen, A.H.; Cho, S.; Critchley, H.O.D.; Díaz, I.; Ferriani, R.; Henry, L.; Mocanu, E.; van der Spuy, Z.M.; FIGO Committee on Menstrual Disorders and Related Health Impacts; et al. The FIGO ovulatory disorders classification system. Hum. Reprod. 2022, 37, 2446–2464. [Google Scholar] [CrossRef]
- Mardis, E.R. Multi-omics approaches in precision medicine: Applications in women’s health. Nat. Rev. Genet. 2023, 24, 245–259. [Google Scholar]
- Esteva, A.; Topol, E.J. AI-enabled personalized medicine in women’s health: From genomics to clinical outcomes. Nat. Med. 2022, 28, 2045–2053. [Google Scholar]
| # | Project/Entity | Domain/Core Task | Evidence Snapshot/Ref. |
|---|---|---|---|
| 1 | GE Voluson SWIFT | Imaging; fetal anomaly detection (3D) | Multicenter performance at expert level [20,21]. |
| 2 | Samsung iNSIGHT (SNUH) | Imaging; real-time segmentation | Attention-integrated segmentation efficiency [22]. |
| 3 | Google/Mayo colposcopy model | Imaging; cervical lesion detection | Transformer-vision accuracy improvements [23]. |
| 4 | Mobile ODT EVA | Imaging; point-of-care cervical screening | Smartphone AVE in low-resource settings [24,25]. |
| 5 | Mirvie cfRNA platform | Lab; preeclampsia prediction | cfRNA signatures predicting complications [26,27]. |
| 6 | ASPRE algorithm | Lab; early-onset preeclampsia | 82% detection in implementation study [28]. |
| 7 | DotLab DotEndo | Lab; noninvasive endometriosis | Serum microRNA-based classification [29,30]. |
| 8 | Orion/Columbia multi-omics | Lab; endometriosis subtyping | Deep-learning signature; subtype prediction [31,32]. |
| 9 | Nuvo INVU | Monitoring; remote NST | Home monitoring with AI analytics [33]. |
| 10 | Heller Lab/MSKCC | Lab; ovarian cancer detection | Quantum-defect carbon nanotube ML [34]. |
| # | Project | Study Type | Sample/Scale | Key Performance |
|---|---|---|---|---|
| 1 | GE Voluson SWIFT | Multi-center validation | ∼5000 scans | Sensitivity 94%, expert-level [20,21] |
| 2 | Samsung iNSIGHT | Technical validation | ∼2000 images | Dice coefficient 0.89 [22] |
| 3 | Google/Mayo colposcopy | Retrospective cohort | ∼10,000 images | AUC 0.91 [23] |
| 4 | Mobile ODT EVA | Field implementation | ∼15,000 screenings | Sensitivity 92% in LMIC [24,25] |
| 5 | Mirvie cfRNA | Prospective cohort | 1840 pregnancies | 75% detection early PE [26] |
| 6 | ASPRE algorithm | RCT implementation | 26,941 pregnancies | 82% detection rate [28] |
| 7 | DotLab DotEndo | Case-control study | 1000+ patients | Sensitivity 94%, specificity 91% [30] |
| 8 | Orion/Columbia | Multi-omics cohort | ∼500 patients | Subtype classification [31,32] |
| 9 | Nuvo INVU | Real-world deployment | >50,000 sessions | 30% reduction in hospitalizations [33] |
| 10 | Heller Lab/MSKCC | Proof-of-concept | 400 serum samples | AUC 0.95 for ovarian CA [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedonia, C. AI-Driven Advances in Women’s Health Diagnostics: Current Applications and Future Directions. Diagnostics 2025, 15, 3076. https://doi.org/10.3390/diagnostics15233076
Macedonia C. AI-Driven Advances in Women’s Health Diagnostics: Current Applications and Future Directions. Diagnostics. 2025; 15(23):3076. https://doi.org/10.3390/diagnostics15233076
Chicago/Turabian StyleMacedonia, Christian. 2025. "AI-Driven Advances in Women’s Health Diagnostics: Current Applications and Future Directions" Diagnostics 15, no. 23: 3076. https://doi.org/10.3390/diagnostics15233076
APA StyleMacedonia, C. (2025). AI-Driven Advances in Women’s Health Diagnostics: Current Applications and Future Directions. Diagnostics, 15(23), 3076. https://doi.org/10.3390/diagnostics15233076

