High-Risk Node-Positive Hormone Receptor-Positive/HER2-Low Breast Cancer Relapse on Adjuvant Abemaciclib Treatment with ER Loss at Metastatic Recurrence: A Case Report and Literature Review
Abstract
1. Introduction
2. Case Report
Circulating Tumor DNA Profiling
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ET | Endocrine therapy |
| eBC | Early breast cancer |
| mBC | Metastatic breast cancer |
| CDK4/6i | Cyclin-Dependent Kinase 4 and 6 inhibitors |
| CT | Computer tomography |
| ER | Estrogenic receptor |
References
- Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 2014, 106, dju055. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Darby, S.; McGale, P.; Wang, Y.C.; Peto, R.; Pan, H.C.; Cutter, D.; et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [Google Scholar] [CrossRef]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Gomis, R.R.; Gawrzak, S. Tumor cell dormancy. Mol. Oncol. 2017, 11, 62–78. [Google Scholar] [CrossRef]
- Pedersen, R.N.; Mellemkjær, L.; Ejlertsen, B.; Nørgaard, M.; Cronin-Fenton, D.P. Mortality after late breast cancer recurrence in Denmark. J. Clin. Oncol. 2022, 40, 1450–1463. [Google Scholar] [CrossRef]
- Foldi, J.; O’Meara, T.; Marczyk, M.; Sanft, T.; Silber, A.; Pusztai, L. Defining risk of late recurrence in early-stage estrogen receptor-positive breast cancer: Clinical versus molecular tools. J. Clin. Oncol. 2019, 37, 1365–1369. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group. Reductions in recurrence in women with early breast cancer entering clinical trials between 1990 and 2009: A pooled analysis of 155 746 women in 151 trials. Lancet 2024, 404, 1407–1418. [Google Scholar] [CrossRef]
- Johnston, S.R.D.; Toi, M.; O’Shaughnessy, J.; Rastogi, P.; Campone, M.; Neven, P.; Huang, C.-S.; Huober, J.; Jaliffe, G.G.; Cicin, I.; et al. Abemaciclib plus endocrine therapy for hormone receptor-positive, HER2-negative, node-positive, high-risk early breast cancer (monarchE): Results from a preplanned interim analysis of a randomised, open-label, phase 3 trial. Lancet Oncol. 2023, 24, 77–90. [Google Scholar] [CrossRef]
- Gnant, M.; Dueck, A.C.; Frantal, S.; Martin, M.; Burstein, H.J.; Greil, R.; Fox, P.; Wolff, A.C.; Chan, A.; Winer, E.P.; et al. Adjuvant palbociclib for early breast cancer: The PALLAS trial results (ABCSG-42/AFT-05/BIG-14-03). J. Clin. Oncol. 2022, 40, 282–293. [Google Scholar] [CrossRef]
- Slamon, D.; Lipatov, O.; Nowecki, Z.; McAndrew, N.; Kukielka-Budny, B.; Stroyakovskiy, D.; Yardley, D.A.; Huang, C.-S.; Fasching, P.A.; Crown, J.; et al. Ribociclib plus endocrine therapy in early breast cancer. N. Engl. J. Med. 2024, 390, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet 2015, 386, 1341–1352. [Google Scholar] [CrossRef]
- Başaran, G.A.; Twelves, C.; Diéras, V.; Cortés, J.; Awada, A. Ongoing unmet needs in treating estrogen receptor-positive/HER2-negative metastatic breast cancer. Cancer Treat. Rev. 2018, 63, 144–155. [Google Scholar] [CrossRef]
- Rastogi, P.; O’Shaughnessy, J.; Martin, M.; Boyle, F.; Cortes, J.; Rugo, H.S.; Goetz, M.P.; Hamilton, E.P.; Huang, C.-S.; Senkus, E.; et al. Adjuvant abemaciclib plus endocrine therapy for hormone receptor-positive, human epidermal growth factor receptor 2-negative, high-risk early breast cancer: Results from a preplanned monarchE overall survival interim analysis, including 5-year efficacy outcomes. J. Clin. Oncol. 2024, 42, 987–993. [Google Scholar] [CrossRef]
- Fasching, P.A.; Stroyakovskiy, D.; Yardley, D.; Huang, C.-S.; Crown, J.; Bardia, A.; Chia, S.; Im, S.-A.; Jimenez, M.M.; Xu, B.; et al. LBA13 Adjuvant ribociclib (RIB) plus nonsteroidal aromatase inhibitor (NSAI) in patients (Pts) with HR+/HER2 early breast cancer (EBC): 4-year outcomes from the NATALEE trial. Ann. Oncol. 2024, 35, S1207. [Google Scholar] [CrossRef]
- Punie, K.; Kurian, A.W.; Ntalla, I.; Sjekloca, N.; Estrin, A.; Dabrowski, E.C.; Lai, C.; Hurvitz, S. Unmet Need for Previously Untreated Metastatic Triple-Negative Breast Cancer: A Real-World Study of Patients Diagnosed from 2011 to 2022 in the United States. Oncologist 2025, 30, oyaf034. [Google Scholar] [CrossRef]
- O’Reilly, D.; Al Sendi, M.; Kelly, C.M. Overview of Recent Advances in Metastatic Triple Negative Breast Cancer. World J. Clin. Oncol. 2021, 12, 164–182. [Google Scholar] [CrossRef]
- Kalinsky, K.; Bianchini, G.; Hamilton, E.P.; Graff, S.L.; Park, K.H.; Jeselsohn, R.; Demirci, U.; Martin, M.; Layman, R.M.; Hurvitz, S.A.; et al. Abemaciclib plus fulvestrant vs fulvestrant alone for HR+, HER2- advanced breast cancer following progression on a prior CDK4/6 inhibitor plus endocrine therapy: Primary outcome of the phase 3 postMONARCH trial. J. Clin. Oncol. 2024, 42, LBA1001. [Google Scholar] [CrossRef]
- Gerosa, R.; Gentile, G.; Arecco, L.; Dauccia, C.; Nannini, S.; Lobo-Martins, S.; Agostinetto, E.; Lambertini, M.; Santoro, A.; Aftimos, P.; et al. Managing relapses during or after adjuvant CDK4/6 inhibitors in HR-positive/HER2-negative early breast cancer: An emerging challenge. ESMO Open 2025, 10, 105758. [Google Scholar] [CrossRef]
- Corti, C.; Martin, A.R.; Kurnia, P.T.; Zañudo, J.G.T.; Abravanel, D.; Hughes, M.; Parker, T.; Tarantino, P.; Curigliano, G.; King, T.; et al. Clinicopathological features and genomics of ER-positive/HER2-negative breast cancer relapsing on adjuvant abemaciclib. ESMO Open 2025, 10, 105126. [Google Scholar] [CrossRef] [PubMed]
- Kuukasjarvi, T.; Kononen, J.; Helin, H.; Holli, K.; Isola, J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J. Clin. Oncol. 1996, 14, 2584–2589. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.M.; Kurland, B.F.; Schubert, E.K.; Link, J.M.; Gadi, V.K.; Specht, J.M.; Eary, J.F.; Porter, P.; Shankar, L.K.; Mankoff, D.A.; et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC) Mol. Imaging Biol. 2014, 16, 431–440. [Google Scholar] [CrossRef]
- Wang, Y.; Ayres, K.L.; Goldman, D.A.; Dickler, M.N.; Bardia, A.; Mayer, I.A.; Winer, E.; Fredrickson, J.; Arteaga, C.L.; Baselga, J.; et al. 18F-fluoroestradiol PET/CT measurement of estrogen receptor suppression during a phase I trial of the novel estrogen receptor-targeted therapeutic GDC-0810: Using an imaging biomarker to guide drug dosage in subsequent trials. Clin. Cancer Res. 2017, 23, 3053–3060. [Google Scholar] [CrossRef]
- Mortimer, J.E.; Dehdashti, F.; Siegel, B.A.; Trinkaus, K.; Katzenellenbogen, J.A.; Welch, M.J. Metabolic Flare: Indicator of Hormone Responsiveness in Advanced Breast Cancer. J. Clin. Oncol. 2001, 19, 2797–2803. [Google Scholar] [CrossRef]
- Linden, H.M.; Stekhova, S.A.; Link, J.M.; Gralow, J.R.; Livingston, R.B.; Ellis, G.K.; Petra, P.H.; Peterson, L.M.; Schubert, E.K.; Dunnwald, L.K.; et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J. Clin. Oncol. 2006, 24, 2793–2799. [Google Scholar] [CrossRef]
- Zattarin, E.; Leporati, R.; Ligorio, F.; Lobefaro, R.; Vingiani, A.; Pruneri, G.; Vernieri, C. Hormone Receptor Loss in Breast Cancer: Molecular Mechanisms, Clinical Settings, and Therapeutic Implications. Cells 2020, 9, 2644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dieci, M.V.; Barbieri, E.; Piacentini, F.; Ficarra, G.; Bettelli, S.; Dominici, M.; Conte, P.F.; Guarneri, V. Discordance in receptor status between primary and recurrent breast cancer has a prognostic impact: A single-institution analysis. Ann Oncol. 2013, 24, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, L.S.; Karlsson, E.; Wilking, U.M.; Johansson, U.; Hartman, J.; Lidbrink, E.K.; Hatschek, T.; Skoog, L.; Bergh, J.; Lindström, L.S.; et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J. Clin. Oncol. 2012, 30, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, W.A.M.E.; Suijkerbuijk, K.P.M.; van Gils, C.H.; van der Wall, E.; Moelans, C.B.; van Diest, P.J. Receptor Conversion in Distant Breast Cancer Metastases: A Systematic Review and Meta-analysis. J. Natl. Cancer Inst. 2018, 110, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.P. Effects of Adjuvant Chemohormonal Therapy on the Ovarian and Adrenal Function of Breast Cancer Patients. Cancer Res. 1980, 40, 4043–4047. [Google Scholar] [PubMed]
- Galli, G.; Bregni, G.; Cavalieri, S.; Porcu, L.; Baili, P.; Hade, A.; Di Salvo, F.; Sant, M.; Agresti, R.; Gennaro, M.; et al. Neoadjuvant Chemotherapy Exerts Selection Pressure Towards Luminal Phenotype Breast Cancer. Breast Care 2017, 12, 391–394. [Google Scholar] [CrossRef]
- Huang, W.; Peng, Y.; Kiselar, J.; Zhao, X.; Albaqami, A.; Mendez, D.; Chen, Y.; Chakravarthy, S.; Gupta, S.; Ralston, C.; et al. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat. Commun. 2018, 9, 3520. [Google Scholar] [CrossRef]
- Press, M.F.; Nousek-Goebl, N.A.; Bur, M.; Greene, G.L. Estrogen receptor localization in the female genital tract. Am. J. Pathol. 1986, 123, 280–292. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Press, M.F.; Xu, S.-H.; Wang, J.-D.; Greene, G.L. Subcellular distribution of estrogen receptor and progesterone receptor with and without specific ligand. Am. J. Pathol. 1989, 135, 857–864. [Google Scholar]
- Tecalco-Cruz, A.C.; Pérez-Alvarado, I.A.; Ramírez-Jarquín, J.O.; Rocha-Zavaleta, L. Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell. Signal. 2017, 34, 121–132. [Google Scholar] [CrossRef]
- Dowling, G.P.; Keelan, S.; Cosgrove, N.S.; Daly, G.R.; Giblin, K.; Toomey, S.; Hennessy, B.T.; Hill, A.D.K. Receptor Discordance in Metastatic Breast Cancer; a review of clinical and genetic subtype alterations from primary to metastatic disease. Breast Cancer Res. Treat. 2024, 207, 471–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhan, H.; Antony, V.M.; Tang, H.; Theriot, J.; Liang, Y.; Hui, P.; Krishnamurti, U.; DiGiovanna, M.P. PTEN inactivating mutations are associated with hormone receptor loss during breast cancer recurrence. Breast Cancer Res. Treat. 2025, 211, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Morganti, S.; Marra, A.; Gandini, S.; Ascione, L.; Ivanova, M.; Venetis, K.; Sajjadi, E.; Zagami, P.; Giugliano, F.; Taurelli Salimbeni, B.; et al. Clinicopathological features and survival outcomes of luminal-like breast tumors with estrogen receptor loss at metastatic recurrence: A case-control study. Eur. J. Cancer 2023, 195, 113397. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol. 2019, 30, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Chae, Y.S.; Lee, K.S.; et al. Trastuzumab deruxtecan (T-DXd) versus treatment of physician’s choice (TPC) in patients (pts) with HER2-low unresectable and/or metastatic breast cancer (mBC): Results of DESTINY-Breast04, a randomized, phase 3 study. J. Clin. Oncol. 2022, 40, LBA3. [Google Scholar] [CrossRef]
- Wander, S.A.; Cohen, O.; Gong, X.; Johnson, G.N.; Buendia-Buendia, J.E.; Lloyd, M.R.; Kim, D.; Luo, F.; Mao, P.; Helvie, K.; et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 2020, 10, 1174–1193. [Google Scholar] [CrossRef]
- Lefebvre, C.; Bachelot, T.; Filleron, T.; Pedrero, M.; Campone, M.; Soria, J.C.; Massard, C.; Levy, C.; Arnedos, M.; Lacroix-Triki, M.; et al. Mutational profile of metastatic breast cancers: A retrospective analysis. PLoS Med. 2016, 13, e1002201. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, S.; Inoue, H.; Yasuda, K.; Suzuki, K.; Higashi, H.; Era, S.; Mori, M. Reduced expression of PTEN protein and its prognostic implications in invasive ductal carcinoma of the breast. Oncology 2005, 68, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Shoman, N.; Klassen, S.; McFadden, A.; Bickis, M.G.; Torlakovic, E.; Chibbar, R. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod. Pathol. 2005, 18, 250–259. [Google Scholar] [CrossRef]
- Campbell, R.A.; Bhat-Nakshatri, P.; Patel, N.M.; Constantinidou, D.; Ali, S.; Nakshatri, H. Phosphatidylinositol 3-kinase/AKT mediated activation of estrogen receptor alpha: A new model for anti-estrogen resistance. J. Biol. Chem. 2001, 276, 9817–9824. [Google Scholar] [CrossRef] [PubMed]
- Juric, D.; Castel, P.; Griffith, M.; Griffith, O.L.; Won, H.H.; Ellis, H.; Ebbesen, S.H.; Ainscough, B.J.; Ramu, A.; Iyer, G.; et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 2014, 518, 240–244. [Google Scholar] [CrossRef]
- Costa, C.; Wang, Y.; Ly, A.; Hosono, Y.; Murchie, E.; Walmsley, C.S.; Huynh, T.; Healy, C.; Peterson, R.; Yanase, S.; et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kalpha inhibitors in breast cancer. Cancer Discov. 2020, 10, 72–85. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Iwata, H.; Park, Y.H.; Losada, M.V.; Li, W.; Tsurutani, J.; Ueno, N.T.; Zaman, K.; Prat, A.; et al. Trastuzumab deruxtecan in HER2-low metastatic breast cancer: Long-term survival analysis of the randomized, phase 3 DESTINY-Breast04 trial. Nat. Med. 2025, 1–9. [Google Scholar] [CrossRef]
- Available online: https://www.gilead.com/news/news-details/2025/ascent-03-trodelvy-demonstrates-highly-statistically-significant--clinically-meaningful-improvement-in-progression-free-survival-in-patients-with-first-line-metastatic-triple-negative-breast (accessed on 29 September 2025).
- Press ReleaseTROPION-Breast02 Phase 3 Trial of Datopotamab Deruxtecan, 6 October 2025. Available online: https://www.daiichisankyo.com/files/news/pressrelease/pdf/202206/20220613_E.pdf (accessed on 29 September 2025).
- Buonaiuto, R.; Botticelli, A.; Criscitiello, C.; Dieci, M.V.; Fusco, N.; Gerratana, L.; Lambertini, M.; Malapelle, U.; Malorni, L.; De Angelis, C. Key decision factors in second-line therapy: Expert insights on HR+/HER2-metastatic breast cancer post-CDK4/6 inhibitor progression. Cancer Treat. Rev. 2025, 138, 102972. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Im, S.-A.; Saura, C.; Juric, D.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Sunpaweravong, P.; Musolino, A.; et al. Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. N. Engl. J. Med. 2024, 391, 1584–1596. [Google Scholar] [CrossRef]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.H.; Casbard, A.; Carucci, M.; Cox, C.; Butler, R.; Alchami, F.; Madden, T.-A.; Bale, C.; Bezecny, P.; Joffe, J.; et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): A multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2020, 21, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.J.; Casbard, A.; Carucci, M.; Ingarfield, K.; Butler, R.; Morgan, S.; Meissner, M.; Bale, C.; Bezecny, P.; Moon, S.; et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive, HER2-negative breast cancer (FAKTION): Overall survival, updated progression-free survival, and expanded biomarker analysis from a randomised, phase 2 trial. Lancet Oncol. 2022, 23, 851–864. [Google Scholar] [PubMed]
- Lee, C.-H.; Kang, Y.-N.; Ho, C.-L.; Lin, C.; Chen, P.-H.; Wu, Y.-Y.; Huang, T.-C. Endocrine therapies in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative, pretreated, advanced breast cancer: A network meta-analysis. Medicine 2020, 99, e19618. [Google Scholar] [CrossRef]
- Sanò, M.V.; Russo, A.; Marino, L.; Pafumi, S.; Di Pietro, M.; Ricciardi, G.R.R. Could 18F-FES PET Be a New Driver in Therapeutic Choice for Metastatic HR+/HER2- Patients? Diagnostics 2025, 15, 2139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Laboratory Findings: Genomic and Biomarker | |
|---|---|
| Finding | VAF |
| PIK3CA E542K | 0.64% |
| TP53 C141Y | 0.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanò, M.V.; Marino, L.; Puleo, M.; Pafumi, S.; Marletta, S.; Ricciardi, G.R.R.; Carnaghi, C. High-Risk Node-Positive Hormone Receptor-Positive/HER2-Low Breast Cancer Relapse on Adjuvant Abemaciclib Treatment with ER Loss at Metastatic Recurrence: A Case Report and Literature Review. Diagnostics 2025, 15, 3042. https://doi.org/10.3390/diagnostics15233042
Sanò MV, Marino L, Puleo M, Pafumi S, Marletta S, Ricciardi GRR, Carnaghi C. High-Risk Node-Positive Hormone Receptor-Positive/HER2-Low Breast Cancer Relapse on Adjuvant Abemaciclib Treatment with ER Loss at Metastatic Recurrence: A Case Report and Literature Review. Diagnostics. 2025; 15(23):3042. https://doi.org/10.3390/diagnostics15233042
Chicago/Turabian StyleSanò, Maria Vita, Lorenza Marino, Maria Puleo, Sarah Pafumi, Stefano Marletta, Giuseppina Rosaria Rita Ricciardi, and Carlo Carnaghi. 2025. "High-Risk Node-Positive Hormone Receptor-Positive/HER2-Low Breast Cancer Relapse on Adjuvant Abemaciclib Treatment with ER Loss at Metastatic Recurrence: A Case Report and Literature Review" Diagnostics 15, no. 23: 3042. https://doi.org/10.3390/diagnostics15233042
APA StyleSanò, M. V., Marino, L., Puleo, M., Pafumi, S., Marletta, S., Ricciardi, G. R. R., & Carnaghi, C. (2025). High-Risk Node-Positive Hormone Receptor-Positive/HER2-Low Breast Cancer Relapse on Adjuvant Abemaciclib Treatment with ER Loss at Metastatic Recurrence: A Case Report and Literature Review. Diagnostics, 15(23), 3042. https://doi.org/10.3390/diagnostics15233042

