Single-Session Bilateral Genicular Artery Embolization for Knee Osteoarthritis via Brachial Access: A Case Report and Literature Review
Abstract
1. Introduction
2. Case Report
2.1. Patient History and Assessment
2.2. Periarticular Embolization Procedure
2.3. Follow-Up and Results
3. Discussion and Literature Review
3.1. Pathophysiological Basis for Targeting Hypervascularization via TAE
3.2. Comparison of Bioresorbable Gelatin Microspheres with Other Embolic Agents
3.3. Evidence and Considerations for Bilateral Same-Session Embolization
3.4. Reported Clinical Outcomes
3.5. Patient Selection Criteria and Alignment with the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
DOAJ | Directory of Open Access Journals |
DSA | digital subtraction angiography |
eGFR | estimated glomerular filtration rate |
IPM/CS | imipenem/cilastatin sodium |
KOOS | Knee injury and Osteoarthritis Outcome Score |
MRI | magnetic resonance imaging |
NSAIDs | non-steroidal anti-inflammatory drugs |
NYHA | New York Heart Association |
OA | osteoarthritis |
PRP | platelet-rich plasma |
PVA | polyvinyl alcohol |
RFA | radiofrequency ablation |
TAE | transarterial periarticular embolization |
TAGM | tris-acryl gelatin microspheres |
TANDEM | calibrated polymer microspheres (commercial name) |
TKA | total knee arthroplasty |
TNF-α | tumor necrosis factor-alpha |
VAS | visual analogue scale |
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Cross, M.; Smith, E.; Hoy, D.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; et al. The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1323–1330. [Google Scholar] [CrossRef]
- Litwic, A.; Edwards, M.H.; Dennison, E.M.; Cooper, C. Epidemiology and burden of osteoarthritis. Br. Med. Bull. 2013, 105, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Adie, S.; Harris, I.; Chuan, A.; Lewis, P.; Naylor, J.M. Selecting and optimising patients for total knee arthroplasty. Med. J. Aust. 2019, 210, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Pugely, A.J.; Martin, C.T.; Gao, Y.; Belatti, D.A.; Callaghan, J.J. Comorbidities in patients undergoing total knee arthroplasty: Do they influence hospital costs and length of stay? Clin. Orthop. Relat. Res. 2014, 472, 3943–3950. [Google Scholar] [CrossRef]
- Hakim, J.; Volpin, G.; Amashah, M.; Alkeesh, F.; Khamaisy, S.; Cohen, M.; Ownallah, J. Long-term outcome of total knee arthroplasty in patients with morbid obesity. Int. Orthop. 2020, 44, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S.; Kaneko, T. Mid-term clinical outcomes and MR imaging changes after transcatheter arterial embolization for mild-to-moderate knee osteoarthritis resistant to conservative treatment. J. Vasc. Interv. Radiol. 2017, 28, 995–1002. [Google Scholar] [CrossRef]
- Little, M.W.; Gibson, M.; Briggs, J.; Speirs, A.; Yoong, P.; Ariyanayagam, T.; Davies, N.; Tayton, E.; Tavares, S.; MacGill, S.; et al. Genicular artery embolization in patients with osteoarthritis of the knee: A prospective series with 6-month follow-up. Cardiovasc. Intervent. Radiol. 2021, 44, 577–583. [Google Scholar]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S. Transcatheter arterial embolization as a treatment for medial knee pain in mild-to-moderate osteoarthritis. Cardiovasc. Intervent. Radiol. 2015, 38, 336–343. [Google Scholar] [CrossRef]
- Russu, O.; Bloj, F.; Feier, A.M.; Vunvulea, V.; Mogos, S.; Predescu, V.; Pop, T.S. At the edge of orthopaedics: Initial experience with transarterial periarticular embolization for knee osteoarthritis in a Romanian population. J. Clin. Med. 2022, 11, 6573. [Google Scholar] [CrossRef]
- Bagla, S.; Piechowiak, R.; Sajan, A.; Orlando, J.; Hartman, T.; Isaacson, A. Multicenter randomized sham-controlled study evaluating particle embolization for osteoarthritis treatment (PEARL Study). Cardiovasc. Intervent. Radiol. 2021, 44, 899–908. [Google Scholar]
- Hu, J.; Albadawi, H.; Chong, B.W.; Deipolyi, A.R.; Sheth, R.A.; Khademhosseini, A.; Oklu, R. Advances in biomaterials and technologies for vascular embolization. Adv. Mater. 2019, 31, 1901071. [Google Scholar] [CrossRef]
- Laurent, A.; Beaujeux, R.; Wassef, M.; Rüfenacht, D.; Boschetti, E.; Merland, J.J. Tris-acryl gelatin microspheres for therapeutic embolization. II: Preliminary clinical evaluation. AJNR Am. J. Neuroradiol. 1996, 17, 541–548. [Google Scholar]
- Ashraf, S.; Mapp, P.I.; Walsh, D.A. Contributions of angiogenesis to inflammation, joint damage and pain in a rat model of osteoarthritis. Arthritis Rheum. 2011, 63, 2700–2710. [Google Scholar] [CrossRef]
- Mapp, P.I.; Walsh, D.A. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 390–398. [Google Scholar] [CrossRef]
- Little, M.W.; Gibson, M.; Briggs, J.; Speirs, A.; Yoong, P.; Ariyanayagam, T.; Davies, N.; Tayton, E.; Tavares, S.; MacGill, S.; et al. GENESIS study: Genicular artery embolization using permanent microspheres—Interim analysis. Cardiovasc. Intervent. Radiol. 2021, 44, 931–940. [Google Scholar] [CrossRef]
- Domarkienė, A.; Kalytis, L.; Kanapienis, G.; Kurminas, M.; Tamošiūnas, A.E. Genicular artery embolization for osteoarthritis: MRI-based selection and follow-up. Medicina 2025, 61, 941. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Shafiq, M.; Song, D.; Wang, T.; Yuan, Z.; Xie, X.; Yu, X.; Shen, Y.; Sun, B.; et al. Injectable nanofiber microspheres modified with metal-phenolic networks for effective osteoarthritis treatment. Acta Biomater. 2023, 157, 593–608. [Google Scholar] [CrossRef]
- Bhatia, S.; Jalaeian, H.; Kumar, J.; Acharya, V.; Shibuya, M.; Bhatia, A.; Okuno, Y. Two-year outcomes comparing Embosphere® microspheres versus imipenem-cilastatin for genicular artery embolization in knee osteoarthritis. Knee 2023, 41, 38–47. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, C.H.; Kim, K.Y.; Han, Y.M.; Kim, M.; Yoon, S.H.; Yoon, C.J. Feasibility of bioresorbable gelatin microspheres for organ-preserving transarterial embolization in arterial bleeding. Eur. J. Radiol. 2025, 190, 112269. [Google Scholar] [CrossRef]
- Kwon, C.; Lee, J.H.; Kim, K.Y.; Lee, C.H.; Yoon, C.J.; Yoon, S.H.; Han, Y.M.; Kim, M. Bioresorbable gelatin microspheres for temporary transarterial embolization: Porcine kidney feasibility. Cardiovasc. Intervent. Radiol. 2025; in press. [Google Scholar] [CrossRef]
- Lee, S.; Ghosh, A.; Xiao, N.; Gordon, A.C.; Heidarpour, N.; Funaki, B.; Lewandowski, R.J. Embolic agents: Particles. Semin. Intervent. Radiol. 2023, 40, 315–322. [Google Scholar] [CrossRef]
- Yamamoto, A.; Imai, S.; Kobatake, M.; Yamashita, T.; Tamada, T.; Umetani, K. Tris-acryl gelatin microsphere embolization with monochromatic X-rays versus polyvinyl alcohol particles. J. Vasc. Interv. Radiol. 2006, 17, 1797–1802. [Google Scholar] [CrossRef]
- De la Garza-Ramos, C.; Salei, A.; Caridi, T.M. Non-oncologic embolization. Semin. Intervent. Radiol. 2022, 39, 416–420. [Google Scholar] [CrossRef]
- Medsinge, A.; Zajko, A.; Orons, P.; Amesur, N.; Santos, E. Case-based approach to common embolization agents in IR. AJR Am. J. Roentgenol. 2014, 203, 699–708. [Google Scholar] [CrossRef]
- Das, R.; Champaneria, R.; Daniels, J.P.; Belli, A.M. Embolic agents in uterine artery embolisation: Systematic review and meta-analysis. Cardiovasc. Intervent. Radiol. 2014, 37, 1179–1190. [Google Scholar] [CrossRef]
- Kim, H.C.; Choi, J.W. Embosphere® versus Marine Gel® in TACE for hepatocellular carcinoma: Comparative study. World J. Gastrointest. Oncol. 2024, 16, 102–109. [Google Scholar] [CrossRef]
- Ohta, S.; Nitta, N.; Sonoda, A.; Seko, A.; Tanaka, T.; Takazakura, R.; Furukawa, A.; Takahashi, M.; Sakamoto, T.; Tabata, Y.; et al. Gelpart versus gelatin microspheres as embolization materials. Cardiovasc. Intervent. Radiol. 2010, 33, 120–126. [Google Scholar] [CrossRef]
- Vaidya, S.; Tozer, K.R.; Chen, J. Overview of embolic agents. Semin. Intervent. Radiol. 2008, 25, 204–215. [Google Scholar] [CrossRef] [PubMed]
- van Zadelhoff, T.A.; Kubo, T.; Shibuya, M.; Miyazaki, K.; Nakata, M.; Sugihara, E.; Oei, E.H.G.; Okuno, Y. Comparative safety of three temporary embolic agents in joint disorders. J. Vasc. Interv. Radiol. 2025, 36, 979–987.e1. [Google Scholar] [CrossRef]
- Little, M.W.; Agarwal, S.; Khikmatovich, I.M.; McCabe, J.; Pandey, M.; Lewis, A.L.; Farrissey, L.; Iskhakov, S.A. First-in-human evaluation of a resorbable microspherical embolic agent for genicular artery embolization in knee osteoarthritis. J. Vasc. Interv. Radiol. 2025; in press. [Google Scholar] [CrossRef]
- Kamps, A.; Runhaar, J.; de Ridder, M.A.J.; de Wilde, M.; van der Lei, J.; Zhang, W.; Prieto-Alhambra, D.; Englund, M.; de Schepper, E.I.T.; Bierma-Zeinstra, S.M.A.; et al. Comorbidity in incident osteoarthritis cases and matched controls using electronic health record data. Arthritis Res. Ther. 2023, 25, 114. [Google Scholar] [CrossRef]
- Naidu, S.S.; Abbott, J.D.; Bagai, J.; Blankenship, J.; Garcia, S.; Iqbal, S.N.; Kaul, P.; Khuddus, M.A.; Kirkwood, L.; Manoukian, S.V.; et al. SCAI expert consensus update on best practices in the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. 2021, 98, 255–276. [Google Scholar] [CrossRef]
- Guo, H.; Wang, C.; Yang, M.; Tong, X.; Wang, J.; Guan, H.; Song, L.; Zou, Y. Management of iatrogenic renal arteriovenous fistula and arterial pseudoaneurysm by transarterial embolization: Single-center outcomes. Medicine 2017, 96, e8187. [Google Scholar] [CrossRef]
- Appelt, K.; Takes, M.; Zech, C.J.; Blackham, K.A.; Schubert, T. Complication rates of percutaneous brachial artery puncture: Effect of live ultrasound guidance. CVIR Endovasc. 2021, 4, 74. [Google Scholar] [CrossRef]
- Otsuka, M.; Shiode, N.; Nakao, Y.; Ikegami, Y.; Kobayashi, Y.; Takeuchi, A.; Harima, A.; Higaki, T.; Oi, K.; Dai, K.; et al. Comparison of radial, brachial, and femoral accesses using hemostatic devices for percutaneous coronary intervention. Cardiovasc Interv Ther. 2018, 33, 62–69. [Google Scholar] [CrossRef]
- Lin, H.Y.; Liang, K.W.; Wang, B.; Lee, C.C. Challenges, complications and management of transarterial microembolization for chronic musculoskeletal pain. Eur. Radiol. 2024, 34, 3260–3270. [Google Scholar] [CrossRef]
- Travis, T.; Monsky, W.L.; London, J.; Danielson, M.; Brock, J.; Wegelin, J.; Link, D.P. Short- and long-term complications after emergent internal iliac artery embolization in pelvic trauma. J. Vasc. Interv. Radiol. 2008, 19, 840–847. [Google Scholar] [CrossRef]
- Filippiadis, D.; Charalampopoulos, G.; Mazioti, A.; Alexopoulou, E.; Vrachliotis, T.; Brountzos, E.; Kelekis, N.; Kelekis, A. Interventional radiology techniques for pain reduction and mobility improvement in knee osteoarthritis. Diagn. Interv. Imaging 2019, 100, 391–400. [Google Scholar] [CrossRef]
- Sajan, A.; Mehta, T.; Griepp, D.W.; Chait, A.R.; Isaacson, A.; Bagla, S. Minimally invasive procedures to treat knee osteoarthritis: Systematic review and meta-analysis. J. Vasc. Interv. Radiol. 2022, 33, 238–248.e4. [Google Scholar] [CrossRef]
- Ciaffi, J.; Papalexis, N.; Vanni, E.; Miceli, M.; Faldini, C.; Scotti, L.; Zambon, A.; Salvarani, C.; Caporali, R.; Facchini, G.; et al. Minimally invasive interventional procedures for osteoarthritis and inflammatory arthritis: Systematic review and meta-analysis. Semin. Arthritis Rheum. 2024, 68, 152525. [Google Scholar] [CrossRef]
- Singh, H.; Knapik, D.M.; Polce, E.M.; Eikani, C.K.; Bjornstad, A.H.; Gursoy, S.; Perry, A.K.; Westrick, J.C.; Yanke, A.B.; Verma, N.N.; et al. Relative efficacy of intra-articular injections in knee osteoarthritis: Network meta-analysis. Am. J. Sports Med. 2022, 50, 3140–3148. [Google Scholar] [CrossRef]
- Chua, K.; Kang, J.Y.B.; Ng, F.D.J.; Pang, H.N.; Lie, D.T.T.; Silva, A.; Chang, P.C.C. Subchondroplasty for bone-marrow lesions in the arthritic knee: Pain relief and functional improvement. J. Knee Surg. 2021, 34, 665–671. [Google Scholar] [CrossRef]
- Fiore, J.F., Jr.; El-Kefraoui, C.; Chay, M.A.; Nguyen-Powanda, P.; Do, U.; Olleik, G.; Rajabiyazdi, F.; Kouyoumdjian, A.; Derksen, A.; Landry, T.; et al. Opioid versus opioid-free analgesia after surgical discharge: Systematic review and meta-analysis. Lancet 2022, 399, 2280–2293. [Google Scholar] [CrossRef]
- Rombey, T.; Eckhardt, H.; Kiselev, J.; Silzle, J.; Mathes, T.; Quentin, W. Cost-effectiveness of prehabilitation prior to elective surgery: Systematic review. BMC Med. 2023, 21, 265. [Google Scholar] [CrossRef]
Agent | Resorbability | Vessel Occlusion and Precision | Inflammation and Recanalization |
---|---|---|---|
Resorbable gelatin microsphere (e.g., NexSphere-F® R-GM) | - permanent [20] | - temporary occlusion - rapid recanalization (~2 h) [20,21] | - minimal tissue infarction (5.8% vs. 93% in control) - lower inflammatory cell infiltration and fibrosis in animal models [20,21] |
Tris-acryl gelatin microspheres (TAGM e.g., Embosphere®) | - permanent occlusion - non-biodegradable [22] | - uniform calibrated size - lodges predictably in vessels of matching size [23] | - minimal inflammation - recanalization rare - persistent infarct areas [22,23] |
Polyvinyl alcohol particles (PVA) | - permanent occlusion - non-biodegradable [24] | - irregular PVA—clumps and occludes proximally - spherical PVA—less predictable than TAGM [23,24] | - higher inflammatory response vs. TAGM - variable recanalization risk [23,24] |
Gelatin sponge (e.g., Gelfoam, Marine Gel®) | - temporary (1–6 weeks) [25] | - particle size is variable - less distal penetration - less precise occlusion than TAGM [26,27] | - moderate inflammation - less extensive infarct area [28] |
Liquid embolics (e.g., NBCA, Onyx) | - permanent [29] | - flows through complex vascular areas - ideal for arteriovenosus malformations - very precise occlusion - high risk of non-target spread [29] | - minimal recanalization - potential for non-target embolization - rare systemic toxicity [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feier, A.M.; Bloj, F.; Russu, O.M.; Bloj, A.; Pop, T.S. Single-Session Bilateral Genicular Artery Embolization for Knee Osteoarthritis via Brachial Access: A Case Report and Literature Review. Diagnostics 2025, 15, 2123. https://doi.org/10.3390/diagnostics15172123
Feier AM, Bloj F, Russu OM, Bloj A, Pop TS. Single-Session Bilateral Genicular Artery Embolization for Knee Osteoarthritis via Brachial Access: A Case Report and Literature Review. Diagnostics. 2025; 15(17):2123. https://doi.org/10.3390/diagnostics15172123
Chicago/Turabian StyleFeier, Andrei Marian, Florin Bloj, Octav Marius Russu, Andrei Bloj, and Tudor Sorin Pop. 2025. "Single-Session Bilateral Genicular Artery Embolization for Knee Osteoarthritis via Brachial Access: A Case Report and Literature Review" Diagnostics 15, no. 17: 2123. https://doi.org/10.3390/diagnostics15172123
APA StyleFeier, A. M., Bloj, F., Russu, O. M., Bloj, A., & Pop, T. S. (2025). Single-Session Bilateral Genicular Artery Embolization for Knee Osteoarthritis via Brachial Access: A Case Report and Literature Review. Diagnostics, 15(17), 2123. https://doi.org/10.3390/diagnostics15172123