From Innovation to Application: Can Emerging Imaging Techniques Transform Breast Cancer Diagnosis?
Abstract
1. Introduction
2. Literature Search Strategy
Inclusion and Exclusion Criteria for Review Article
3. Overview of Imaging Techniques
3.1. OCT
3.2. RS
3.3. PAI
3.4. HSI
3.5. CESM
3.6. MSI
4. Reported Studies on Imaging Techniques
4.1. OCT
4.2. RS
4.3. PAI
4.4. HSI
4.5. CESM
4.6. MSI
5. Barriers to Clinical Adoption
5.1. OCT
5.1.1. Constraints of Physical Imaging Resolution and Penetration
5.1.2. Speed and Real-Time Processing
5.1.3. Speckle Noise
5.2. RS
5.2.1. Fails to Extract Discriminative Features
5.2.2. Low Sensitivity of Raman Signals
5.2.3. Manual Feature Selection and High Dimensionality
5.3. PAI
5.3.1. Incapable of Accurately Identifying Malignant Tumors
5.3.2. Limited Angular View
5.3.3. Lack of Rigorous Quantitative Comparison Methods Between Volumetric PAI and Histology
5.4. HSI
5.4.1. Speed of Data Acquisition
5.4.2. Obstacles in Direct Clinical Translation and Validation
5.4.3. High Cost and Lighting Dependence
5.5. CESM
5.5.1. Absence of Automatic Segmentation
5.5.2. Insufficient Database Size
5.5.3. Increase in Radiation Dose
5.6. MSI
5.6.1. Human Respiration and Camera Instability
5.6.2. Spectral and Spatial Resolution
5.6.3. Issues with Calibration & Standardization
6. Future Directions
6.1. OCT
6.2. RS
6.3. PAI
6.4. HSI
6.5. CESM
6.6. MSI
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BC | Breast cancer |
| DL | Deep Learning |
| ML | Machine Learning |
| AI | Artificial Intelligence |
| OCT | Optical coherence tomography |
| RS | Raman Spectroscopy |
| PAI | Photoacoustic Imaging |
| HSI | Hyperspectral Imaging |
| CESM | Contrast-Enhanced Spectral Mammography |
| MSI | Multispectral Imaging |
| CNN | Convolutional Neural Network |
| AUC | Area under the Curve |
| AUC-ROC | Area under the Receiver Operating Characteristic Curve |
| RMSE | Root Mean Square Error |
| MCC | Matthews Correlation Coefficient |
| DOPU | Degree of Polarization Uniformity |
| SERS | Surface-Enhanced Raman Spectroscopy |
| PCA | Principle Component Analysis |
| SVM | Support Vector machine |
| MDCS | Multiprocess Detection and Classification System |
| GANs | Generative Adversarial Networks |
| HCCM | High-Concentration Iodinated Contrast Medium |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| H&E | Hematoxylin & Eosin |
| PAT | Photoacoustic Tomography |
| SNR | Signal-to-Noise Ratio |
| ROI | Region of Interest |
| DNN | Deep Neural Network |
| ISPIM | Inverted Selective Plane Illumination Microscopy |
| FAPS | Fully Automated Pipeline system |
References
- Ragab, D.A.; Attallah, O.; Sharkas, M.; Ren, J.; Marshall, S. A framework for breast cancer classification using multi-DCNNs. Comput. Biol. Med. 2021, 131, 104245. [Google Scholar] [CrossRef]
- Aljuaid, H.; Alturki, N.; Alsubaie, N.; Cavallaro, L.; Liotta, A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput. Methods Programs Biomed. 2022, 223, 106951. [Google Scholar] [CrossRef]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, J.; Guo, X.; Chen, S.; Liu, L. Breast cancer classification method based on improved VGG16 using mammography images. J. Radiat. Res. Appl. Sci. 2024, 17, 100885. [Google Scholar] [CrossRef]
- Michael, E.; Ma, H.; Li, H.; Qi, S. An optimized framework for breast cancer classification using machine learning. BioMed Res. Int. 2022, 2022, 8482022. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.D.; Saleem, A.; Elahi, H.; Khan, M.A.; Khan, M.I.; Yaqoob, M.M.; Farooq Khattak, U.; Al-Rasheed, A. Breast cancer classification through meta-learning ensemble technique using convolution neural networks. Diagnostics 2023, 13, 2242. [Google Scholar] [CrossRef]
- Maleki, A.; Raahemi, M.; Nasiri, H. Breast cancer diagnosis from histopathology images using deep neural network and XGBoost. Biomed. Signal Process. Control 2023, 86, 105152. [Google Scholar] [CrossRef]
- Boppart, S.A.; Luo, W.; Marks, D.L.; Singletary, K.W. Optical coherence tomography: Feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res. Treat. 2004, 84, 85–97. [Google Scholar] [CrossRef]
- Liu, X.; Cui, M.; Feng, C.; Jin, S.; Han, X.; Wu, Y.; Meng, D.; Zuo, S.; Xu, Q.; Tai, Y. Clinical evaluation of breast cancer tissue with optical coherence tomography: Key findings from a large-scale study. J. Cancer Res. Clin. Oncol. 2025, 151, 83. [Google Scholar] [CrossRef]
- Yao, X.; Gan, Y.; Chang, E.; Hibshoosh, H.; Feldman, S.; Hendon, C. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT. Lasers Surg. Med. 2017, 49, 258–269. [Google Scholar] [CrossRef]
- Pattanaik, R.K.; Mishra, S.; Siddique, M.; Gopikrishna, T.; Satapathy, S. Breast cancer classification from mammogram images using extreme learning machine-based DenseNet121 model. J. Sens. 2022, 2022, 2731364. [Google Scholar] [CrossRef]
- Han, L.; Yin, Z. A hybrid breast cancer classification algorithm based on meta-learning and artificial neural networks. Front. Oncol. 2022, 12, 1042964. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jia, M.; Zhou, Q.; Xu, S.; Zhao, Y.; Wang, Q.; Tian, Z.; Shi, R.; Wang, K.; Yan, T. Multi-classification of breast cancer pathology images based on a two-stage hybrid network. J. Cancer Res. Clin. Oncol. 2024, 150, 505. [Google Scholar] [CrossRef] [PubMed]
- Kaddes, M.; Ayid, Y.M.; Elshewey, A.M.; Fouad, Y. Breast cancer classification based on a hybrid CNN with LSTM model. Sci. Rep. 2025, 15, 4409. [Google Scholar] [CrossRef]
- Dantas, D.; Soares, L.; Novais, S.; Vilarinho, R.; Moreira, J.A.; Silva, S.; Frazão, O.; Oliveira, T.; Leal, N.; Faísca, P. Discrimination of benign and malignant lesions in canine mammary tissue samples using Raman spectroscopy: A pilot study. Animals 2020, 10, 1652. [Google Scholar] [CrossRef]
- Ma, D.; Shang, L.; Tang, J.; Bao, Y.; Fu, J.; Yin, J. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 256, 119732. [Google Scholar] [CrossRef]
- Lin, L.; Wang, L.V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef]
- Rodrigues, J.; Amin, A.; Chandra, S.; Mulla, N.J.; Nayak, G.S.; Rai, S.; Ray, S.; Mahato, K.K. Machine learning enabled photoacoustic spectroscopy for noninvasive assessment of breast tumor progression in vivo: A preclinical study. ACS Sens. 2024, 9, 589–601. [Google Scholar] [CrossRef]
- Karmacharya, M.B.; Sultan, L.R.; Sehgal, C.M. Photoacoustic monitoring of oxygenation changes induced by therapeutic ultrasound in murine hepatocellular carcinoma. Sci. Rep. 2021, 11, 4100. [Google Scholar] [CrossRef]
- Garini, Y.; Young, I.T.; McNamara, G. Spectral imaging: Principles and applications. Cytometry Part A 2006, 69A, 735–747. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; He, L.; Meng, C.; Du, S.; Bao, J.; Zheng, Y. Applications of hyperspectral imaging in the detection and diagnosis of solid tumors. Transl. Cancer Res. 2020, 9, 1265. [Google Scholar] [CrossRef]
- Leon, R.; Fabelo, H.; Ortega, S.; Cruz-Guerrero, I.A.; Campos-Delgado, D.U.; Szolna, A.; Piñeiro, J.F.; Espino, C.; O’Shanahan, A.J.; Hernandez, M.; et al. Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection. NPJ Precis. Oncol. 2023, 7, 119. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Zhang, X.; Zhao, S.; Zhong, H.; Huang, J.; Yu, J. Contrast-enhanced spectral mammography: A potential exclusion diagnosis modality in dense breast patients. Cancer Med. 2020, 9, 2653–2659. [Google Scholar] [CrossRef]
- La Forgia, D.; Fanizzi, A.; Campobasso, F.; Bellotti, R.; Didonna, V.; Lorusso, V.; Moschetta, M.; Massafra, R.; Tamborra, P.; Tangaro, S. Radiomic analysis in contrast-enhanced spectral mammography for predicting breast cancer histological outcome. Diagnostics 2020, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- Bozzini, A.; Nicosia, L.; Pruneri, G.; Maisonneuve, P.; Meneghetti, L.; Renne, G.; Vingiani, A.; Cassano, E.; Mastropasqua, M.G. Clinical performance of contrast-enhanced spectral mammography in pre-surgical evaluation of breast malignant lesions in dense breasts: A single center study. Breast Cancer Res. Treat. 2020, 184, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Wang, W.; Li, G.; Zhao, Y.; Wang, J.; Wen, Z. A lightweight coal gangue detection method based on multispectral imaging and enhanced YOLOv8n. Microchem. J. 2024, 199, 110142. [Google Scholar] [CrossRef]
- Rego, C.H.Q.; França-Silva, F.; Gomes-Junior, F.G.; Moraes, M.H.D.d.; Medeiros, A.D.d.; Silva, C.B.d. Using Multispectral Imaging for Detecting Seed-Borne Fungi in Cowpea. Agriculture 2020, 10, 361. [Google Scholar] [CrossRef]
- Psomadakis, C.E.; Marghoob, N.; Bleicher, B.; Markowitz, O. Optical coherence tomography. Clin. Dermatol. 2021, 39, 624–634. [Google Scholar] [CrossRef]
- Geevarghese, A.; Wollstein, G.; Ishikawa, H.; Schuman, J.S. Optical Coherence Tomography and Glaucoma. Annu. Rev. Vis. Sci. 2021, 7, 693–726. [Google Scholar] [CrossRef]
- Kulyabin, M.; Zhdanov, A.; Nikiforova, A.; Stepichev, A.; Kuznetsova, A.; Ronkin, M.; Borisov, V.; Bogachev, A.; Korotkich, S.; Constable, P.A. Octdl: Optical coherence tomography dataset for image-based deep learning methods. Sci. Data 2024, 11, 365. [Google Scholar] [CrossRef]
- Duan, Y.; Guo, D.; Zhang, X.; Lan, L.; Meng, H.; Wang, Y.; Sui, C.; Qu, Z.; He, G.; Wang, C. Diagnostic accuracy of optical coherence tomography for margin assessment in breast-conserving surgery: A systematic review and meta-analysis. Photodiagn. Photodyn. Ther. 2023, 43, 103718. [Google Scholar] [CrossRef]
- Bouma, B.E.; de Boer, J.F.; Huang, D.; Jang, I.-K.; Yonetsu, T.; Leggett, C.L.; Leitgeb, R.; Sampson, D.D.; Suter, M.; Vakoc, B.J. Optical coherence tomography. Nat. Rev. Methods Primers 2022, 2, 79. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, N.M.; Petersen, C.R.; Barh, A.; Jain, D.; Jensen, M.; Hannesschläger, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Podoleanu, A.; Bang, O. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl. 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Zeppieri, M.; Marsili, S.; Enaholo, E.S.; Shuaibu, A.O.; Uwagboe, N.; Salati, C.; Spadea, L.; Musa, M. Optical coherence tomography (OCT): A brief look at the uses and technological evolution of ophthalmology. Medicina 2023, 59, 2114. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.G.; Vandenabeele, P.; Colomban, P. Historical Overview of Raman Spectroscopy. In Raman Spectroscopy in Cultural Heritage Preservation; Springer: Cham, Switzerland, 2022; pp. 7–18. [Google Scholar]
- Pasteris, J.D.; Beyssac, O. Welcome to Raman spectroscopy: Successes, challenges, and pitfalls. Elements 2020, 16, 87–92. [Google Scholar] [CrossRef]
- Dodo, K.; Fujita, K.; Sodeoka, M. Raman Spectroscopy for Chemical Biology Research. J. Am. Chem. Soc. 2022, 144, 19651–19667. [Google Scholar] [CrossRef]
- Kumamoto, Y.; Harada, Y.; Takamatsu, T.; Tanaka, H. Label-free molecular imaging and analysis by Raman spectroscopy. Acta Histochem. Cytochem. 2018, 51, 101–110. [Google Scholar] [CrossRef]
- Ning, T.; Li, H.; Chen, Y.; Zhang, B.; Zhang, F.; Wang, S. Raman spectroscopy based pathological analysis and discrimination of formalin fixed paraffin embedded breast cancer tissue. Vib. Spectrosc. 2021, 115, 103260. [Google Scholar] [CrossRef]
- Shin, S.; Doh, I.-J.; Okeyo, K.; Bae, E.; Robinson, J.P.; Rajwa, B. Hybrid Raman and laser-induced breakdown spectroscopy for food authentication applications. Molecules 2023, 28, 6087. [Google Scholar] [CrossRef]
- Salmas, C.; Alexopoulos, K.; Kaspar, B.; Skliros, V.; Mecaj, P.; Vasileiou, E.; Perraki, I.P.M.; Papaioannou, H. First Evidence of Microplastics in Mt. Tymfi’s Alpine Lake (Dragonlake) in Greece, Using μ-Raman Spectroscopy. In Proceedings of the 16th International GeoRAMAN Conference, Rhodes, Greece, 24–27 September 2024. [Google Scholar]
- Kim, S.; Kim, W.; Bang, A.; Song, J.-Y.; Shin, J.-H.; Choi, S. Label-free breast cancer detection using fiber probe-based Raman spectrochemical biomarker-dominated profiles extracted from a mixture analysis algorithm. Anal. Methods 2021, 13, 3249–3255. [Google Scholar] [CrossRef]
- Li, G.; Zhu, N.; Zhou, J.; Kang, K.; Zhou, X.; Ying, B.; Yi, Q.; Wu, Y. A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis. J. Mater. Chem. B 2021, 9, 2709–2716. [Google Scholar] [CrossRef] [PubMed]
- Sloan-Dennison, S.; Laing, S.; Graham, D.; Faulds, K. From Raman to SESORRS: Moving deeper into cancer detection and treatment monitoring. Chem. Commun. 2021, 57, 12436–12451. [Google Scholar] [CrossRef]
- Liu, W.; Jing, C.; Liu, X.; Du, J. 3D imaging of single bacterial cells using surface-enhanced Raman spectroscopy with a multivariate curve resolution model. Analyst 2022, 147, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Lipinski, M.; Kobayashi-Kirschvink, K.J.; Tentellino, C.; So, P.T.; Kang, J.W.; De Angelis, F. Label-Free Detection of Biochemical Changes during Cortical Organoid Maturation via Raman Spectroscopy and Machine Learning. Anal. Chem. 2025, 97, 5029–5037. [Google Scholar] [CrossRef]
- Hysi, E.; Moore, M.J.; Strohm, E.M.; Kolios, M.C. A tutorial in photoacoustic microscopy and tomography signal processing methods. J. Appl. Phys. 2021, 129, 141102. [Google Scholar] [CrossRef]
- Rich, L.J.; Miller, A.; Singh, A.K.; Seshadri, M. Photoacoustic Imaging as an Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer. Theranostics 2018, 8, 2064–2078. [Google Scholar] [CrossRef]
- Sun, T.; Lv, J.; Zhao, X.; Li, W.; Zhang, Z.; Nie, L. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging. Photoacoustics 2023, 34, 100569. [Google Scholar] [CrossRef]
- Holzwarth, N.; Rachel, Z.; Nölke, J.-H.; Schellenberg, M.; Bauer, L.; Schreck, N.; Bender, C.J.; Dreher, K.K.; Regnery, S.; Weusthof, K. Photoacoustic imaging for monitoring radiotherapy treatment response in head and neck tumors. Sci. Rep. 2025, 15, 16344. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, D.; Wang, X.; Wen, Y.; Zhang, J.; Yang, Y.; Chen, Y.; Wu, Y.; Chi, Z.; Jiang, H. Image Enhancement Method for Photoacoustic Imaging of Deep Brain Tissue. Photonics 2024, 11, 31. [Google Scholar] [CrossRef]
- Wang, N.; Yao, J. Sound Out the Deep Clarity: Super-resolution Photoacoustic Imaging at Depths. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2024, 71, 1801–1813. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Tao, C.; Liu, X.; Qian, X. Real-time super-resolution photoacoustic imaging based on speckle illumination and high-speed computed tomography. Ultrasonics 2025, 155, 107709. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, T.L.; Brown, E.; Hacker, L.; Else, T.; Oraiopoulou, M.-E.; Tomaszewski, M.R.; Jena, R.; Bohndiek, S.E. The potential of photoacoustic imaging in radiation oncology. Front. Oncol. 2022, 12, 803777. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guerschman, J.P.; Cheng, Z.; Guo, L. Remote sensing for vegetation monitoring in carbon capture storage regions: A review. Appl. Energy 2019, 240, 312–326. [Google Scholar] [CrossRef]
- Freeman, J.; Downs, F.; Marcucci, L.; Lewis, E.N.; Blume, B.; Rish, J. Multispectral and hyperspectral imaging: Applications for medical and surgical diagnostics. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 30 October–2 November 1997; ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No. 97CH36136). pp. 700–701. [Google Scholar]
- Stamatas, G.N.; Southall, M.; Kollias, N. In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared. J. Investig. Dermatol. 2006, 126, 1753–1760. [Google Scholar] [CrossRef]
- Ortega, S.; Fabelo, H.; Camacho, R.; De la Luz Plaza, M.; Callicó, G.M.; Sarmiento, R. Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed. Opt. Express 2018, 9, 818–831. [Google Scholar] [CrossRef]
- Khazaei, K.; Roshandel, P.; Parastar, H. Visible-short wavelength near infrared hyperspectral imaging coupled with multivariate curve resolution-alternating least squares for diagnosis of breast cancer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 324, 124966. [Google Scholar] [CrossRef]
- van Vliet-Pérez, S.M.; van de Berg, N.J.; Manni, F.; Lai, M.; Rijstenberg, L.; Hendriks, B.H.; Dankelman, J.; Ewing-Graham, P.C.; Nieuwenhuyzen-de Boer, G.M.; Van Beekhuizen, H.J. Hyperspectral imaging for tissue classification after advanced stage ovarian cancer surgery—A pilot study. Cancers 2022, 14, 1422. [Google Scholar] [CrossRef]
- Collins, T.; Maktabi, M.; Barberio, M.; Bencteux, V.; Jansen-Winkeln, B.; Chalopin, C.; Marescaux, J.; Hostettler, A.; Diana, M.; Gockel, I. Automatic recognition of colon and esophagogastric cancer with machine learning and hyperspectral imaging. Diagnostics 2021, 11, 1810. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Barberio, M.; Chalopin, C.; Schierle, K.; Diana, M.; Koehler, H.; Gockel, I.; Maktabi, M. Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy. Cancers 2021, 13, 967. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Zhang, L.; Wang, Z.; Du, B. MambaHSI: Spatial–Spectral Mamba for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5524216. [Google Scholar] [CrossRef]
- Kopeć, D.; Zakrzewska, A.; Wierzbicki, D.; Fryskowska, A.; Wójcik, J. Review of hyperspectral imaging applications on mobile ground platforms. Sensors 2025, 25, 2475. [Google Scholar]
- Jong, L.-J.S.; Appelman, J.G.; Sterenborg, H.J.; Ruers, T.J.; Dashtbozorg, B. Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images. Sensors 2024, 24, 1567. [Google Scholar] [CrossRef]
- Urbanos, G.; Martín, A.; Vázquez, G.; Villanueva, M.; Villa, M.; Jimenez-Roldan, L.; Chavarrías, M.; Lagares, A.; Juárez, E.; Sanz, C. Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification. Sensors 2021, 21, 3827. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Hong, D.; Zhou, J.; Vivone, G.; Li, S.; Chanussot, J. CasFormer:Cascadedtransformersforfusion-awarecomputational hyperspectral imaging. Inf. Fusion 2024, 108, 102408. [Google Scholar] [CrossRef]
- Ackerman, L.; Watt, A.; Shetty, P.; Flynn, M.; Burke, M.; Kambouris, A.; Fine, G.; Wilderman, S. Breast lesions examined by digital angiography. Work in progress. Radiology 1985, 155, 65–68. [Google Scholar] [CrossRef]
- Watt, A.C.; Ackerman, L.V.; Shetty, P.C.; Burke, M.; Flynn, M.; Grodsinsky, C.; Fine, G.; Wilderman, S. Differentiation between benign and malignant disease of the breast using digital subtraction angiography of the breast. Cancer 1985, 56, 1287–1292. [Google Scholar] [CrossRef]
- Jong, R.A.; Yaffe, M.J.; Skarpathiotakis, M.; Shumak, R.S.; Danjoux, N.M.; Gunesekara, A.; Plewes, D.B. Contrast-enhanced digital mammography: Initial clinical experience. Radiology 2003, 228, 842–850. [Google Scholar] [CrossRef]
- Lewin, J.M.; Isaacs, P.K.; Vance, V.; Larke, F.J. Dual-energy contrast-enhanced digital subtraction mammography: Feasibility. Radiology 2003, 229, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Rao, H.; Zhou, L. A meta-analysis of contrast-enhanced spectral mammography versus MRI in the diagnosis of breast cancer. Thorac. Cancer 2020, 11, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Lv, Y.; Sun, B.; Xie, H.; Dong, J.; Hao, C.; Chen, Q.; Chi, X. Diagnostic Value of Contrast-Enhanced Spectral Mammography in Comparison to Magnetic Resonance Imaging in Breast Lesions. Comput. Assist. Tomograpghy 2019, 43, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Sheng, L.; Zhang, L.; Li, N.; Xie, Y. Comparison of Contrast-Enhanced Spectral Mammography and Contrast-Enhanced MRI in Screening Multifocal and Multicentric Lesions in Breast Cancer Patients. Contrast Media Mol. Imaging 2022, 2022, 4224701. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, L.; Fanizzi, A.; Basile, T.M.A.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Lorusso, V.; Massafra, R.; Tamborra, P.; et al. Radiomics Analysis on Contrast-Enhanced Spectral Mammography Images for Breast Cancer Diagnosis: A Pilot Study. Entropy 2019, 21, 1110. [Google Scholar] [CrossRef]
- Xing, D.; Lv, Y.; Sun, B.; Chu, T.; Bao, Q.; Zhang, H. Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer. Acad. Radiol. 2024, 31, 3524–3534. [Google Scholar] [CrossRef]
- Fanizzi, A.; Losurdo, L.; Basile, T.M.A.; Bellotti, R.; Bottigli, U.; Delogu, P.; Diacono, D.; Didonna, V.; Fausto, A.; Lombardi, A.; et al. Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images. J. Clin. Med. 2019, 8, 891. [Google Scholar] [CrossRef]
- Rofena, A.; Guarrasi, V.; Sarli, M.; Piccolo, C.L.; Sammarra, M.; Zobel, B.B.; Soda, P. A deep learning approach for virtualcontrast-enhance mentin Contrast Enhanced Spectral Mammography. Comput. Med. Imaging Graph. 2024, 116, 102398. [Google Scholar] [CrossRef]
- Rudnicki, W.; Piegza, T.; Rozum-Liszewska, N.; Górski, M.; Popiela, T.J.; Basta, P.; Heinze, S.; Luczynska, E. The effectiveness of contrast-enhanced spectral mammography and magnetic resonance imaging in dense breasts. Pol. J. Radiol. 2021, 86, 159–164. [Google Scholar] [CrossRef]
- Wong, C.Y.Y.; Lee, S.Y.S.; Mahmood, R.D. Contrast-enhanced spectral mammography. Singap. Med. J. 2024, 65, 195–201. [Google Scholar] [CrossRef]
- Mansfield, J. Multispectral imaging: A review of its technical aspects and applications in anatomic pathology. Vet. Pathol. 2014, 51, 185–210. [Google Scholar] [CrossRef]
- Yamano, H. Multispectral applications. In Coral Reef Remote Sensing: A Guide for Mapping, Monitoring and Management; Springer: Dordrecht, The Netherlands, 2013; pp. 51–78. [Google Scholar]
- Gomes, W.P.C.; Gonçalves, L.; da Silva, C.B.; Melchert, W.R. Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee. Comput. Electron. Agric. 2022, 198, 107097. [Google Scholar] [CrossRef]
- Xun, Z.; Wang, X.; Xue, H.; Zhang, Q.; Yang, W.; Zhang, H.; Li, M.; Jia, S.; Qu, J.; Wang, X. Deep machine learning identified fish flesh using multispectral imaging. Curr. Res. Food Sci. 2024, 9, 100784. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Duffy, C.; Gibson, A.; Terras, M. Understanding multispectral imaging of cultural heritage: Determining best practice in MSI analysis of historical artefacts. J. Cult. Herit. 2020, 45, 339–350. [Google Scholar] [CrossRef]
- Goessinger, E.V.; Dittrich, P.-G.; Nöcker, P.; Notni, G.; Weber, S.; Cerminara, S.; Mühleisen, B.; Navarini, A.A.; Maul, L.V. Classification of melanocytic lesions using direct illumination multispectral imaging. Sci. Rep. 2024, 14, 19036. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Gu, X.; Chen, D.; Zhang, M.; Xu, C. Deep learning-assisted multispectral imaging for early screening of skin diseases. Photodiagn. Photodyn. Ther. 2024, 48, 104292. [Google Scholar] [CrossRef]
- Amiri, M.M.; Messinger, D.W.; Hanneken, T.R. Colorimetric characterization of multispectral imaging systems for visualization of historical artifacts. J. Cult. Herit. 2024, 68, 136–148. [Google Scholar] [CrossRef]
- Kunhoth, S.; Al-Maadeed, S. An Analytical Study on the Utility of RGB and Multispectral Imagery with Band Selection for Automated Tumor Grading. Diagnostics 2024, 14, 1625. [Google Scholar] [CrossRef]
- Mengu, D.; Tabassum, A.; Jarrahi, M.; Ozcan, A. Snapshot multispectral imaging using a diffractive optical network. Light Sci. Appl. 2023, 12, 86. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, X.; Liu, Y.; Lai, S.; Hao, L.; Peng, Y.; Li, Y.; Zhu, Z.; Huang, X.; Huang, K. Multispectral imaging in medicine: A bibliometric study. Heliyon 2024, 10, e36389. [Google Scholar] [CrossRef]
- Dhiman, B.; Kamboj, S.; Srivastava, V. Explainable AI based efficient ensemble model for breast cancer classification using optical coherence tomography. Biomed. Signal Process. Control 2024, 91, 106007. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, B.; Yang, H.; Zhao, J.; Zhang, Y.; Gao, Y.; Monteiro, O.; Zhang, K.; Liu, B.; Wang, S. Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: A prospective cohort study in breast cancer patients. Sci. Bull. 2024, 69, 1748–1756. [Google Scholar] [CrossRef]
- Sanderson, R.W.; Zilkens, R.; Gong, P.; Boman, I.; Foo, K.Y.; Shanthakumar, S.; Stephenson, J.; Ooi, W.L.; Fernandez, J.C.; Chin, S.L. A co-registration method to validate in vivo optical coherence tomography in the breast surgical cavity. Heliyon 2025, 11, e41265. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Liu, P.; Cheng, L.; Tong, F.; Liu, H.; Wang, S.; Liu, M.; Wang, C.; Peng, Y.; et al. Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery. Cancer 2020, 126, 3847–3856. [Google Scholar] [CrossRef]
- Simon, A.; Badachi, Y.; Ropers, J.; Laurent, I.; Dong, L.; Da Maia, E.; Bourcier, A.; Canlorbe, G.; Uzan, C. Value of high-resolution full-field optical coherence tomography and dynamic cell imaging for one-stop rapid diagnosis breast clinic. Cancer Med. 2023, 12, 19500–19511. [Google Scholar] [CrossRef] [PubMed]
- Gubarkova, E.; Kiseleva, E.; Moiseev, A.; Vorontsov, D.; Kuznetsov, S.; Plekhanov, A.; Karabut, M.; Sirotkina, M.; Gelikonov, G.; Gamayunov, S.; et al. Intraoperative Assessment of Breast Cancer Tissues after Breast-Conserving Surgery Based on Mapping the Attenuation Coefficients in 3D Cross-Polarization Optical Coherence Tomography. Cancers 2023, 15, 2663. [Google Scholar] [CrossRef] [PubMed]
- Faragalla, H.; Davoudi, B.; Nofech-Moses, N.; Yucel, Y.; Jakate, K. The Use of Optical Coherence Tomography for Gross Examination and Sampling of Fixed Breast Specimens: A Pilot Study. Diagnostics 2022, 12, 2191. [Google Scholar] [CrossRef] [PubMed]
- Levy, Y.; Rempel, D.; Nguyen, M.; Yassine, A.; Sanati-Burns, M.; Salgia, P.; Lim, B.; Butler, S.L.; Berkeley, A.; Bayram, E. The fusion of wide field optical coherence tomography and AI: Advancing breast cancer surgical margin visualization. Life 2023, 13, 2340. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Shi, J.; Boppart, S.A. Synthetic polarization-sensitive optical coherence tomography by deep learning. NPJ Digit. Med. 2021, 4, 105. [Google Scholar] [CrossRef]
- Basu, S.; Agarwal, R.; Srivastava, V. Development of an intelligent full-field polarization sensitive optical coherence tomography for breast cancer classification. J. Biophotonics 2023, 16, e202200385. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zeng, Q.; Chen, C.; Lv, X.; Ma, M.; Su, H.; Ma, B.; Chen, C.; Fang, J. Serum Raman spectroscopy combined with multiple classification models for rapid diagnosis of breast cancer. Photodiagn. Photodyn. Ther. 2022, 40, 103115. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Min, S.; Xia, J.; Li, J. Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization. Comput. Methods Programs Biomed. 2024, 255, 108361. [Google Scholar] [CrossRef]
- Nargis, H.; Nawaz, H.; Bhatti, H.; Jilani, K.; Saleem, M. Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119034. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Peng, D.; Yi, X.; He, S.; Liu, F.; Zheng, X.; Huang, W.E.; Zhao, L.; Huang, X. Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120300. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Z.; Ma, Z. Raman spectral pattern recognition of breast cancer: A machine learning strategy based on feature fusion and adaptive hyperparameter optimization. Heliyon 2023, 9, e18148. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Tang, J.; Wu, J.; Shang, H.; Huang, X.; Bao, Y.; Xu, Z.; Wang, H.; Yin, J. Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. Biosensors 2023, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.M.; Narayan, A.; Milligan, K.; Lum, J.J.; Brolo, A.G.; Andrews, J.L.; Jirasek, A. Raman spectroscopy and convolutional neural networks for monitoring biochemical radiation response in breast tumour xenografts. Sci. Rep. 2023, 13, 1530. [Google Scholar] [CrossRef]
- Li, H.; Ning, T.; Yu, F.; Chen, Y.; Zhang, B.; Wang, S. Raman Microspectroscopic Investigation and Classification of Breast Cancer Pathological Characteristics. Molecules 2021, 26, 921. [Google Scholar] [CrossRef]
- Tipatet, K.S.; Hanna, K.; Davison-Gates, L.; Kerst, M.; Downes, A. Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics. J. Biophotonics 2025, 18, e202400427. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Li, Z.; Wang, H.; Regmi, D.; Zhang, J.; Feng, J.; Yao, S.; Xu, J. Employing Raman Spectroscopy and Machine Learning for the Identification of Breast Cancer. Biol. Proced. Online 2024, 26, 28. [Google Scholar] [CrossRef]
- Tong, X.; Liu, C.Z.; Luo, Y.; Lin, L.; Dzubnar, J.; Invernizzi, M.; Delos Santos, S.; Zhang, Y.; Cao, R.; Hu, P.; et al. Panoramic photoacoustic computed tomography with learning-based classification enhances breast lesion characterization. Nat. Biomed. Eng. 2025, 1–17. [Google Scholar] [CrossRef]
- Li, G.; Tang, S.; Huang, Z.; Wang, M.; Tian, H.; Wu, H.; Mo, S.; Xu, J.; Dong, F. Photoacoustic Imaging with Attention-Guided Deep Learning for Predicting Axillary Lymph Node Status in Breast Cancer. Acad. Radiol. 2025, 32, 2453–2464. [Google Scholar] [CrossRef]
- Huang, Z.; Mo, S.; Li, G.; Tian, H.; Wu, H.; Chen, J.; Wang, M.; Tang, S.; Xu, J.; Dong, F. Prognosticating axillary lymph node metastasis in breast cancer through integrated photoacoustic imaging, ultrasound, and clinical parameters. Breast Cancer Res. 2025, 27, 123. [Google Scholar] [CrossRef]
- Li, J.; Bai, L.; Chen, Y.; Cao, J.; Zhu, J.; Zhi, W.; Cheng, Q. Detecting collagen by machine learning improved photoacoustic spectral analysis for breast cancer diagnostics: Feasibility studies with murine models. J. Biophotonics 2025, 18, e202400371. [Google Scholar] [CrossRef]
- Rodrigues, J.; Amin, A.; Raghushaker, C.R.; Chandra, S.; Joshi, M.B.; Prasad, K.; Rai, S.; Nayak, S.G.; Ray, S.; Mahato, K.K. Exploring photoacoustic spectroscopy-based machine learning together with metabolomics to assess breast tumor progression in a xenograft model ex vivo. Lab. Investig. 2021, 101, 952–965. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, M.; Kong, Y.; Li, G.; Tian, H.; Wu, H.; Zheng, J.; Mo, S.; Xu, J.; Dong, F. Photoacoustic-Based Intra-and Peritumoral Radiomics Nomogram for the Preoperative Prediction of Expression of Ki-67 in Breast Malignancy. Acad. Radiol. 2025, 32, 2422–2434. [Google Scholar] [CrossRef]
- Li, G.; Huang, Z.; Tian, H.; Wu, H.; Zheng, J.; Wang, M.; Mo, S.; Chen, Z.; Xu, J.; Dong, F. Deep learning combined with attention mechanisms to assist radiologists in enhancing breast cancer diagnosis: A study on photoacoustic imaging. Biomed. Opt. Express 2024, 15, 4689. [Google Scholar] [CrossRef]
- Zhang, J.; Arroyo, J.; Lediju Bell, M.A. Multispectral photoacoustic imaging of breast cancer tissue with histopathology validation. Biomed. Opt. Express 2025, 16, 995–1005. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, L.; Wei, Y.; Li, J.; Qi, Z.; Su, N.; Zhao, C.; Zhang, R.; Tang, T.; Liu, S. Functional photoacoustic/ultrasound imaging for the assessment of breast intraductal lesions: Preliminary clinical findings. Biomed. Opt. Express 2021, 12, 1236–1246. [Google Scholar] [CrossRef]
- Li, G.; Huang, Z.; Luo, H.; Tian, H.; Ding, Z.; Deng, Y.; Xu, J.; Wu, H.; Dong, F. Photoacoustic imaging radiomics to identify breast cancer in BI-RADS 4 or 5 lesions. Clin. Breast Cancer 2024, 24, e379–e388.e371. [Google Scholar] [CrossRef]
- Aboughaleb, I.H.; Aref, M.H.; El-Sharkawy, Y.H. Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer. Photodiagn. Photodyn. Ther. 2020, 31, 101922. [Google Scholar] [CrossRef] [PubMed]
- Jong, L.-J.S.; de Kruif, N.; Geldof, F.; Veluponnar, D.; Sanders, J.; Vrancken Peeters, M.-J.T.; van Duijnhoven, F.; Sterenborg, H.J.; Dashtbozorg, B.; Ruers, T.J. Discriminating healthy from tumor tissue in breast lumpectomy specimens using deep learning-based hyperspectral imaging. Biomed. Opt. Express 2022, 13, 2581–2604. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Del-Valle, M.; Dos Santos, S.N.; Bernardes, E.S.; Zezell, D.M. Recognition of breast cancer subtypes using FTIR hyperspectral data. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123941. [Google Scholar] [CrossRef] [PubMed]
- Kho, E.; Dashtbozorg, B.; De Boer, L.L.; Van de Vijver, K.K.; Sterenborg, H.J.; Ruers, T.J. Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information. Biomed. Opt. Express 2019, 10, 4496–4515. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Lu, G.; Little, J.V.; Wang, X.; Patel, M.; Griffith, C.C.; El-Deiry, M.W.; Chen, A.Y.; Fei, B. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. J. Biomed. Opt. 2019, 22, 060503. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Liu, Z.; Guo, L.; Li, S.; Sun, X.; Shao, Z.; Ji, M. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering. Anal. Chem. 2021, 93, 6223–6231. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; El-Sharkawy, Y.H. Delineation and detection of breast cancer using novel label-free fluorescence. BMC Med. Imaging 2023, 23, 132. [Google Scholar] [CrossRef]
- Jailin, C.; Mohamed, S.; Iordache, R.; Milioni De Carvalho, P.; Ahmed, S.Y.; Abdel Sattar, E.A.; Moustafa, A.F.I.; Gomaa, M.M.; Kamal, R.M.; Vancamberg, L. AI-based cancer detection model for contrast-enhanced mammography. Bioengineering 2023, 10, 974. [Google Scholar] [CrossRef]
- Bouzarjomehri, N.; Barzegar, M.; Rostami, H.; Keshavarz, A.; Asghari, A.N.; Azad, S.T. Multi-modal classification of breast cancer lesions in Digital Mammography and contrast enhanced spectral mammography images. Comput. Biol. Med. 2024, 183, 109266. [Google Scholar] [CrossRef]
- Mao, N.; Zhang, H.; Dai, Y.; Li, Q.; Lin, F.; Gao, J.; Zheng, T.; Zhao, F.; Xie, H.; Xu, C. Attention-based deep learning for breast lesions classification on contrast enhanced spectral mammography: A multicentre study. Br. J. Cancer 2023, 128, 793–804. [Google Scholar] [CrossRef]
- Chen, Y.; Hua, Z.; Lin, F.; Zheng, T.; Zhou, H.; Zhang, S.; Gao, J.; Wang, Z.; Shao, H.; Li, W. Detection and classification of breast lesions using multiple information on contrast-enhanced mammography by a multiprocess deep-learning system: A multicenter study. Chin. J. Cancer Res. 2023, 35, 408. [Google Scholar] [CrossRef]
- Miller, M.M.; Rubaiyat, A.H.M.; Rohde, G.K. Predicting malignancy of breast imaging findings using quantitative analysis of contrast-enhanced mammography (CEM). Diagnostics 2023, 13, 1129. [Google Scholar] [CrossRef]
- Moffa, G.; Galati, F.; Maroncelli, R.; Rizzo, V.; Cicciarelli, F.; Pasculli, M.; Pediconi, F. Diagnostic Performance of Contrast-Enhanced Digital Mammography versus Conventional Imaging in Women with Dense Breasts. Diagnostics 2023, 13, 2520. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Zhang, K.; Yang, P.; Ma, H.; Shi, Y.; Liu, M.; Wang, Q.; Cui, J.; Mao, N. Contrast-enhanced spectral mammography-based radiomics nomogram for identifying benign and malignant breast lesions of sub-1 cm. Front. Oncol. 2020, 10, 573630. [Google Scholar] [CrossRef]
- Zheng, T.; Lin, F.; Li, X.; Chu, T.; Gao, J.; Zhang, S.; Li, Z.; Gu, Y.; Wang, S.; Zhao, F.; et al. Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: A prospective, multicentre study. eClinicalMedicine 2023, 58, 101913. [Google Scholar] [CrossRef]
- Gouda, W.; Yasin, R.; Abo-hedibah, S.; Yasin, M. Contrast-enhanced mammography compared to MRI for the diagnosis of multifocal and multicentric breast cancer: Preoperative evaluation. Egypt. J. Radiol. Nucl. Med. 2025, 56, 15. [Google Scholar] [CrossRef]
- Song, J.; Zheng, Y.; Xu, C.; Zou, Z.; Ding, G.; Huang, W. Improving the classification ability of network utilizing fusion technique in contrast-enhanced spectral mammography. Med. Phys. 2022, 49, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Pediconi, F.; Speranza, A.; Moffa, G.; Maroncelli, R.; Coppola, S.; Galati, F.; Bernardi, C.; Maccagno, G.; Pugliese, D.; Catalano, C.; et al. Contrast-enhanced mammography for breast cancer detection and diagnosis with high concentration iodinated contrast medium. Insights Imaging 2025, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, S.; Liu, Z.; You, C.; Li, R.; Mao, N.; Duan, S.; Lynn, H.S.; Gu, Y. Identifying factors that may influence the classification performance of radiomics models using contrast-enhanced mammography (CEM) images. Cancer Imaging 2022, 22, 22. [Google Scholar] [CrossRef]
- Song, J.; Zheng, Y.; Zakir Ullah, M.; Wang, J.; Jiang, Y.; Xu, C.; Zou, Z.; Ding, G. Multiview multimodal network for breast cancer diagnosis in contrast-enhanced spectral mammography images. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 979–988. [Google Scholar] [CrossRef]
- Fahad, M.; Zhang, T.; Khan, S.U.; Albanyan, A.; Geng, Y.; Zhao, X.; Win, N.S.S.; Li, G.; Lin, L.; Siddiqui, F. Enhancing registration accuracy and eminence of multispectral transmission breast images by fusing multi-wavelength gen using vision transformer and LSTM. Sci. Rep. 2025, 15, 10421. [Google Scholar] [CrossRef]
- Mahmoud, T.S.M.; Munawar, A.; Nawaz, M.Z.; Chen, Y. Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration. Bioengineering 2024, 11, 1281. [Google Scholar] [CrossRef]
- Pandey, R.; Fournier, D.; Root, G.; Riccio, M.; Shirvalkar, A.; Zamora, G.; Daigneault, N.; Sapack, M.; Zhong, M.; Harigopal, M. AI-powered biomolecular-specific and label-free multispectral imaging rapidly detects malignant neoplasm in surgically excised breast tissue specimens. Arch. Pathol. Lab. Med. 2023, 147, 1298–1306. [Google Scholar] [CrossRef]
- Eskreis-Winkler, S.; Simon, K.; Reichman, M.; Spincemaille, P.; Nguyen, T.D.; Christos, P.J.; Drotman, M.; Prince, M.R.; Pinker, K.; Sutton, E.J. Multispectral Imaging for Metallic Biopsy Marker Detection During MRI-Guided Breast Biopsy: A Feasibility Study for Clinical Translation. Front. Oncol. 2021, 11, 605014. [Google Scholar] [CrossRef] [PubMed]
- Jong, L.-J.S.; Post, A.L.; Veluponnar, D.; Geldof, F.; Sterenborg, H.J.C.M.; Ruers, T.J.M.; Dashtbozorg, B. Tissue Classification of Breast Cancer by Hyperspectral Unmixing. Cancers 2023, 15, 2679. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.; Moa, B.; El-Sharkawy, Y.H. A novel visible and near-infrared hyperspectral imaging platform for automated breast-cancer detection. Photodiagnosis Photodyn. Ther. 2024, 46, 104048. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.; Chandra, S.; Rao, B.S.S.; Ray, S.; Shetty, P.; Mathew, S.; Mahato, K.K. Photoacoustic spectroscopy based evaluation of breast cancer condition. Proc. SPIE 2015, 9303, 93030U. [Google Scholar]
- Khouj, Y.; Dawson, J.; Coad, J.; Vona-Davis, L. Hyperspectral imaging and K-means classification for histologic evaluation of ductal carcinoma in situ. Front. Oncol. 2018, 8, 17. [Google Scholar] [CrossRef]
- Thouvenin, O.; Apelian, C.; Nahas, A.; Fink, M.; Boccara, C. Full-Field Optical Coherence Tomography as a Diagnosis Tool: Recent Progress with Multimodal Imaging. Appl. Sci. 2017, 7, 236. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.; Park, B.; Won, Y.; Kim, S.-Y.; Lee, S. Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH. Sci. Rep. 2021, 11, 16864. [Google Scholar] [CrossRef]
- Chang, R.-F.; Wu, W.-J.; Moon, W.K.; Chen, D.-R. Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound Med. Biol. 2003, 29, 679–686. [Google Scholar] [CrossRef]
- Gómez-Valverde, J.J.; Sinz, C.; Rank, E.A.; Chen, Z.; Santos, A.; Drexler, W.; Ledesma-Carbayo, M.J. Adaptive compounding speckle-noise-reduction filter for optical coherence tomography images. J. Biomed. Opt. 2021, 26, 065001. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Zhu, W.; Cheng, X.; Xiang, D.; Shi, F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed. Opt. Express 2018, 9, 5129–5146. [Google Scholar] [CrossRef]
- Hanna, K.; Krzoska, E.; Shaaban, A.M.; Muirhead, D.; Abu-Eid, R.; Speirs, V. Raman spectroscopy: Current applications in breast cancer diagnosis, challenges and future prospects. Br. J. Cancer 2022, 126, 1125–1139. [Google Scholar] [CrossRef]
- Chen, S.; Lin, X.; Yuen, C.; Padmanabhan, S.; Beuerman, R.W.; Liu, Q. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation. Opt. Express 2014, 22, 12102–12114. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, H.; Yu, B.; Jia, C.; Cong, X.; Cong, L. Multi-scale sequential feature selection for disease classification using Raman spectroscopy data. Comput. Biol. Med. 2023, 162, 107053. [Google Scholar] [CrossRef] [PubMed]
- Paltauf, G.; Nuster, R.; Burgholzer, P. Weight factors for limited angle photoacoustic tomography. Phys. Med. Biol. 2009, 54, 3303. [Google Scholar] [CrossRef] [PubMed]
- Austerlitz, H. Data Acquisition Techniques Using PCs; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Sun, D.-W.; Pu, H.; Yu, J. Applications of hyperspectral imaging technology in the food industry. Nat. Rev. Electr. Eng. 2024, 1, 251–263. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Monjur, O.; Khaliduzzaman, A.; Kamruzzaman, M. A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal. Artif. Intell. Rev. 2025, 58, 96. [Google Scholar] [CrossRef]
- Baek, I.; Mo, C.; Eggleton, C.; Gadsden, S.A.; Cho, B.-K.; Qin, J.; Chan, D.E.; Kim, M.S. Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging. Front. Plant Sci. 2022, 13, 963591. [Google Scholar] [CrossRef]
- Ortega, S.; Halicek, M.; Fabelo, H.; Callico, G.M.; Fei, B. Hyperspectral and multispectral imaging in digital and computational pathology: A systematic review [Invited]. Biomed. Opt. Express 2020, 11, 3195–3233. [Google Scholar] [CrossRef]
- Zhao, Y.; Eldridge, W.J.; Maher, J.R.; Kim, S.; Crose, M.; Ibrahim, M.; Levinson, H.; Wax, A. Dual-axis optical coherence tomography for deep tissue imaging. Opt. Lett. 2017, 42, 2302–2305. [Google Scholar] [CrossRef]
- Shariati BK, B.; Ansari, M.A.; Khatami, S.S.; Tuchin, V.V. Multimodal optical clearing to minimize light attenuation in biological tissues. Sci. Rep. 2023, 13, 21509. [Google Scholar] [CrossRef]
- Rabindran, B.; Corben, A.D. Wide-field optical coherence tomography for microstructural analysis of key tissue types: A proof-of-concept evaluation. Pathol. Oncol. Res. 2023, 29, 1611167. [Google Scholar] [CrossRef] [PubMed]
- Triki, A.R.; Blaschko, M.B.; Jung, Y.M.; Song, S.; Han, H.J.; Kim, S.I.; Joo, C. Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks. Comput. Med. Imaging Graph. 2018, 69, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Selmic, L.E.; Zhang, P. Deep learning-assisted surgical margin assessment for canine soft tissue sarcoma based on polarization-sensitive optical coherence tomography. Vet. Oncol. 2025, 2, 17. [Google Scholar] [CrossRef]
- Liba, O.; Lew, M.D.; SoRelle, E.D.; Dutta, R.; Sen, D.; Moshfeghi, D.M.; Chu, S.; de La Zerda, A. Speckle-modulating optical coherence tomography in living mice and humans. Nat. Commun. 2017, 8, 15845. [Google Scholar] [CrossRef]
- Liu, J.; Osadchy, M.; Ashton, L.; Foster, M.; Solomon, C.J.; Gibson, S.J. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef]
- Guo, S.; Rösch, P.; Popp, J.; Bocklitz, T. Modified PCA and PLS: Towards a better classification in Raman spectroscopy–based biological applications. J. Chemom. 2020, 34, e3202. [Google Scholar] [CrossRef]
- Yuan, K.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: A review. J. Nanobiotechnol. 2022, 20, 537. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Q.; Chen, H.; Liu, S.; Peng, K.; Wang, X.; Zhang, L.; Huang, J.; Yan, X.; Lin, X. Multi-cancer early detection based on serum surface-enhanced Raman spectroscopy with deep learning: A large-scale case–control study. BMC Med. 2025, 23, 97. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Martinez-Calderon, M.; Otupiri, R.; Artuyants, A.; Lowe, M.; Ning, X.; Reategui, E.; Schultz, Z.D.; Xu, W.; Blenkiron, C. Deep autoencoder as an interpretable tool for Raman spectroscopy investigation of chemical and extracellular vesicle mixtures. Biomed. Opt. Express 2024, 15, 4220–4236. [Google Scholar] [CrossRef]
- Li, S.; Lui, K.-H.; Tsoi, T.-H.; Lo, W.-S.; Li, X.; Hu, X.; Tai, W.C.-S.; Hung, C.H.-L.; Gu, Y.-J.; Wong, W.-T. pH-responsive targeted gold nanoparticles for in vivo photoacoustic imaging of tumor microenvironments. Nanoscale Adv. 2019, 1, 554–564. [Google Scholar] [CrossRef]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, X.; Wang, Y.; Meng, Y.; Gao, D.; Li, C.; Chen, R.; Huang, K.; Shi, J. Full-view volumetric photoacoustic imaging using a hemispheric transducer array combined with an acoustic reflector. Biomed. Opt. Express 2024, 15, 6864–6876. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Xia, J.; Maslov, K.; Wang, L.V. Improving limited-view photoacoustic tomography with an acoustic reflector. J. Biomed. Opt. 2013, 18, 110505. [Google Scholar] [CrossRef] [PubMed]
- Sangha, G.S.; Hu, B.; Li, G.; Fox, S.E.; Sholl, A.B.; Brown, J.Q.; Goergen, C.J. Assessment of photoacoustic tomography contrast for breast tissue imaging using 3D correlative virtual histology. Sci. Rep. 2022, 12, 2532. [Google Scholar] [CrossRef]
- Holman, E.A.; Fang, Y.-S.; Chen, L.; DeWeese, M.; Holman, H.-Y.N.; Sternberg, P.W. Autonomous adaptive data acquisition for scanning hyperspectral imaging. Commun. Biol. 2020, 3, 684. [Google Scholar] [CrossRef]
- Takizawa, S.; Hiramatsu, K.; Lindley, M.; de Pablo, J.G.; Ono, S.; Goda, K. High-speed hyperspectral imaging enabled by compressed sensing in time domain. Adv. Photonics Nexus 2023, 2, 026008. [Google Scholar] [CrossRef]
- Jong, L.-J.S.; Veluponnar, D.; Geldof, F.; Sanders, J.; Guimaraes, M.D.S.; Vrancken Peeters, M.-J.T.F.D.; van Duijnhoven, F.; Sterenborg, H.J.C.M.; Dashtbozorg, B.; Ruers, T.J.M. Toward real-time margin assessment in breast-conserving surgery with hyperspectral imaging. Sci. Rep. 2025, 15, 9556. [Google Scholar] [CrossRef]
- Tang, Y.; Song, S.; Gui, S.; Chao, W.; Cheng, C.; Qin, R. Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 2023, 23, 1437. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.; Davies, M.; Hobbs, M.J.; Boone, N.A.; Stanger, L.R.; Zhu, C.; Pering, T.D.; Willmott, J.R. Low-cost hyperspectral imaging with a smartphone. J. Imaging 2021, 7, 136. [Google Scholar] [CrossRef]
- Khaled, R.; Helal, M.; Alfarghaly, O.; Mokhtar, O.; Elkorany, A.; El Kassas, H.; Fahmy, A. Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research. Sci. Data 2022, 9, 122. [Google Scholar] [CrossRef]
- Zhu, J.; Geng, J.; Shan, W.; Zhang, B.; Shen, H.; Dong, X.; Liu, M.; Li, X.; Cheng, L. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI. Front. Oncol. 2022, 12, 946580. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Al-Amidie, M.; Al-Asadi, A.; Humaidi, A.J.; Al-Shamma, O.; Fadhel, M.A.; Zhang, J.; Santamaría, J.; Duan, Y. Novel transfer learning approach for medical imaging with limited labeled data. Cancers 2021, 13, 1590. [Google Scholar] [CrossRef] [PubMed]
- Skandarani, Y.; Jodoin, P.-M.; Lalande, A. Gans for medical image synthesis: An empirical study. J. Imaging 2023, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Clauser, P.; Baltzer, P.A.; Kapetas, P.; Hoernig, M.; Weber, M.; Leone, F.; Bernathova, M.; Helbich, T.H. Low-Dose, Contrast-Enhanced Mammography Compared to Contrast-Enhanced Breast MRI: A Feasibility Study. J. Magn. Reson. Imaging 2020, 52, 589–595. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, G.; Zhu, S.; Ding, F.; Wu, W.; Bai, J.; Li, C.; Wang, J. Real-Time Compensation for Unknown Image Displacement and Rotation in Infrared Multispectral Camera Push-Broom Imaging. Remote Sens. 2025, 17, 1113. [Google Scholar] [CrossRef]
- Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral super-resolution with spectral unmixing constraints. Remote Sens. 2017, 9, 1196. [Google Scholar] [CrossRef]
- Yi, C.; Zhao, Y.-q.; Chan, J.C.-W.; Kong, S.G. Joint spatial-spectral resolution enhancement of multispectral images with spectral matrix factorization and spatial sparsity constraints. Remote Sens. 2020, 12, 993. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Jaferzadeh, K.; Thörnberg, B.; Casselgren, J. Calibration of a hyper-spectral imaging system using a low-cost reference. Sensors 2021, 21, 3738. [Google Scholar] [CrossRef]
- Fabelo, H.; de la Luz Plaza, M.; Camacho, R.; Callico, G.M. Histological Hyperspectral Glioblastoma Dataset (HistologyHSI-GB). Sci. Data 2024, 11, 1. [Google Scholar]








| Study By | Imaging Modality/Method Used | Datasets Used | Results |
|---|---|---|---|
| Dhiman et al. [92] | FFOCT + Ensemble Classifier based on Technique for Order of Preference by Similarity to Ideal Solution | OCT images of 48 patients of 35–60 years old | Precision = 92.1%, Recall = 92.1%, Accuracy = 92.3%, F1-score = 0.921 |
| Zhang et al. [93] | Dynamic FFOCT + Swin Transformer | 13,497 patches of 129 patients | Accuracy = 97.62%, Sensitivity = 96.88%, Specificity = 100% |
| Sanderson et al. [94] | In vivo OCT | 16 breast-conserving surgery patients + 139 in vivo OCT scans | Co-registration rate 78% |
| Yang et al. [95] | High-Res FFOCT + Dynamic Imaging | 314 tissue specimens, 173 breast biopsies, and 141 lymph nodes | DCI Sensitivity = 88.6%, Specificity = 95.1% FFOCT Sensitivity = 85.6%, Specificity = 85.4% |
| Simon et al. [96] | FFOCT + Dynamic Cell Imaging | 217 biopsies of 152 patients | Sensitivity = 77%, Specificity = 64% PPV = 74% NPV = 75% |
| Gubarkova et al. [97] | 3D CPOCT + depth-resolved approach + cross-polarization channels | 68 excised human breast specimens | Accuracy = 91% to 99%, Sensitivity = 96% to 98%, Specificity = 87% to 99% |
| Faragalla et al. [98] | OCT | 175 samples of tissue were obtained from 40 specimens of breast tissue | Detected that 30% of the samples |
| Levy et al. [99] | WFOCT + CNN | 585 Wide Field OCT margin scans | Sensitivity = 93% Specificity = 98% AUROC = 0.976 |
| Sun et al. [100] | PSOCT + GANs | 22,072 PS-OCT images | AUC, DOPU = 0.979 Phase retardation = 0.952 |
| Basu et al. [101] | PS-FFOCT + TOPSIS | 220 sample images | Precision = 94.8%, Recall = 92.5% F-score = 93.7% MCC = 82.3% |
| Study By | Imaging Modality | Datasets Used | Results |
|---|---|---|---|
| Tong et al. [112] | Panoramic PACT | 78 breasts of 39 patients | AUROC = 0.89 |
| G. Li et al. [113] | Dual modal photoacoustic-ultrasound examination | 324 patients | Nomogram, AUROC = 0.868 on test set AUC = 0.906 on training set |
| Huang Z et al. [114] | PAI + univariate and multivariate logistic regression | group of 317 individuals | AUC = 0.815 to 0.950 CI = 95% |
| Li et al. [115] | PAI + Murine model | 50 xenografts | Accuracy = 72% Sensitivity = 66% Specificity = 78% |
| Rodrigues et al. [116] | PAI + SVM Algorithms | Xenografts from 5 mice | Accuracy, SVM-RBF = 95.2% SVM Polynomial = 99.5% SVM-Linear = 80.3% |
| Huang et al. [117] | PAI Radiomics + Multivariate logistic regression | 359 patients with BC | AUC = 0.899 |
| Guoqiu et al. [118] | PAI + ResNet50 | 334 patients | Sensitivity = 78.6% Specificity = 87.2% Accuracy = 83.6% |
| Zhang et al. [119] | Multispectral PAI | Formalin-fixed paraffin-embedded blocks of both healthy and cancerous human breast tissue | Mean Correlation, Cancer tissue = 0.762–0.954 Healthy tissue = 0.801 to 0.967 |
| Wang et al. [120] | Photoacoustic/ultrasound imaging | 45 patients (17 had breast intraductal neoplasm, 26 had non-intraductal malignant neoplasm) | Sensitivity = 90% Specificity = 87.5% |
| Guoqiu et al., [121] | BI-RADS and PAI Radiomics | 119 women patients | AUC = 0.926 on test set AUC 0.925 on the training set |
| Study By | Imaging Modality | Datasets Used | Results |
|---|---|---|---|
| Jailin et al. [129] | CESM + YOLO architecture | 1673 patients and 7443 CESM pictures | AUROC = 0.964 Able to detect 90% of cancer |
| Bouzarjomehri et al. [130] | CESM + Digital mammography | CDD-CESM dataset of 326 patients | Accuracy = 98.85% CM = 97.47% |
| Mao et al. [131] | CESM + CBAM-based Xception, | CESM images of 1239 patients | Sensitivity = 84.8% Specificity = 100% Accuracy = 89.1% |
| Chen et al. [132] | MDCS + CESM | large multicentre cohort of CESM scans of 1903 females | Classification AUC = 0.912 |
| Miller et al. [133] | Quantitative CESM + Logistic regression | 159 suspicious breast findings | Accuracy = 71.5% AUC-ROC = 0.81 |
| Moffa et al. [134] | CESM + breast ultrasound | group of 51 patients with 65 breast lesions | Accuracy = 87.7% Sensitivity = 93.5% Specificity = 79.4% |
| Lin et al. [135] | CESM Radiomics + ANOVA and Multivariate logistic regression | 139 patients | AUC = 0.940 Confidence Interval = 95% |
| Zheng et al. [136] | RefineNet, Xception + Pyramid pooling module | 1912 patients | AUC = 0.940 |
| Gouda et al. [137] | CESM vs. MRI | 60 women with BC | CESM Accuracy = 95% Sensitivity = 97% Specificity = 67% MRI Accuracy = 94% Sensitivity = 99% Specificity = 33% |
| Song et al. [138] | CESM + GAN-based image fusion module and a Res2Net-based classification module | 760 images of the CESM of 95 patients | Accuracy = 94.784% Precision = 95.016% Recall = 95.912% |
| Pediconi et al. [139] | CESM + HCCM | 205 patients exposed to CESM | Sensitivity = 96–97% Specificity = 84–87% Accuracy = 93–95% |
| Sun et al. [140] | CESM + LASSO, Random Forest | 157 women and 161 breast lesions | LASSO, Accuracy = 89.5% Sensitivity = 89.1% Specificity =90.8% RF, Accuracy = 88% Sensitivity = 87.8% Specificity = 88.6% |
| Song et al. [141] | CESM + Res2Net50 | 760 CESM images of 95 patients | Sensitivity = 96.350% Specificity = 96.396% Accuracy = 96.591% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, H.; Lee, K.-H.; Karmakar, R.; Mukundan, A.; Attar, R.S.; Liu, P.-H.; Wang, H.-C. From Innovation to Application: Can Emerging Imaging Techniques Transform Breast Cancer Diagnosis? Diagnostics 2025, 15, 2718. https://doi.org/10.3390/diagnostics15212718
Hsu H, Lee K-H, Karmakar R, Mukundan A, Attar RS, Liu P-H, Wang H-C. From Innovation to Application: Can Emerging Imaging Techniques Transform Breast Cancer Diagnosis? Diagnostics. 2025; 15(21):2718. https://doi.org/10.3390/diagnostics15212718
Chicago/Turabian StyleHsu, Honda, Kun-Hua Lee, Riya Karmakar, Arvind Mukundan, Rehan Samirkhan Attar, Ping-Hung Liu, and Hsiang-Chen Wang. 2025. "From Innovation to Application: Can Emerging Imaging Techniques Transform Breast Cancer Diagnosis?" Diagnostics 15, no. 21: 2718. https://doi.org/10.3390/diagnostics15212718
APA StyleHsu, H., Lee, K.-H., Karmakar, R., Mukundan, A., Attar, R. S., Liu, P.-H., & Wang, H.-C. (2025). From Innovation to Application: Can Emerging Imaging Techniques Transform Breast Cancer Diagnosis? Diagnostics, 15(21), 2718. https://doi.org/10.3390/diagnostics15212718

