Qualitative and Quantitative Inter-Observer Agreement of Multiparametric Whole-Body MRI in Staging and Follow-Up of Myeloma Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Image Analysis
2.3. Quantitative Analysis
2.4. Study Design and Data Analysis
- Percentage Agreement: Measures the raw percentage of cases where all raters agreed on the classification.
- Cohen’s Kappa: Corrects for agreement occurring by chance, providing a measure of inter-rater reliability.
- Brennan and Prediger’s Coefficient: Another chance-corrected measure of agreement, particularly useful when Kappa may underestimate agreement in cases of high observed agreement.
3. Results
3.1. Study Population
3.2. The Analysis of Inter-Observer Agreement at Staging
3.3. The Analysis of Inter-Observer Agreement at Follow-Up
3.4. Quantitative Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| WB-MRI | WholeWhole-Body Magnetic Resonance Imaging |
| MY-RADS | Myeloma Response Assessment and Diagnosis System |
| MM | Multiple Myeloma |
| WB-LD-CT | Whole-Body Low-Dose Computed Tomography |
| PET-CT | Positron Emission Tomography-Computed Tomography |
| FDG | 18F-fluorodeoxyglucose |
| DWI | Diffusion Weighted Images |
| ADC | Apparent Diffusion Coefficient |
| rFF% | Relative Fat Fraction |
| RAC | Response Assessment Categories |
| IMVG | International Myeloma Working Group |
References
- Rajkumar, S.V. Multiple Myeloma: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2024, 99, 1802–1824. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group Consensus Criteria for Response and Minimal Residual Disease Assessment in Multiple Myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Zamagni, E.; Tacchetti, P.; Cavo, M. Imaging in Multiple Myeloma: How? When? Blood 2019, 133, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.-V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International Myeloma Working Group Consensus Recommendations on Imaging in Monoclonal Plasma Cell Disorders. Lancet Oncol. 2019, 20, e302–e312. [Google Scholar] [CrossRef] [PubMed]
- Sachpekidis, C.; Mosebach, J.; Freitag, M.T.; Wilhelm, T.; Mai, E.K.; Goldschmidt, H.; Haberkorn, U.; Schlemmer, H.-P.; Delorme, S.; Dimitrakopoulou-Strauss, A. Application of 18F-FDG PET and Diffusion Weighted Imaging (DWI) in Multiple Myeloma: Comparison of Functional Imaging Modalities. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 479–492. [Google Scholar]
- Lecouvet, F.E.; Vekemans, M.-C.; Van Den Berghe, T.; Verstraete, K.; Kirchgesner, T.; Acid, S.; Malghem, J.; Wuts, J.; Hillengass, J.; Vandecaveye, V.; et al. Imaging of Treatment Response and Minimal Residual Disease in Multiple Myeloma: State of the Art WB-MRI and PET/CT. Skeletal Radiol. 2022, 51, 59–80. [Google Scholar] [CrossRef]
- Moulopoulos, L.A.; Dimopoulos, M.A.; Kastritis, E.; Christoulas, D.; Gkotzamanidou, M.; Roussou, M.; Koureas, A.; Migkou, M.; Gavriatopoulou, M.; Eleutherakis-Papaiakovou, E.; et al. Diffuse Pattern of Bone Marrow Involvement on Magnetic Resonance Imaging Is Associated with High Risk Cytogenetics and Poor Outcome in Newly Diagnosed, Symptomatic Patients with Multiple Myeloma: A Single Center Experience on 228 Patients. Am. J. Hematol. 2012, 87, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Messiou, C.; Porta, N.; Sharma, B.; Levine, D.; Koh, D.-M.; Boyd, K.; Pawlyn, C.; Riddell, A.; Downey, K.; Croft, J.; et al. Prospective Evaluation of Whole-Body MRI versus FDG PET/CT for Lesion Detection in Participants with Myeloma. Radiol. Imaging Cancer 2021, 3, e210048. [Google Scholar] [CrossRef]
- Rama, S.; Suh, C.H.; Kim, K.W.; Durieux, J.C.; Ramaiya, N.H.; Tirumani, S.H. Comparative Performance of Whole-Body MRI and FDG PET/CT in Evaluation of Multiple Myeloma Treatment Response: Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2022, 218, 602–613. [Google Scholar] [CrossRef]
- Westerland, O.; Amlani, A.; Kelly-Morland, C.; Fraczek, M.; Bailey, K.; Gleeson, M.; El-Najjar, I.; Streetly, M.; Bassett, P.; Cook, G.J.R.; et al. Comparison of the Diagnostic Performance and Impact on Management of 18F-FDG PET/CT and Whole-Body MRI in Multiple Myeloma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2558–2565. [Google Scholar] [CrossRef]
- Tordjman, M.; Yuce, M.; Geahchan, A.; Petralia, G.; Delgado Bolton, R.C.; Wang, K.; Doshi, A.H.; Bolger, I.; Mei, X.; Dercle, L.; et al. Comparison of MRI, [18F]FDG-PET/CT, and [18F]FDG-PET/MRI for Initial Staging of Multiple Myeloma: A Systematic Review and Meta-Analysis. Clin. Nucl. Med. 2025, 50, 1006–1015. [Google Scholar] [CrossRef]
- Filippi, L.; Frantellizzi, V.; Bartoletti, P.; De Vincentis, G.; Schillaci, O.; Evangelista, L. Head-to-Head Comparison between FDG and 11C-Methionine in Multiple Myeloma: A Systematic Review. Diagnostics 2023, 13, 2009. [Google Scholar] [CrossRef] [PubMed]
- Messiou, C.; Hillengass, J.; Delorme, S.; Lecouvet, F.E.; Moulopoulos, L.A.; Collins, D.J.; Blackledge, M.D.; Abildgaard, N.; Østergaard, B.; Schlemmer, H.-P.; et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019, 291, 5–13. [Google Scholar] [CrossRef]
- Lecouvet, F.E.; Chabot, C.; Taihi, L.; Kirchgesner, T.; Triqueneaux, P.; Malghem, J. Present and Future of Whole-Body MRI in Metastatic Disease and Myeloma: How and Why You Will Do It. Skeletal Radiol. 2024, 53, 1815–1831. [Google Scholar] [CrossRef]
- Garcia-Ruiz, A.; Macarro, C.; Zacchi, F.; Morales-Barrera, R.; Grussu, F.; Casanova-Salas, I.; Sanguedolce, F.; Gonzalez, M.; Cresta-Morgado, P.; de Albert, M.; et al. Whole-Body Magnetic Resonance Imaging as a Treatment Response Biomarker in Castration-Resistant Prostate Cancer with Bone Metastases: The IPROMET Clinical Trial. Eur. Urol. 2024, 86, 272–274. [Google Scholar] [CrossRef]
- Suh, C.H.; Yun, S.J.; Jin, W.; Lee, S.H.; Park, S.Y.; Ryu, C.-W. ADC as a Useful Diagnostic Tool for Differentiating Benign and Malignant Vertebral Bone Marrow Lesions and Compression Fractures: A Systematic Review and Meta-Analysis. Eur. Radiol. 2018, 28, 2890–2902. [Google Scholar] [CrossRef]
- Michoux, N.F.; Ceranka, J.W.; Vandemeulebroucke, J.; Peeters, F.; Lu, P.; Absil, J.; Triqueneaux, P.; Liu, Y.; Collette, L.; Willekens, I.; et al. Repeatability and Reproducibility of ADC Measurements: A Prospective Multicenter Whole-Body-MRI Study. Eur. Radiol. 2021, 31, 4514–4527. [Google Scholar] [CrossRef]
- Castagnoli, F.; Donners, R.; Tunariu, N.; Messiou, C.; Koh, D.-M. Relative Fat Fraction of Malignant Bone Lesions from Breast Cancer, Prostate Cancer and Myeloma Are Significantly Lower than Normal Bone Marrow and Shows Excellent Interobserver Agreement. Br. J. Radiol. 2023, 96, 20230240. [Google Scholar] [CrossRef]
- Donners, R.; Figueiredo, I.; Tunariu, N.; Blackledge, M.; Koh, D.-M.; de los Dolores Fenor de la Maza, M.; Chandran, K.; de Bono, J.S.; Fotiadis, N. Multiparametric Bone MRI Can Improve CT-Guided Bone Biopsy Target Selection in Cancer Patients and Increase Diagnostic Yield and Feasibility of next-Generation Tumour Sequencing. Eur. Radiol. 2022, 32, 4647–4656. [Google Scholar] [CrossRef] [PubMed]
- Koutoulidis, V.; Terpos, E.; Papanikolaou, N.; Fontara, S.; Seimenis, I.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Bourgioti, C.; Santinha, J.; Moreira, J.M.; et al. Comparison of MRI Features of Fat Fraction and ADC for Early Treatment Response Assessment in Participants with Multiple Myeloma. Radiology 2022, 304, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Berardo, S.; Sukhovei, L.; Andorno, S.; Carriero, A.; Stecco, A. Quantitative Bone Marrow Magnetic Resonance Imaging Through Apparent Diffusion Coefficient and Fat Fraction in Multiple Myeloma Patients. Radiol. Med. 2021, 126, 445–452. [Google Scholar] [CrossRef]
- Croft, J.; Riddell, A.; Koh, D.-M.; Downey, K.; Blackledge, M.; Usher, M.; Boyd, K.; Kaiser, M.; Messiou, C. Inter-Observer Agreement of Baseline Whole Body MRI in Multiple Myeloma. Cancer Imaging 2020, 20, 48. [Google Scholar] [CrossRef]
- Giles, S.L.; Messiou, C.; Collins, D.J.; Morgan, V.A.; Simpkin, C.J.; West, S.; Davies, F.E.; Morgan, G.J.; deSouza, N.M. Whole-Body Diffusion-Weighted MR Imaging for Assessment of Treatment Response in Myeloma. Radiology 2014, 271, 785–794. [Google Scholar] [CrossRef]
- Feliciani, G.; Loi, E.; Amadori, E.; Antognoni, E.; Iamurri, A.P.; Diano, D.; Bruno, D.; Cattabriga, A.; Caroli, P.; Marchesini, M.; et al. Radiopsy: A Prospective Observational Study on Quantitative Multiparametric Whole-Body Magnetic Resonance Imaging to Discriminate between Smoldering and Multiple Myeloma. Haematologica, 2025; in press. [Google Scholar] [CrossRef]
- Boss, M.A.; Malyarenko, D.; Partridge, S.; Obuchowski, N.; Shukla-Dave, A.; Winfield, J.M.; Fuller, C.D.; Miller, K.; Mishra, V.; Ohliger, M.; et al. The QIBA Profile for Diffusion-Weighted MRI: Apparent Diffusion Coefficient as a Quantitative Imaging Biomarker. Radiology 2024, 313, e233055. [Google Scholar] [CrossRef] [PubMed]
- QIBA Profile: Magnetic Resonance Diffusion-Weighted Imaging (DWI) of the Apparent Diffusion Coefficient (ADC). Available online: https://qibawiki.rsna.org/images/b/b0/QIBA_DWIProfile_Stage3_15Dec2022_v3.pdf (accessed on 10 April 2025).
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Pricolo, P.; Ancona, E.; Summers, P.; Abreu-Gomez, J.; Alessi, S.; Jereczek-Fossa, B.A.; De Cobelli, O.; Nolè, F.; Renne, G.; Bellomi, M.; et al. Whole-Body Magnetic Resonance Imaging (WB-MRI) Reporting with the METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P): Inter-Observer Agreement Between Readers of Different Expertise Levels. Cancer Imaging 2020, 20, 77. [Google Scholar] [CrossRef]
- Lai, A.Y.T.; Riddell, A.; Barwick, T.; Boyd, K.; Rockall, A.; Kaiser, M.; Koh, D.-M.; Saffar, H.; Yusuf, S.; Messiou, C. Interobserver Agreement of Whole-Body Magnetic Resonance Imaging Is Superior to Whole-Body Computed Tomography for Assessing Disease Burden in Patients with Multiple Myeloma. Eur. Radiol. 2020, 30, 320–327. [Google Scholar] [CrossRef]
- Lecouvet, F.E.; Boyadzhiev, D.; Collette, L.; Berckmans, M.; Michoux, N.; Triqueneaux, P.; Pasoglou, V.; Jamar, F.; Vekemans, M.-C. MRI versus 18F-FDG-PET/CT for Detecting Bone Marrow Involvement in Multiple Myeloma: Diagnostic Performance and Clinical Relevance. Eur. Radiol. 2020, 30, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Negroni, D.; Cassarà, A.; Trisoglio, A.; Soligo, E.; Berardo, S.; Carriero, A.; Stecco, A. Learning Curves in Radiological Reporting of Whole-Body MRI in Plasma Cell Disease: A Retrospective Study. Radiol. Med. 2021, 126, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- MRI-Based Proton Density Fat Fraction (PDFF) of the Liver. Available online: https://qibawiki.rsna.org/images/6/63/MRI-Based_PDFF_of_the_Liver_QIBA_Profile_2024_06-19_CONSENSUS-maintenance.pdf (accessed on 12 May 2025).
- Schmeel, F.C.; Vomweg, T.; Träber, F.; Gerhards, A.; Enkirch, S.J.; Faron, A.; Sprinkart, A.M.; Schmeel, L.C.; Luetkens, J.A.; Thomas, D.; et al. Proton Density Fat Fraction MRI of Vertebral Bone Marrow: Accuracy, Repeatability, and Reproducibility among Readers, Field Strengths, and Imaging Platforms. J. Magn. Reson. Imaging 2019, 50, 1762–1772. [Google Scholar] [CrossRef]
- Padhani, A.R.; Lecouvet, F.E.; Tunariu, N.; Koh, D.-M.; De Keyzer, F.; Collins, D.J.; Sala, E.; Schlemmer, H.P.; Petralia, G.; Vargas, H.A.; et al. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body Magnetic Resonance Imaging-Based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur. Urol. 2017, 71, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Donners, R.; Candito, A.; Blackledge, M.; Rata, M.; Messiou, C.; Koh, D.-M.; Tunariu, N. Repeatability of Quantitative Individual Lesion and Total Disease Multiparametric Whole-Body MRI Measurements in Prostate Cancer Bone Metastases. Br. J. Radiol. 2023, 96, 20230378. [Google Scholar] [CrossRef] [PubMed]
- Schmeel, F.C.; Enkirch, S.J.; Luetkens, J.A.; Faron, A.; Lehnen, N.; Sprinkart, A.M.; Schmeel, L.C.; Radbruch, A.; Attenberger, U.; Kukuk, G.M.; et al. Diagnostic Accuracy of Quantitative Imaging Biomarkers in the Differentiation of Benign and Malignant Vertebral Lesions: Combination of Diffusion-Weighted and Proton Density Fat Fraction Spine MRI. Clin. Neuroradiol. 2021, 31, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Keaveney, S.; Dragan, A.; Rata, M.; Blackledge, M.; Scurr, E.; Winfield, J.M.; Shur, J.; Koh, D.-M.; Porta, N.; Candito, A.; et al. Image Quality in Whole-Body MRI Using the MY-RADS Protocol in a Prospective Multi-Centre Multiple Myeloma Study. Insights Imaging 2023, 14, 170. [Google Scholar] [CrossRef]
- Rata, M.; Blackledge, M.; Scurr, E.; Winfield, J.; Koh, D.-M.; Dragan, A.; Candito, A.; King, A.; Rennie, W.; Gaba, S.; et al. Implementation of Whole-Body MRI (MY-RADS) within the OPTIMUM/MUKnine Multi-Centre Clinical Trial for Patients with Myeloma. Insights Imaging 2022, 13, 123. [Google Scholar] [CrossRef]
- Møller, J.M.; Østergaard, M.; Thomsen, H.S.; Hangaard, S.; Sørensen, I.J.; Madsen, O.R.; Pedersen, S.J. Repeatability and Reproducibility of MRI Apparent Diffusion Coefficient Applied on Four Different Regions of Interest for Patients with Axial Spondyloarthritis and Healthy Volunteers Scanned Twice within a Week. BJR Open 2020, 2, 20200004. [Google Scholar] [CrossRef]






| Region | % Agreement | Kappa | Kappa 95% CI | Brennan and Prediger | B&P 95% CI |
|---|---|---|---|---|---|
| Cranium | 88% | 0.66 | 0.49–0.82 | 0.85 | 0.75–0.94 |
| Cervical | 88% | 0.82 | 0.71–0.93 | 0.86 | 0.77–0.94 |
| Dorsal | 88% | 0.84 | 0.74–0.94 | 0.86 | 0.77–0.94 |
| Lumbar | 87% | 0.81 | 0.70–0.92 | 0.83 | 0.73–0.93 |
| Pelvis | 90% | 0.86 | 0.77–0.95 | 0.87 | 0.79–0.96 |
| Thorax | 88% | 0.83 | 0.73–0.93 | 0.86 | 0.77–0.94 |
| Limbs | 83% | 0.73 | 0.61–0.85 | 0.79 | 0.69–0.89 |
| Overall Skeleton | 88% | 0.84 | 0.74–0.93 | 0.86 | 0.77–0.94 |
| Paramedullary | 94% | 0.74 | 0.52–0.96 | 0.87 | 0.76–0.98 |
| Extramedullary | 96% | 0.23 | −0.08–0.54 | 0.92 | 0.84–1 |
| Region | % Agreement | Kappa | Kappa 95% CI | Brennan and Prediger | B&P 95% CI |
|---|---|---|---|---|---|
| Cranium | 95% | 0.91 | 0.79–1 | 0.96 | 0.84–1 |
| Cervical | 92% | 0.87 | 0.74–1 | 0.90 | 0.79–1 |
| Dorsal | 95% | 0.92 | 0.80–1 | 0.93 | 0.84–1 |
| Lumbar | 92% | 0.88 | 0.74–1 | 0.90 | 0.79–1 |
| Pelvis | 89% | 0.83 | 0.67–0.99 | 0.87 | 0.74–1 |
| Thorax | 92% | 0.87 | 0.72–1 | 0.90 | 0.79–1 |
| Limbs | 97% | 0.95 | 0.86–1 | 0.97 | 0.90–1 |
| Overall Skeleton | 92% | 0.88 | 0.75–1 | 0.90 | 0.79–1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, A.; Cattabriga, A.; Prochowski Iamurri, A.; Antognoni, E.; Azzali, I.; Feliciani, G.; Cerchione, C.; Bronico, I.; Diano, D.; Mosconi, C. Qualitative and Quantitative Inter-Observer Agreement of Multiparametric Whole-Body MRI in Staging and Follow-Up of Myeloma Patients. Diagnostics 2025, 15, 2715. https://doi.org/10.3390/diagnostics15212715
Rossi A, Cattabriga A, Prochowski Iamurri A, Antognoni E, Azzali I, Feliciani G, Cerchione C, Bronico I, Diano D, Mosconi C. Qualitative and Quantitative Inter-Observer Agreement of Multiparametric Whole-Body MRI in Staging and Follow-Up of Myeloma Patients. Diagnostics. 2025; 15(21):2715. https://doi.org/10.3390/diagnostics15212715
Chicago/Turabian StyleRossi, Alice, Arrigo Cattabriga, Andrea Prochowski Iamurri, Eleonora Antognoni, Irene Azzali, Giacomo Feliciani, Claudio Cerchione, Ilaria Bronico, Danila Diano, and Cristina Mosconi. 2025. "Qualitative and Quantitative Inter-Observer Agreement of Multiparametric Whole-Body MRI in Staging and Follow-Up of Myeloma Patients" Diagnostics 15, no. 21: 2715. https://doi.org/10.3390/diagnostics15212715
APA StyleRossi, A., Cattabriga, A., Prochowski Iamurri, A., Antognoni, E., Azzali, I., Feliciani, G., Cerchione, C., Bronico, I., Diano, D., & Mosconi, C. (2025). Qualitative and Quantitative Inter-Observer Agreement of Multiparametric Whole-Body MRI in Staging and Follow-Up of Myeloma Patients. Diagnostics, 15(21), 2715. https://doi.org/10.3390/diagnostics15212715

