Validity of Empatica E4 Wristband for Detection of Autonomic Dysfunction Compared to Established Laboratory Testing
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Laboratory Protocol (Controls)
2.3. Clinical Protocol (Patients)
2.4. Empatica E4
2.5. Data Preprocessing and Analysis
- mean HR in bpm: average heart rate, calculated from the detected interbeat intervals (IBI)
- SDNN: Standard deviation of normal-to-normal (NN) intervals, excluding ectopic or abnormal beats
- RMSSD in ms: the root mean squared differences of successive difference of IBI, also based on normal sinus beats. RMSSD is the main estimation for PNS mediated changes in HRV [17]
- Coefficient of variation (CV in %): a normalized measure of variability relative to the mean
- Evaluation of autonomic cardiovascular modulation comprises not only time- but also frequency domain evaluation, as HR and BP values show slow underlying fluctuations that are largely mediated by undulating activity of the autonomic nervous system. As the current study was designed to determine validity of the Empatica E4 wristband but not to test for autonomic dysfunction in our patient cohort, we did not perform spectral analysis.
2.6. Statistical Analysis
3. Results
3.1. Comparison of Empatica E4 and Laboratory HRV Measurements in Healthy Controls During Rest and a Parasympathetic Activation Maneuver (Metronomic Breathing)
3.2. Comparison of Wake and Sleep Stages in PWE
3.3. Comparison of PWE with and Without Intake of Sodium Channel Blockers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASM | antiseizure medication |
BL | baseline |
Bpm | beats per minute |
CC | correlation coefficient |
CV | coefficient of variation |
EDA | electrodermal activity |
HR | heart rate |
ICC | intraclass correlation coefficient |
LoA | limits of agreement |
MB | metronomic breathing |
PWE | person with epilepsy |
RMSSD | root mean squared differences of successive difference of intervals |
SD | standard deviation |
SDNN | standard deviation of the normal to normal interval |
Temp | temperature |
References
- Berlit, P. Klinische Neurologie; SpringerLink: Berlin/Heidelberg, Germany, 2012; Volume 3. [Google Scholar]
- Lhatoo, S.D.; Sander, J.W. Cause-Specific Mortality in Epilepsy. Epilepsia 2005, 46 (Suppl. S11), 36–39. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, C.; Koren, J.; Britto-Arias, M.; Schmidt, S.; Pirker, S. Epidemiology and Pathophysiology of Autonomic Seizures: A Systematic Review. Clin. Auton. Res. 2019, 29, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Quintana, J.; Bueno-Florez, S.; Mora-Muñoz, L.; Orrego-González, E.; Barragan, A.M.; Suárez-Burgos, F.; Velez-Van-Meerbeke, A.; Cendes, F. Dysautonomia in People with Epilepsy: A Scoping Review. Seizure 2023, 105, 43–51. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, C.M.; Miller, P.; Meymandi, S.; Chin, A.; Epps, J.; Gordon, S.; Gornbein, J.; Harper, R.M. Rmssd, a Measure of Vagus-Mediated Heart Rate Variability, Is Associated with Risk Factors for Sudep: The Sudep-7 Inventory. Epilepsy Behav. 2010, 19, 78–81. [Google Scholar] [CrossRef]
- Novak, J.L.; Miller, P.R.; Markovic, D.; Meymandi, S.K.; DeGiorgio, C.M. Risk Assessment for Sudden Death in Epilepsy: The Sudep-7 Inventory. Front. Neurol. 2015, 6, 252. [Google Scholar] [CrossRef]
- Quigley, K.S.; Gianaros, P.J.; Norman, G.J.; Jennings, J.R.; Berntson, G.G.; de Geus, E.J.C. Publication Guidelines for Human Heart Rate and Heart Rate Variability Studies in Psychophysiology—Part 1: Physiological Underpinnings and Foundations of Measurement. Psychophysiology 2024, 61, e14604. [Google Scholar] [CrossRef]
- Schuurmans, A.A.T.; de Looff, P.; Nijhof, K.S.; Rosada, C.; Scholte, R.H.J.; Popma, A.; Otten, R. Validity of the Empatica E4 Wristband to Measure Heart Rate Variability (Hrv) Parameters: A Comparison to Electrocardiography (Ecg). J. Med. Syst. 2020, 44, 190. [Google Scholar] [CrossRef]
- Giorgi, A.; Ronca, V.; Vozzi, A.; Sciaraffa, N.; di Florio, A.; Tamborra, L.; Simonetti, I.; Aricò, P.; Di Flumeri, G.; Rossi, D.; et al. Wearable Technologies for Mental Workload, Stress, and Emotional State Assessment During Working-Like Tasks: A Comparison with Laboratory Technologies. Sensors 2021, 21, 2332. [Google Scholar] [CrossRef]
- Ronca, V.; Martinez-Levy, A.C.; Vozzi, A.; Giorgi, A.; Aricò, P.; Capotorto, R.; Borghini, G.; Babiloni, F.; Di Flumeri, G. Wearable Technologies for Electrodermal and Cardiac Activity Measurements: A Comparison between Fitbit Sense, Empatica E4 and Shimmer Gsr3. Sensors 2023, 23, 5847. [Google Scholar] [CrossRef]
- Stuyck, H.; Costa, L.D.; Cleeremans, A.; Bussche, E.V.D. Validity of the Empatica E4 Wristband to Estimate Resting-State Heart Rate Variability in a Lab-Based Context. Int. J. Psychophysiol. 2022, 182, 105–118. [Google Scholar] [CrossRef]
- Hamdy, R.M.; Abdel-Tawab, H.; Elaziz, O.H.A.; El Attar, R.S.; Kotb, F.M. Evaluation of Heart Rate Variability Parameters During Awake and Sleep. in Refractory and Controlled Epileptic Patients. Int. J. Gen. Med. 2022, 15, 3865–3877. [Google Scholar] [CrossRef]
- Myers, K.A.; Bello-Espinosa, L.E.; Symonds, J.D.; Zuberi, S.M.; Clegg, R.; Sadleir, L.G.; Buchhalter, J.; Scheffer, I.E. Heart Rate Variability in Epilepsy: A Potential Biomarker of Sudden Unexpected Death in Epilepsy Risk. Epilepsia 2018, 59, 1372–1380. [Google Scholar] [CrossRef]
- Hamed, S.A.; El Hadad, A.F.; Aladawy, M.A. The Effect of Epilepsy and Antiseizure Medications on Cardiac Autonomic Functions in Children with Epilepsy. Expert. Rev. Clin. Pharmacol. 2024, 17, 393–401. [Google Scholar] [CrossRef]
- Available online: https://www.empatica.com/manuals (accessed on 1 January 2022).
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065.
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Menghini, L.; Gianfranchi, E.; Cellini, N.; Patron, E.; Tagliabue, M.; Sarlo, M. Stressing the Accuracy: Wrist-Worn Wearable Sensor Validation over Different Conditions. Psychophysiology 2019, 56, e13441. [Google Scholar] [CrossRef] [PubMed]
- Milstein, N.; Gordon, I. Validating Measures of Electrodermal Activity and Heart Rate Variability Derived from the Empatica E4 Utilized in Research Settings That Involve Interactive Dyadic States. Front. Behav. Neurosci. 2020, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Ollander, S.; Godin, C.; Campagne, A.; Charbonnier, S. A Comparison of Wearable and Stationary Sensors for Stress Detection. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016. [Google Scholar]
- van Lier, H.G.; Pieterse, M.E.; Garde, A.; Postel, M.G.; de Haan, H.A.; Vollenbroek-Hutten, M.M.R.; Schraagen, J.M.; Noordzij, M.L. A Standardized Validity Assessment Protocol for Physiological Signals from Wearable Technology: Methodological Underpinnings and an Application to the E4 Biosensor. Behav. Res. Methods 2020, 52, 607–629. [Google Scholar] [CrossRef] [PubMed]
- Sagl, G.; Resch, B.; Petutschnig, A.; Kyriakou, K.; Liedlgruber, M.; Wilhelm, F.H. Wearables and the Quantified Self: Systematic Benchmarking of Physiological Sensors. Sensors 2019, 19, 4448. [Google Scholar] [CrossRef]
- Diehl, K.J.; Scott, B.G.; McCullen, J.R. Correspondence of Parasympathetic-Mediated Heart Rate Variability Derived from Electrocardiogram and Photoplethysmography Signals in Ethnically Diverse Adolescents. Int. J. Psychophysiol. 2021, 167, 7–14. [Google Scholar] [CrossRef]
- Persson, H.; Ericson, M.; Tomson, T. Carbamazepine Affects Autonomic Cardiac Control in Patients with Newly Diagnosed Epilepsy. Epilepsy Res. 2003, 57, 69–75. [Google Scholar] [CrossRef]
- Pape, H.-C. Physiologie; Georg Thieme Verlag: New York, NY, USA, 2023; Volume 10. [Google Scholar]
- Vieluf, S.; Reinsberger, C.; El Atrache, R.; Jackson, M.; Schubach, S.; Ufongene, C.; Loddenkemper, T.; Meisel, C. Autonomic Nervous System Changes Detected with Peripheral Sensors in the Setting of Epileptic Seizures. Sci. Rep. 2020, 10, 11560. [Google Scholar] [CrossRef]
- Xu, W.; Wells, C.I.; Seo, S.H.; Sebaratnam, G.; Calder, S.; Gharibans, A.; Bissett, I.P.; O’GRady, G. Feasibility and Accuracy of Wrist-Worn Sensors for Perioperative Monitoring During and after Major Abdominal Surgery: An Observational Study. J. Surg. Res. 2024, 301, 423–431. [Google Scholar] [CrossRef]
- Ryvlin, P.; Ciumas, C.; Wisniewski, I.; Beniczky, S. Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia 2018, 59 (Suppl. S1), 61–66. [Google Scholar] [CrossRef]
- Rugg-Gunn, F. The role of devices in managing risk. Epilepsy Behav. 2020, 103, 106456. [Google Scholar] [CrossRef]
- Onorati, F.; Regalia, G.; Caborni, C.; LaFrance, W.C.; Blum, A.S.; Bidwell, J.; De Liso, P.; El Atrache, R.; Loddenkemper, T.; Mohammadpour-Touserkani, F.; et al. Prospective Study of a Multimodal Convulsive Seizure Detection Wearable System on Pediatric and Adult Patients in the Epilepsy Monitoring Unit. Front. Neurol. 2021, 12, 724904. [Google Scholar] [CrossRef]
- Goldenholz, D.M.; Karoly, P.J.; Viana, P.F.; Nurse, E.; Loddenkemper, T.; Schulze-Bonhage, A.; Vieluf, S.; Bruno, E.; Nasseri, M.; Richardson, M.P.; et al. Minimum clinical utility standards for wearable seizure detectors: A simulation study. Epilepsia 2024, 65, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
Device | Parameter | p-Value | BL Mean (±SD) | MB Mean (±SD) |
---|---|---|---|---|
Lab | HR (bpm) | 0.500 | 70.99 ± 8.19 | 71.40 ± 7.44 |
RMSSD (ms) | <0.001 | 33.09 ± 16.31 | 46.76 ± 22.51 | |
CV (%) | <0.001 | 5.37 ± 2.39 | 9.44 ± 3.52 | |
SDNN (ms) | <0.001 | 45.44 ± 20.97 | 78.47 ± 29.80 | |
Empatica E4 | HR (bpm) | 0.774 | 71.35 ± 8.52 | 70.87 ± 7.24 |
RMSSD (ms) | <0.001 | 43.97 ± 16.81 | 53.13 ± 20.28 | |
CV (%) | <0.001 | 5.60 ± 2.37 | 8.31 ± 2.92 | |
SDNN (ms) | <0.001 | 47.15 ± 20.10 | 70.84 ± 27.41 |
p-Value | Lab | E4 | ICC | CC | r | LoA | |
---|---|---|---|---|---|---|---|
HR (bpm) | 0.41 | 70.99 | 71.35 | 0.93 | 0.93 | 0.93 | −49.06–57.42 |
RMSSD (ms) | <0.001 | 33.09 | 43.97 | 0.65 | 0.79 | 0.79 | −32.03–10.27 |
CV (%) | 0.35 | 5.37 | 5.60 | 0.84 | 0.84 | 0.84 | −2.84–2.37 |
SDNN (ms) | 0.45 | 45.44 | 47.15 | 0.83 | 0.83 | 0.83 | −25.31–21.90 |
Parameter | Awake (Mean ± SD) | N2 | N3 | REM (Mean ± SD) | p-Value | p-Value | p-Value |
---|---|---|---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | (Awake vs N2) | (Awake vs N3) | (Awake vs REM) | |||
HR (bpm) | 73.46 ± 15.04 | 64.76 ± 11.17 | 64.14 ± 10.33 | 63.88 ± 9.96 | <0.001 | <0.001 | <0.001 |
RMSSD (ms) | 46.42 ± 27.80 | 54.47 ± 33.30 | 52.91 ± 30.72 | 59.12 ± 38.42 | 0.057 | 0.165 | 0.051 |
CV (%) | 0.06 ± 0.04 | 0.07 ± 0.05 | 0.07 ± 0.04 | 0.08 ± 0.05 | 0.007 | 0.098 | 0.009 |
SDNN (ms) | 3.25 ± 1.41 | 3.32 ± 1.12 | 2.73 ± 0.98 | 0.89 ± 0.86 | 0.836 | 0.086 | 0.505 |
Temp (°C) | 33.59 ± 1.34 | 34.85 ± 0.68 | 35.05 ± 0.78 | 34.83 ± 0.70 | <0.001 | <0.001 | <0.001 |
EDA | 0.95 ± 1.33 | 0.89 ± 0.83 | 1.20 ± 1.51 | 3.03 ± 0.84 | 0.859 | 0.533 | 0.574 |
Parameter | p-Value | No Blockers vs. Sodium Channel Blockers (Mean ± SD) |
---|---|---|
HR (bpm) | 0.005 | 65.43 ± 9.11 vs. 77.80 ± 14.94 |
RMSSD (ms) | 0.019 | 63.48 ± 33.47 vs. 38.07 ± 22.31 |
CV (%) | 0.021 | 0.081 ± 0.012 vs. 0.047 ± 0.031 |
SDNN (ms) | 0.027 | 3.52 ± 1.65 vs. 3.01 ± 1.21 |
Temp (°C) | 0.336 | 33.38 ± 0.97 vs. 33.82 ± 1.46 |
EDA | 0.771 | 1.13 ± 1.08 vs. 0.99 ± 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stritzelberger, J.; Kirmse, M.; Borutta, M.C.; Gollwitzer, S.; Reindl, C.; Welte, T.M.; Hamer, H.M.; Koehn, J. Validity of Empatica E4 Wristband for Detection of Autonomic Dysfunction Compared to Established Laboratory Testing. Diagnostics 2025, 15, 2604. https://doi.org/10.3390/diagnostics15202604
Stritzelberger J, Kirmse M, Borutta MC, Gollwitzer S, Reindl C, Welte TM, Hamer HM, Koehn J. Validity of Empatica E4 Wristband for Detection of Autonomic Dysfunction Compared to Established Laboratory Testing. Diagnostics. 2025; 15(20):2604. https://doi.org/10.3390/diagnostics15202604
Chicago/Turabian StyleStritzelberger, Jenny, Marie Kirmse, Matthias C. Borutta, Stephanie Gollwitzer, Caroline Reindl, Tamara M. Welte, Hajo M. Hamer, and Julia Koehn. 2025. "Validity of Empatica E4 Wristband for Detection of Autonomic Dysfunction Compared to Established Laboratory Testing" Diagnostics 15, no. 20: 2604. https://doi.org/10.3390/diagnostics15202604
APA StyleStritzelberger, J., Kirmse, M., Borutta, M. C., Gollwitzer, S., Reindl, C., Welte, T. M., Hamer, H. M., & Koehn, J. (2025). Validity of Empatica E4 Wristband for Detection of Autonomic Dysfunction Compared to Established Laboratory Testing. Diagnostics, 15(20), 2604. https://doi.org/10.3390/diagnostics15202604