Longitudinal Effects of Lipid-Lowering Treatment on High-Risk Plaque Features and Pericoronary Adipose Tissue Attenuation Using Serial Coronary Computed Tomography
Abstract
1. Introduction
2. Methods
2.1. Patient Population
2.2. CCTA Examinations
2.3. CCTA Analysis
2.4. Analysis of Agatston Score, CAD-RADS 2.0 and Plaque Volume Quantification
2.5. Analysis of High-Risk Plaque Features
2.6. PCAT Analysis
2.7. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. High-Risk Plaque Features and Effects of Lipid-Lowering Treatment
3.3. Changes in Plaque Volumes and PCAT
3.4. Association of Plaque Features with Plaque Volumes, Agatston Score, and PCAT
3.5. Prediction of High-Risk Plaque Feature Progression and Regression
3.6. Observer Variabilities
3.7. Case Examples
4. Discussion
4.1. Previous Studies on Plaque Features and Prognosis
4.2. The Role of PCAT, Association with Plaque Burden and Influence of Statin Treatment
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | acute coronary syndrome |
CAD | coronary artery disease |
CAD-RADS | coronary artery disease reporting and data system |
CCTA | coronary computed tomography angiography |
CI | confidence interval |
CT | computed tomography |
CV | cardiovascular |
FAI | fat attenuation index |
HRPF | high-risk plaque feature |
HU | Hounsfield unit |
IQR | interquartile range |
LAD | left anterior descending artery |
LCX | left circumflex artery |
LDL | low-density lipoprotein |
MACE | major adverse cardiac event |
PCAT | pericoronary adipose tissue |
PCI | percutaneous coronary intervention |
PCSK9 | proprotein convertase subtilisin/kexin type 9 |
PFS | plaque feature score |
RCA | right coronary artery |
RCT | randomized controlled trial |
References
- Investigators, S.-H.; Newby, D.E.; Adamson, P.D.; Berry, C.; Boon, N.A.; Dweck, M.R.; Flather, M.; Forbes, J.; Hunter, A.; Lewis, S.; et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N. Engl. J. Med. 2018, 379, 924–933. [Google Scholar] [CrossRef]
- Group, D.T.; Maurovich-Horvat, P.; Bosserdt, M.; Kofoed, K.F.; Rieckmann, N.; Benedek, T.; Donnelly, P.; Rodriguez-Palomares, J.; Erglis, A.; Stechovsky, C.; et al. CT or Invasive Coronary Angiography in Stable Chest Pain. N. Engl. J. Med. 2022, 386, 1591–1602. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Moss, A.J.; Williams, M.C.; Newby, D.E.; Nicol, E.D. The Updated NICE Guidelines: Cardiac CT as the First-Line Test for Coronary Artery Disease. Curr. Cardiovasc. Imaging Rep. 2017, 10, 15. [Google Scholar] [CrossRef]
- Williams, M.C.; Kwiecinski, J.; Doris, M.; McElhinney, P.; D’Souza, M.S.; Cadet, S.; Adamson, P.D.; Moss, A.J.; Alam, S.; Hunter, A.; et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 2020, 141, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Gitsioudis, G.; Schussler, A.; Nagy, E.; Maurovich-Horvat, P.; Buss, S.J.; Voss, A.; Hosch, W.; Hofmann, N.; Kauczor, H.U.; Giannitsis, E.; et al. Combined Assessment of High-Sensitivity Troponin T and Noninvasive Coronary Plaque Composition for the Prediction of Cardiac Outcomes. Radiology 2015, 276, 73–81. [Google Scholar] [CrossRef]
- van Rosendael, A.R.; van den Hoogen, I.J.; Gianni, U.; Ma, X.; Tantawy, S.W.; Bax, A.M.; Lu, Y.; Andreini, D.; Al-Mallah, M.H.; Budoff, M.J.; et al. Association of Statin Treatment With Progression of Coronary Atherosclerotic Plaque Composition. JAMA Cardiol. 2021, 6, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Andelius, L.; Mortensen, M.B.; Norgaard, B.L.; Abdulla, J. Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 850–858. [Google Scholar] [CrossRef]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2889–2934. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Arsanjani, R.; Sung, J.M.; Heo, R.; Lee, B.K.; Lin, F.Y.; Hadamitzky, M.; Kim, Y.J.; Conte, E.; Andreini, D.; et al. Impact of statins based on high-risk plaque features on coronary plaque progression in mild stenosis lesions: Results from the PARADIGM study. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1536–1543. [Google Scholar] [CrossRef]
- Chan, K.; Wahome, E.; Tsiachristas, A.; Antonopoulos, A.S.; Patel, P.; Lyasheva, M.; Kingham, L.; West, H.; Oikonomou, E.K.; Volpe, L.; et al. Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: The ORFAN multicentre, longitudinal cohort study. Lancet 2024, 403, 2606–2618. [Google Scholar] [CrossRef]
- Weichsel, L.; Andre, F.; Renker, M.; Breitbart, P.; Overhoff, D.; Beer, M.; Giesen, A.; Vattay, B.; Buss, S.; Marwan, M.; et al. Effects of high- versus low-intensity lipid-lowering treatment in patients undergoing serial coronary computed tomography angiography: Results of the multi-center LOCATE study. Clin. Res. Cardiol. 2024. [Google Scholar] [CrossRef]
- Choi, A.D.; Thomas, D.M.; Lee, J.; Abbara, S.; Cury, R.C.; Leipsic, J.A.; Maroules, C.; Nagpal, P.; Steigner, M.L.; Wang, D.D.; et al. 2020 SCCT Guideline for Training Cardiology and Radiology Trainees as Independent Practitioners (Level II) and Advanced Practitioners (Level III) in Cardiovascular Computed Tomography: A Statement from the Society of Cardiovascular Computed Tomography. JACC Cardiovasc. Imaging 2021, 14, 272–287. [Google Scholar] [CrossRef]
- Tesche, C.; Bauer, M.J.; Straube, F.; Rogowski, S.; Baumann, S.; Renker, M.; Fink, N.; Schoepf, U.J.; Hoffmann, E.; Ebersberger, U. Association of epicardial adipose tissue with coronary CT angiography plaque parameters on cardiovascular outcome in patients with and without diabetes mellitus. Atherosclerosis 2022, 363, 78–84. [Google Scholar] [CrossRef]
- Weichsel, L.; Giesen, A.; Andre, F.; Renker, M.; Baumann, S.; Breitbart, P.; Beer, M.; Maurovitch-Horvat, P.; Szilveszter, B.; Vattay, B.; et al. Comparison of Two Contemporary Quantitative Atherosclerotic Plaque Assessment Tools for Coronary Computed Tomography Angiography: Single-Center Analysis and Multi-Center Patient Cohort Validation. Diagnostics 2024, 14, 154. [Google Scholar] [CrossRef] [PubMed]
- Giesen, A.; Mouselimis, D.; Weichsel, L.; Giannopoulos, A.A.; Schmermund, A.; Nunninger, M.; Schuetz, M.; Andre, F.; Frey, N.; Korosoglou, G. Pericoronary adipose tissue attenuation is associated with non-calcified plaque burden in patients with chronic coronary syndromes. J. Cardiovasc. Comput. Tomogr. 2023, 17, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Giusca, S.; Schutz, M.; Kronbach, F.; Wolf, D.; Nunninger, P.; Korosoglou, G. Coronary Computer Tomography Angiography in 2021-Acquisition Protocols, Tips and Tricks and Heading beyond the Possible. Diagnostics 2021, 11, 1072. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt Centeno, E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
- Korosoglou, G.; Chatzizisis, Y.S.; Raggi, P. Coronary computed tomography angiography in asymptomatic patients: Still a taboo or precision medicine? Atherosclerosis 2021, 317, 47–49. [Google Scholar] [CrossRef]
- Motoyama, S.; Ito, H.; Sarai, M.; Kondo, T.; Kawai, H.; Nagahara, Y.; Harigaya, H.; Kan, S.; Anno, H.; Takahashi, H.; et al. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J. Am. Coll. Cardiol. 2015, 66, 337–346. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Iatan, I.; Guan, M.; Humphries, K.H.; Yeoh, E.; Mancini, G.B.J. Atherosclerotic Coronary Plaque Regression and Risk of Adverse Cardiovascular Events: A Systematic Review and Updated Meta-Regression Analysis. JAMA Cardiol. 2023, 8, 937–945. [Google Scholar] [CrossRef]
- Taron, J.; Foldyna, B.; Mayrhofer, T.; Osborne, M.T.; Meyersohn, N.; Bittner, D.O.; Puchner, S.B.; Emami, H.; Lu, M.T.; Ferencik, M.; et al. Risk Stratification With the Use of Coronary Computed Tomographic Angiography in Patients With Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Imaging 2021, 14, 2186–2195. [Google Scholar] [CrossRef]
- Motoyama, S.; Sarai, M.; Narula, J.; Ozaki, Y. Coronary CT angiography and high-risk plaque morphology. Cardiovasc. Interv. Ther. 2013, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferencik, M.; Mayrhofer, T.; Bittner, D.O.; Emami, H.; Puchner, S.B.; Lu, M.T.; Meyersohn, N.M.; Ivanov, A.V.; Adami, E.C.; Patel, M.R.; et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018, 3, 144–152. [Google Scholar] [CrossRef]
- Puchner, S.B.; Liu, T.; Mayrhofer, T.; Truong, Q.A.; Lee, H.; Fleg, J.L.; Nagurney, J.T.; Udelson, J.E.; Hoffmann, U.; Ferencik, M. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: Results from the ROMICAT-II trial. J. Am. Coll. Cardiol. 2014, 64, 684–692. [Google Scholar] [CrossRef]
- Thomsen, C.; Abdulla, J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 120–129. [Google Scholar] [CrossRef]
- Lee, S.E.; Chang, H.J.; Sung, J.M.; Park, H.B.; Heo, R.; Rizvi, A.; Lin, F.Y.; Kumar, A.; Hadamitzky, M.; Kim, Y.J.; et al. Effects of Statins on Coronary Atherosclerotic Plaques: The PARADIGM Study. JACC Cardiovasc. Imaging 2018, 11, 1475–1484. [Google Scholar] [CrossRef]
- Kim, U.; Leipsic, J.A.; Sellers, S.L.; Shao, M.; Blanke, P.; Hadamitzky, M.; Kim, Y.J.; Conte, E.; Andreini, D.; Pontone, G.; et al. Natural History of Diabetic Coronary Atherosclerosis by Quantitative Measurement of Serial Coronary Computed Tomographic Angiography: Results of the PARADIGM Study. JACC Cardiovasc. Imaging 2018, 11, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Korosoglou, G.; Abanador-Kamper, N.; Tesche, C.; Renker, M.; Andre, F.; Weichsel, L.; Hell, M.; Bonner, F.; Cramer, M.; Kelle, S.; et al. Observer variabilities for the diagnosis of coronary artery disease using anatomical and functional testing: The impact of certification. Clin. Res. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.M.; Akoumianakis, I.; et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; West, H.W.; Antoniades, C. Cardiac Computed Tomography: Assessment of Coronary Inflammation and Other Plaque Features. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2207–2219. [Google Scholar] [CrossRef]
- Tzolos, E.; Williams, M.C.; McElhinney, P.; Lin, A.; Grodecki, K.; Flores Tomasino, G.; Cadet, S.; Kwiecinski, J.; Doris, M.; Adamson, P.D.; et al. Pericoronary Adipose Tissue Attenuation, Low-Attenuation Plaque Burden, and 5-Year Risk of Myocardial Infarction. JACC Cardiovasc. Imaging 2022, 15, 1078–1088. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Desai, M.Y.; Marwan, M.; Kotanidis, C.P.; Antonopoulos, A.S.; Schottlander, D.; Channon, K.M.; Neubauer, S.; Achenbach, S.; Antoniades, C. Perivascular Fat Attenuation Index Stratifies Cardiac Risk Associated With High-Risk Plaques in the CRISP-CT Study. J. Am. Coll. Cardiol. 2020, 76, 755–757. [Google Scholar] [CrossRef]
- Sagris, M.; Antonopoulos, A.S.; Simantiris, S.; Oikonomou, E.; Siasos, G.; Tsioufis, K.; Tousoulis, D. Pericoronary fat attenuation index-a new imaging biomarker and its diagnostic and prognostic utility: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e526–e536. [Google Scholar] [CrossRef] [PubMed]
- van Rosendael, S.E.; Kamperidis, V.; Maaniitty, T.; de Graaf, M.A.; Saraste, A.; McKay-Goodall, G.E.; Jukema, J.W.; Knuuti, J.; Bax, J.J. Pericoronary adipose tissue for predicting long-term outcome. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1351–1359. [Google Scholar] [CrossRef]
- Cheng, K.; Lin, A.; Psaltis, P.J.; Rajwani, A.; Baumann, A.; Brett, N.; Kangaharan, N.; Otton, J.; Nicholls, S.J.; Dey, D.; et al. Protocol and rationale of the Australian multicentre registry for serial cardiac computed tomography angiography (ARISTOCRAT): A prospective observational study of the natural history of pericoronary adipose tissue attenuation and radiomics. Cardiovasc. Diagn. Ther. 2024, 14, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.M.; Zhao, X.; Chen, Y.Y.; Tao, X.W.; Ge, J.B.; Jin, H.; Zeng, M.S. Evolocumab attenuate pericoronary adipose tissue density via reduction of lipoprotein(a) in type 2 diabetes mellitus: A serial follow-up CCTA study. Cardiovasc. Diabetol. 2023, 22, 121. [Google Scholar] [CrossRef] [PubMed]
- Korosoglou, G.; Lehrke, S.; Mueller, D.; Hosch, W.; Kauczor, H.U.; Humpert, P.M.; Giannitsis, E.; Katus, H.A. Determinants of troponin release in patients with stable coronary artery disease: Insights from CT angiography characteristics of atherosclerotic plaque. Heart 2011, 97, 823–831. [Google Scholar] [CrossRef]
- Rodriguez, F.; Maron, D.J.; Knowles, J.W.; Virani, S.S.; Lin, S.; Heidenreich, P.A. Association of Statin Adherence With Mortality in Patients With Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2019, 4, 206–213. [Google Scholar] [CrossRef]
- Baumann, S.; Kettel, L.; Stach, K.; Ozdemir, G.H.; Renker, M.; Tesche, C.; Becher, T.; Hetjens, S.; Schoepf, U.J.; Akin, I.; et al. Serial Changes in Coronary Plaque Formation Using CT Angiography in Patients Undergoing PCSK9-Inhibitor Therapy With 1-year Follow-up. J. Thorac. Imaging 2022, 37, 285–291. [Google Scholar] [CrossRef] [PubMed]
No or Low-Intensity Therapy n = 89 | Moderate-Intensity Therapy n = 80 | High-Intensity Therapy n = 47 | p-Values | |
---|---|---|---|---|
Baseline data and risk factors | ||||
Age (yrs.) | 60.7 ± 10.9 | 66.4 ± 8.7 | 62.2 ± 7.5 | <0.001 |
Female sex | 26 (29.2%) | 19 (23.8%) | 12 (25.5%) | 0.71 |
Body-mass index (kg/m2) | 26.6 (24.1–28.9) | 27.8 (25.5–31.0) | 29.4 (26.3–34.0) | 0.01 |
Arterial hypertension * | 45 (51.7%) | 68 (87.2%) | 28 (80.0%) | <0.001 |
Hyperlipidemia ** | 48 (55.2%) | 66 (83.5%) | 39 (95.1%) | <0.001 |
Diabetes mellitus *** | 5 (5.7%) | 14 (17.7%) | 7 (20.0%) | 0.03 |
Active or former smoking § | 25 (32.1%) | 16 (21.6%) | 13 (35.1%) | 0.22 |
Family history of CAD §§ | 24 (32.0%) | 22 (34.9%) | 21 (61.8%) | 0.009 |
Total number of CV risk factors | 1.0 (1.0–2.0) | 2.0 (2.0–3.0) | 2.0 (2.0–3.0) | <0.001 |
History of CAD | ||||
History of CAD | 11 (12.4%) | 31 (38.8%) | 26 (55.3%) | <0.001 |
Prior PCI | 10 (11.2%) | 23 (28.8%) | 22 (46.8%) | <0.001 |
Prior myocardial infarction | 6 (6.7%) | 6 (7.5%) | 11 (23.4%) | 0.006 |
Clinical presentation at baseline | ||||
Stable chest pain syndrome | 62 (69.7%) | 31 (38.8%) | 11 (23.4%) | <0.001 |
Exertional dyspnea | 45 (50.6%) | 28 (35.0%) | 11 (23.4%) | 0.005 |
Palpitations/unspecific symptoms | 17 (19.1%) | 27 (33.8%) | 16 (34.0%) | 0.004 |
Syncope | 2 (2.3%) | 0 (0.0%) | 1 (2.1%) | 0.55 |
Baseline medications (as prescribed after the baseline CCTA scans) | ||||
Aspirin | 23 (25.8%) | 42 (52.5%) | 26 (55.3%) | <0.001 |
Aspirin or P2Y12 inhibitors | 25 (28.1%) | 43 (53.8%) | 27 (57.4%) | <0.001 |
ß-blockers | 29 (32.6%) | 40 (50.0%) | 27 (57.5%) | <0.01 |
Calcium antagonists | 9 (10.1%) | 21 (26.3%) | 9 (19.2%) | 0.01 |
Diuretics | 9 (10.1%) | 24 (30.0%) | 7 (14.9%) | 0.003 |
ACE inhibitors or AT2 blockers | 26 (29.2%) | 43 (53.8%) | 12 (25.5%) | <0.001 |
Number of antihypertensive medications | 0 (0–1.0) | 2.0 (1.0–2.0) | 1.0 (0–2.0) | <0.001 |
PCSK9 inhibitors | 0 (0.0%) | 0 (0.0%) | 24 (51.1%) | <0.001 |
Statins | 9 (10.1%) | 80 (100.0%) | 38 (80.9%) | <0.001 |
Ezetimibe | 2 (2.3%) | 9 (11.3%) | 13 (27.7%) | <0.001 |
Baseline laboratory data | ||||
Hemoglobin(mg/dL) | 14.5 (13.5–15.2) | 14.4 (13.8–15.4) | 14.6 (13.2–15.4) | 0.87 |
Estimated GFR (ml/min/1.73 m2) | 84.6 (69.1–94.2) | 83.2 (72.6–92.5) | 87.6 (73.0–94.0) | 0.84 |
Creatinine (mg/dL) | 0.95 (0.81–1.06) | 0.93 (0.80–1.05) | 0.90 (0.82–1.05) | 0.90 |
Total cholesterol (mg/dL) # | 213.0 (175.0–244.5) | 181.0 (149.3–214.5) | 187.5 (150.5–222.5) | 0.03 |
LDL-cholesterol (mg/dL) ## | 127.0 (96.3–159.5) | 94.0 (76.5–126.3) | 121.0 (80.3–154.5) | 0.02 |
Baseline CCTA parameters | ||||
Agatston score | 42.3 (2.5–202.0) | 139.7 (46.3–348.0) | 286.3 (108.0–824.6) | 0.007 |
CAD RADS 2.0 | 1.0 (1.0–1.0) | 1.0 (1.0–2.0) | 2.0 (1.0–2.0) | <0.001 |
Total plaque volume (mm3) | 208.0 (60.0–398.0) | 399 (191.5–923.5) | 867.0 (400.8–1543.5) | <0.001 |
Non-calcified plaque volume (mm3) | 165 (55.8–309.0) | 278.5 (116.5–493.5) | 378.0 (194.5–599.3) | <0.001 |
Calcified plaque volume (mm3) | 32 (4.8–103.8) | 120.0 (48.5–362.5) | 319.0(190.0–784.0) | <0.001 |
Plaque feature score (PFS) | 2.0 (2.0–3.0) | 2.5 (2.0–3.0) | 3.0 (2.0–4.0) | <0.001 |
PCAT RCA † | −70.4 (−79.3 to −66.4) | −68.9 (−77.5 to −62.3) | −69.8 (−74.1 to −66.0) | 0.58 |
PCAT LAD † | −74.2 (−77.8 to −68.0) | −70.9 (−75.0 to −65.1) | −71.8 (−75.1 to −68.2) | 0.04 |
PCAT LCX † | −68.6 (−73.1 to −63.4) | −65.8 (−69.9 to −61.3) | −66.4 (−69.7 to −60.2) | 0.05 |
PCAT Mean † | −70.3 (−76.8 to −65.8) | −68.1 (−74.2 to −63.9) | −68.9 (−72.5 to −66.0) | 0.12 |
Low Attenuation | Positive Remodeling | Spotty Calcification | Napkin-Ring Sign | Total Number of High-Risk Features | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline CCTA | Follow-Up CCTA | Baseline CCTA | Follow-Up CCTA | Baseline CCTA | Follow-Up CCTA | Baseline CCTA | Follow-Up CCTA | Baseline CCTA | Follow-Up CCTA | |
RCA | 17 (18.1%) | 13 (16.0%) | 6 (6.4%) | 5 (6.2%) | 4 (4.3%) | 2 (2.5%) | 5 (5.3%) | 3 (3.7%) | 32 (34.0%) | 23 (28.4%) |
LAD | 25 (26.6%) | 21 (25.9%) | 10 (10.6%) | 11 (13.6%) | 8 (8.5%) | 7 (8.6%) | 1 (1.1%) | 1 (1.2%) | 44 (46.8%) | 40 (49.4%) |
LCX | 13 (13.8%) | 11 (13.6%) | 3 (3.2%) | 4 (4.9%) | 2 (2.1%) | 2 (2.5%) | 0 (0.0%) | 1 (1.2%) | 18 (19.1%) | 18 (22.2%) |
Total per scan | 55 (58.5%) | 45 (55.5%) | 19 (20.2%) | 20 (24.7%) | 14 (14.9%) | 11 (13.6%) | 6 (6.4%) | 5 (6.2%) | 94 (53.7%) | 81 (46.3%) |
Total | 100 (57.1%) | 39 (22.3%) | 25 (14.3%) | 11 (6.3%) | 175 (100.0%) |
A. Regression of high-risk plaque features | Coefficient | Standard error | Wald | Hazard ratio | 95% Cl | p-values |
Age | 0.001 | 0.022 | 0.006 | 1.001 | 0.95 to 1.04 | 0.93 |
Total number of CV risk factors | −0.059 | 0.21 | 0.078 | 0.94 | 0.62 to 1.42 | 0.77 |
Baseline plaque volume by quartiles | 0.83 | 0.20 | 15.95 | 2.29 | 1.52 to 3.44 | <0.001 |
Lipid-lowering treatment intensity | 0.66 | 0.28 | 5.49 | 1.93 | 1.11 to 3.36 | 0.02 |
Baseline PCATRCA | −0.025 | 0.017 | 2.01 | 0.97 | 0.94 to 1.01 | 0.15 |
B. Progression of high-risk plaque features | Coefficient | Standard error | Wald | Odds ratio | 95% Cl | p-values |
Age | 0.008 | 0.025 | 0.11 | 1.01 | 0.96 to 1.05 | 0.82 |
Total number of CV risk factors | −0.11 | 0.22 | 0.24 | 0.89 | 0.57 to 1.39 | 0.57 |
Baseline plaque volume by quartiles | −0.005 | 0.23 | 0.0006 | 0.99 | 0.62 to 1.58 | 0.68 |
Lipid-lowering treatment intensity | 0.28 | 0.35 | 0.64 | 1.33 | 0.66 to 2.68 | 0.42 |
Baseline PCATRCA | 0.028 | 0.012 | 4.80 | 1.03 | 1.00 to 1.05 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weichsel, L.; André, F.; Renker, M.; Weberling, L.D.; Breitbart, P.; Overhoff, D.; Beer, M.; Vattay, B.; Buss, S.; Marwan, M.; et al. Longitudinal Effects of Lipid-Lowering Treatment on High-Risk Plaque Features and Pericoronary Adipose Tissue Attenuation Using Serial Coronary Computed Tomography. Diagnostics 2025, 15, 2340. https://doi.org/10.3390/diagnostics15182340
Weichsel L, André F, Renker M, Weberling LD, Breitbart P, Overhoff D, Beer M, Vattay B, Buss S, Marwan M, et al. Longitudinal Effects of Lipid-Lowering Treatment on High-Risk Plaque Features and Pericoronary Adipose Tissue Attenuation Using Serial Coronary Computed Tomography. Diagnostics. 2025; 15(18):2340. https://doi.org/10.3390/diagnostics15182340
Chicago/Turabian StyleWeichsel, Loris, Florian André, Matthias Renker, Lukas D. Weberling, Philipp Breitbart, Daniel Overhoff, Meinrad Beer, Borbála Vattay, Sebastian Buss, Mohamed Marwan, and et al. 2025. "Longitudinal Effects of Lipid-Lowering Treatment on High-Risk Plaque Features and Pericoronary Adipose Tissue Attenuation Using Serial Coronary Computed Tomography" Diagnostics 15, no. 18: 2340. https://doi.org/10.3390/diagnostics15182340
APA StyleWeichsel, L., André, F., Renker, M., Weberling, L. D., Breitbart, P., Overhoff, D., Beer, M., Vattay, B., Buss, S., Marwan, M., Baumann, S., Giannopoulos, A. A., Solowjowa, N., Kelle, S., Frey, N., Korosoglou, G., & on behalf of the LOCATE Investigators. (2025). Longitudinal Effects of Lipid-Lowering Treatment on High-Risk Plaque Features and Pericoronary Adipose Tissue Attenuation Using Serial Coronary Computed Tomography. Diagnostics, 15(18), 2340. https://doi.org/10.3390/diagnostics15182340