Artificial Intelligence-Based Arterial Input Function for the Quantitative Assessment of Myocardial Blood Flow and Perfusion Reserve in Cardiac Magnetic Resonance: A Validation Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Image Acquisition
2.3. AI-AIF
2.4. MBF Quantification
2.5. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Stress Myocardial Blood Flow
3.3. Rest Myocardial Blood Flow
3.4. Myocardial Perfusion Reserve
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AIF | Arterial input function |
AI-AIF | Artificial intelligence-based arterial input function |
CAD | Coronary artery disease |
CI | Confidence intervals |
DS | Dual-sequence |
DS-AIF | Dual-sequence-derived arterial input function |
IQR | Interquartile range |
LoA | Limit of agreement |
MBF | Myocardial blood flow |
MPR | Myocardial perfusion reserve |
MRI | Magnetic resonance imaging |
References
- Jerosch-Herold, M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2010, 12, 57. [Google Scholar] [CrossRef]
- Shomanova, Z.; Florian, A.; Bietenbeck, M.; Waltenberger, J.; Sechtem, U.; Yilmaz, A. Diagnostic value of global myocardial perfusion reserve assessment based on coronary sinus flow measurements using cardiovascular magnetic resonance in addition to myocardial stress perfusion imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 851–859. [Google Scholar] [CrossRef]
- Kotecha, T.; Martinez-Naharro, A.; Boldrini, M.; Knight, D.; Hawkins, P.; Kalra, S.; Patel, D.; Coghlan, G.; Moon, J.; Plein, S.; et al. Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMR to Detect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction: Validation Against Invasive Coronary Physiology. JACC Cardiovasc. Imaging 2019, 12, 1958–1969. [Google Scholar] [CrossRef]
- Villa, A.D.M.; Corsinovi, L.; Ntalas, I.; Milidonis, X.; Scannell, C.; Di Giovine, G.; Child, N.; Ferreira, C.; Nazir, M.S.; Karady, J.; et al. Importance of operator training and rest perfusion on the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2018, 20, 74. [Google Scholar] [CrossRef]
- Calamante, F. Arterial input function in perfusion MRI: A comprehensive review. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 74, 1–32. [Google Scholar] [CrossRef]
- Fluckiger, J.U.; Schabel, M.C.; DiBella, E.V. Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn. Reson. Med. 2009, 62, 1477–1486. [Google Scholar] [CrossRef]
- Utz, W.; Niendorf, T.; Wassmuth, R.; Messroghli, D.; Dietz, R.; Schulz-Menger, J. Contrast-dose relation in first-pass myocardial MR perfusion imaging. J. Magn. Reson. Imaging 2007, 25, 1131–1135. [Google Scholar] [CrossRef]
- Ichihara, T.; Ishida, M.; Kitagawa, K.; Ichikawa, Y.; Natsume, T.; Yamaki, N.; Maeda, H.; Takeda, K.; Sakuma, H. Quantitative analysis of first-pass contrast-enhanced myocardial perfusion MRI using a Patlak plot method and blood saturation correction. Magn. Reson. Med. 2009, 62, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Sharrack, N.; Chiribiri, A.; Schwitter, J.; Plein, S. How to do quantitative myocardial perfusion cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.Y.S.; Wang, H.; Leung, K.H.G.; Kim, P.; Tada, Y.; Sin, T.H.; Wong, C.K.; Chan, K.Y.E.; Tam, C.C.F.; Benovoy, M.; et al. Comparison of dual-bolus versus dual-sequence techniques for determining myocardial blood flow and myocardial perfusion reserve by cardiac magnetic resonance stress perfusion: From the Automated Quantitative analysis of myocardial perfusion cardiac Magnetic Resonance Consortium. J. Cardiovasc. Magn. Reson. 2024, 26, 101085. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Schuster, A.; Morton, G.; Chiribiri, A.; Hussain, S.; Paul, M.; Merkle, N.; Steen, H.; Lossnitzer, D.; Schnackenburg, B.; et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2011, 13, 28. [Google Scholar] [CrossRef]
- Scannell, C.M.; Alskaf, E.; Sharrack, N.; Razavi, R.; Ourselin, S.; Young, A.A.; Plein, S.; Chiribiri, A. AI-AIF: Artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance. Eur. Heart J. Digit. Health 2023, 4, 12–21. [Google Scholar] [CrossRef]
- Edalati, M.; Zheng, Y.; Watkins, M.P.; Chen, J.; Liu, L.; Zhang, S.; Song, Y.; Soleymani, S.; Lenihan, D.J.; Lanza, G.M. Implementation and prospective clinical validation of AI-based planning and shimming techniques in cardiac MRI. Med. Phys. 2022, 49, 129–143. [Google Scholar] [CrossRef] [PubMed]
- van Gorp, H.; Huijben, I.A.M.; Veeling, B.S.; Pezzotti, N.; van Sloun, R.J.G. Active Deep Probabilistic Subsampling. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
- Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 2018, 79, 3055–3071. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, E.; Alskaf, E.; Chiribiri, A.; Casaseca-de-la-Higuera, P.; Alberola-López, C.; Nunes, R.G.; Correia, T. Physics-Informed Self-supervised Deep Learning Reconstruction for Accelerated First-Pass Perfusion Cardiac MRI; Springer International Publishing: Cham, Switzerland, 2021; pp. 86–95. [Google Scholar] [CrossRef]
- Wang, J.; Weller, D.S.; Kramer, C.M.; Salerno, M. DEep learning-based rapid Spiral Image REconstruction (DESIRE) for high-resolution spiral first-pass myocardial perfusion imaging. NMR Biomed. 2022, 35, e4661. [Google Scholar] [CrossRef]
- Le, J.; Tian, Y.; Mendes, J.; Wilson, B.; Ibrahim, M.; DiBella, E.; Adluru, G. Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net. Magn. Reson. Imaging 2021, 83, 178–188. [Google Scholar] [CrossRef]
- Fan, L.; Shen, D.; Haji-Valizadeh, H.; Naresh, N.K.; Carr, J.C.; Freed, B.H.; Lee, D.C.; Kim, D. Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net. NMR Biomed. 2020, 33, e4239. [Google Scholar] [CrossRef]
- Scannell, C.M.; Veta, M.; Villa, A.D.M.; Sammut, E.C.; Lee, J.; Breeuwer, M.; Chiribiri, A. Deep-Learning-Based Preprocessing for Quantitative Myocardial Perfusion MRI. J. Magn. Reson. Imaging 2020, 51, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Yalcinkaya, D.M.; Youssef, K.; Heydari, B.; Zamudio, L.; Dharmakumar, R.; Sharif, B. Deep Learning-Based Segmentation and Uncertainty Assessment for Automated Analysis of Myocardial Perfusion MRI Datasets Using Patch-Level Training and Advanced Data Augmentation. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 4072–4078. [Google Scholar]
- Xie, D.; Li, Y.; Yang, H.; Bai, L.; Wang, T.; Zhou, F.; Zhang, L.; Wang, Z. Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn. Reson. Imaging 2020, 68, 95–105. [Google Scholar] [CrossRef]
- Huang, J.; Guo, J.; Pedrosa, I.; Fei, B. Deep learning-based deformable registration of dynamic contrast enhanced MR images of the kidney. In Proceedings of the SPIE Medical Imaging, San Diego, CA, USA, 25 April 2022. [Google Scholar]
- McKinley, R.; Hung, F.; Wiest, R.; Liebeskind, D.S.; Scalzo, F. A Machine Learning Approach to Perfusion Imaging with Dynamic Susceptibility Contrast MR. Front. Neurol. 2018, 9, 717. [Google Scholar] [CrossRef]
- van Dinther, M.; Bennett, J.; Thornton, G.D.; Voorter, P.H.M.; Ezponda Casajus, A.; Hughes, A.; Captur, G.; Holtackers, R.J.; Members, C.C.C.; Staals, J.; et al. Evaluation of Microvascular Rarefaction in Vascular Cognitive Impairment and Heart Failure (CRUCIAL): Study Protocol for an Observational Study. Cerebrovasc. Dis. Extra 2023, 13, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Gonzalez, J.; Fernandez-Jimenez, R.; Nothnagel, N.D.; Lopez-Martin, G.; Fuster, V.; Ibanez, B. Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps. J. Cardiovasc. Magn. Reson. 2015, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Scannell, C.M.; Crawley, R.; Alskaf, E.; Breeuwer, M.; Plein, S.; Chiribiri, A. High-resolution quantification of stress perfusion defects by cardiac magnetic resonance. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae001. [Google Scholar] [CrossRef]
- Scannell, C.M.; Villa, A.D.M.; Lee, J.; Breeuwer, M.; Chiribiri, A. Robust Non-Rigid Motion Compensation of Free-Breathing Myocardial Perfusion MRI Data. IEEE Trans. Med. Imaging 2019, 38, 1812–1820. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S.; et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Massey, F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Hsu, L.Y.; Jacobs, M.; Benovoy, M.; Ta, A.D.; Conn, H.M.; Winkler, S.; Greve, A.M.; Chen, M.Y.; Shanbhag, S.M.; Bandettini, W.P.; et al. Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance. JACC Cardiovasc. Imaging 2018, 11, 697–707. [Google Scholar] [CrossRef]
- Lockie, T.; Ishida, M.; Perera, D.; Chiribiri, A.; De Silva, K.; Kozerke, S.; Marber, M.; Nagel, E.; Rezavi, R.; Redwood, S.; et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J. Am. Coll. Cardiol. 2011, 57, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Milidonis, X.; Franks, R.; Schneider, T.; Sanchez-Gonzalez, J.; Sammut, E.C.; Plein, S.; Chiribiri, A. Influence of the arterial input sampling location on the diagnostic accuracy of cardiovascular magnetic resonance stress myocardial perfusion quantification. J. Cardiovasc. Magn. Reson. 2021, 23, 35. [Google Scholar] [CrossRef]
- Yankeelov, T.E.; Luci, J.J.; Lepage, M.; Li, R.; Debusk, L.; Lin, P.C.; Price, R.R.; Gore, J.C. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: A reference region model. Magn. Reson. Imaging 2005, 23, 519–529. [Google Scholar] [CrossRef]
- Fluckiger, J.U.; Schabel, M.C.; DiBella, E.V. Constrained estimation of the arterial input function for myocardial perfusion cardiovascular magnetic resonance. Magn. Reson. Med. 2011, 66, 419–427. [Google Scholar] [CrossRef]
- Li, R.; Edalati, M.; Muccigrosso, D.; Lau, J.M.C.; Laforest, R.; Woodard, P.K.; Zheng, J. A simplified method to correct saturation of arterial input function for cardiac magnetic resonance first-pass perfusion imaging: Validation with simultaneously acquired PET. J. Cardiovasc. Magn. Reson. 2023, 25, 35. [Google Scholar] [CrossRef]
- Brown, L.A.E.; Onciul, S.C.; Broadbent, D.A.; Johnson, K.; Fent, G.J.; Foley, J.R.J.; Garg, P.; Chew, P.G.; Knott, K.; Dall’Armellina, E.; et al. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: Repeatability of measurements in healthy subjects. J. Cardiovasc. Magn. Reson. 2018, 20, 48. [Google Scholar] [CrossRef]
- Hoh, T.; Vishnevskiy, V.; Polacin, M.; Manka, R.; Fuetterer, M.; Kozerke, S. Free-breathing motion-informed locally low-rank quantitative 3D myocardial perfusion imaging. Magn. Reson. Med. 2022, 88, 1575–1591. [Google Scholar] [CrossRef] [PubMed]
- van Herten, R.L.M.; Chiribiri, A.; Breeuwer, M.; Veta, M.; ScannellC, M. Physics-informed neural networks for myocardial perfusion MRI quantification. Med. Image Anal. 2022, 78, 102399. [Google Scholar] [CrossRef] [PubMed]
Patients with VCI |
---|
VCI due to cSVD, defined as:
|
Clinical dementia rating scale ≤ 1 |
Patients at risk of VCI |
Symptomatic cSVD, defined as:
|
n = 31 | |
---|---|
Age in years, median (range) | 72 (64–79) |
Women, n (%) | 12 (38.7) |
Weight in kg, mean (SD) | 77.2 (16.3) |
Height in cm, median (IQR) | 172.0 (165.0–182.0) |
BMI in kg/m2, mean (SD) | 25.8 (3.5) |
Body surface area, mean (SD) | 1.91 (0.3) |
eGFR in mL/min/1.73 m2, median (IQR) | 70.8 (16.6) |
Medical history, n (%) | |
Transient ischemic attack | 13 (41.9) |
Stroke | 15 (48.4) |
Hypertension | 26 (83.9) |
Hypercholesterolemia | 25 (80.6) |
Atrial fibrillation | 1 (3.2) |
Obstructive sleep apnea | 5 (16.1) |
Obesity | 6 (19.4) |
Chronic kidney disease | 9 (29.0) |
Diabetes mellitus type 2 | 9 (29.0) |
Coronary artery disease | 4 (12.9) |
Acute coronary syndrome | 2 (6.5) |
Percutaneous coronary intervention | 2 (6.5) |
Coronary artery bypass graft | 1 (3.2) |
Angina | 2 (6.5) |
Cognitive impairment | 28 (90.3) |
Bias | Lower LoA | Upper LoA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 95% CI | LoA | 95% CI | LoA | 95% CI | ||||||||||
Stress MBF Per-patient Per-segment | −0.06 −0.06 | −0.24 −0.12 | 0.11 −0.01 | −0.99 −1.21 | −1.29 −1.30 | −0.69 −1.12 | 0.86 1.08 | 0.56 0.99 | 1.16 1.17 | ||||||
Rest MBF Per-patient Per-segment | 0.13 0.13 | 0.04 0.10 | 0.21 0.15 | −0.32 −0.53 | −0.47 −0.58 | −0.18 −0.48 | 0.57 0.78 | 0.43 0.73 | 0.72 0.83 | ||||||
MPR Per-patient Per-segment | −0.30 −0.30 | −0.46 −0.37 | −0.15 −0.24 | −1.13 −1.72 | −1.40 −1.83 | −0.87 −1.61 | 0.53 1.11 | 0.26 1.00 | 0.80 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Meulen, L.R.; van Dinther, M.; Chiribiri, A.; Smink, J.; CRUCIAL Investigators; Backes, W.H.; Bennett, J.; Wildberger, J.E.; Scannell, C.M.; Holtackers, R.J. Artificial Intelligence-Based Arterial Input Function for the Quantitative Assessment of Myocardial Blood Flow and Perfusion Reserve in Cardiac Magnetic Resonance: A Validation Study. Diagnostics 2025, 15, 2341. https://doi.org/10.3390/diagnostics15182341
van der Meulen LR, van Dinther M, Chiribiri A, Smink J, CRUCIAL Investigators, Backes WH, Bennett J, Wildberger JE, Scannell CM, Holtackers RJ. Artificial Intelligence-Based Arterial Input Function for the Quantitative Assessment of Myocardial Blood Flow and Perfusion Reserve in Cardiac Magnetic Resonance: A Validation Study. Diagnostics. 2025; 15(18):2341. https://doi.org/10.3390/diagnostics15182341
Chicago/Turabian Stylevan der Meulen, Lara R., Maud van Dinther, Amedeo Chiribiri, Jouke Smink, CRUCIAL Investigators, Walter H. Backes, Jonathan Bennett, Joachim E. Wildberger, Cian M. Scannell, and Robert J. Holtackers. 2025. "Artificial Intelligence-Based Arterial Input Function for the Quantitative Assessment of Myocardial Blood Flow and Perfusion Reserve in Cardiac Magnetic Resonance: A Validation Study" Diagnostics 15, no. 18: 2341. https://doi.org/10.3390/diagnostics15182341
APA Stylevan der Meulen, L. R., van Dinther, M., Chiribiri, A., Smink, J., CRUCIAL Investigators, Backes, W. H., Bennett, J., Wildberger, J. E., Scannell, C. M., & Holtackers, R. J. (2025). Artificial Intelligence-Based Arterial Input Function for the Quantitative Assessment of Myocardial Blood Flow and Perfusion Reserve in Cardiac Magnetic Resonance: A Validation Study. Diagnostics, 15(18), 2341. https://doi.org/10.3390/diagnostics15182341