Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- Adults aged 30–83 years;
- Newly diagnosed with one or more thyroid nodules;
- Underwent FNAC with conclusive cytological results;
- (Bethesda categories II, IV, V, or VI).
- Prior history of thyroid surgery;
- Ongoing treatment for thyroid-related conditions;
- FNAC results categorized as Bethesda I;
- (Non-diagnostic due to insufficient specimen);
- FNAC results categorized as Bethesda III;
- (Atypia/follicular lesion of undetermined significance).
2.2. Ultrasound Examination
2.3. Elastography
2.4. S-Detect
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Patients
3.2. Performance of Diagnostic Models
3.3. Agreement of Diagnostic Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FNAC | fine-needle aspiration cytology |
PPV | positive predictive value |
NPV | negative predictive value |
CAD | computer-aided diagnosis |
ECI | elasticity contrast index |
DL-CAD | deep learning-based computer-aided diagnosis |
K-TIRADS | Korean Thyroid Imaging Reporting and Data System |
SD | standard deviation |
ROC | receiver operating characteristic |
AUC | area under the curve |
CI | confidence interval |
SE | standard error |
References
- Park, Y.J.; Lee, E.K.; Song, Y.S.; Koo, B.S.; Kwon, H.; Kim, K.; Kim, M.; Kim, B.H.; Kim, W.G.; Kim, W.B.; et al. Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancer; Overview and Summary 2024. Int. J. Thyroidol. 2024, 17, 1–20. [Google Scholar] [CrossRef]
- Hegedüs, L. Clinical practice: The thyroid nodule. N. Engl. J. Med. 2004, 351, 1764–1771. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, E.K.; Kwak, J.Y.; Kim, M.J. Detection and Management of Thyroid Incidentaloma. Korean Soc. Ultrasound Med. 2008, 27, 111–117. [Google Scholar]
- Shaheen, R.; Levine, D. Diagnostic Ultrasound, 5th ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 725–765. [Google Scholar]
- AlSaedi, A.H.; Almalki, D.S.; ElKady, R.M. Approach to thyroid nodules: Diagnosis and treatment. Cureus 2024, 16, e52232. [Google Scholar] [CrossRef]
- Dighe, M.; Barr, R.; Bojunga, J.; Cantisani, V.; Chammas, M.C.; Cosgrove, D.; Cui, X.W.; Dong, Y.; Fenner, F.; Radzina, M.; et al. Thyroid ultrasound: State of the art Part 2. Med. Ultrason. 2017, 19, 195–210. [Google Scholar] [CrossRef]
- Hahn, S.Y.; Shin, J.H.; Oh, Y.L.; Son, Y.I. Discrepancies between the ultrasonographic and gross pathological size of papillary thyroid carcinomas. Ultrasonography 2016, 35, 220–225. [Google Scholar] [CrossRef]
- Tian, W.; Hao, S.; Gao, B.; Jiang, Y.; Zhang, S.; Guo, L.; Luo, D. Comparison of diagnostic accuracy of real-time elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine 2015, 94, e2312. [Google Scholar] [CrossRef] [PubMed]
- Franklin, N.T.; William, D.M.; Edward, G.G.; Jenny, K.H.; Lincoln, L.B.; Sharlene, A.T.; John, J.C.; Michael, D.B.; Terry, S.D.; Mary, C.F.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, D.W.; Park, Y.M.; Park, H.K.; Jung, S.J.; Kim, D.H.; Lee, S.M.; Oh, M. Comparison of sonographic and cytological diagnoses of solid thyroid nodules: Empahsis on the discordant cases. Diagn. Cytopathol. 2015, 43, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Gatta, R.; Treglia, G.; Piccardo, A.; Albano, D.; Camoni, L.; Gatta, E.; Cavadini, M.; Cappelli, C.; Bertagna, F. Application of radiomics and machine learning to thyroid diseases in nuclear medicine: A systematic review. Rev. Endocr. Metab. Disord. 2024, 25, 175–186. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Muller, T.; Bojunga, J.; Dong, Y.; Mauri, G.; Radzina, M.; Dighe, M.; Cui, X.W.; Grunwald, F.; Schuler, A.; et al. Statement and Recommendations on Inerventional Ultrasound as a Thyroid Diagnostic and Treatment Procedure. Ultrasound Med. Biol. 2018, 44, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Kim, H.J.; Welch, H.G. Korea’s thyroid-cancer “epidemic”—Screenign and overdiagnosis. N. Engl. J. Med. 2014, 371, 1765–1767. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.J.; Baek, J.H. Applications of machine learning and deep learning to thyroid imaging: Where do we stand? Ultrasonography 2021, 40, 23–29. [Google Scholar] [CrossRef]
- Zhao, C.K.; Xu, H.X. Ultrasound elastography of the thyroid: Principles and current status. Ultrasonography 2019, 38, 106–124. [Google Scholar] [CrossRef]
- Cong, P.; Wang, X.M.; Zhang, Y.F. Comparison of artificial intelligence, elastic imaging, and the thyroid imaging reporting and data system in the differential diagnosis of suspicious nodules. Quant. Imaging Med. Surg. 2024, 14, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.Y. S-Detect in Breast Ultrasound: Initial Experience; Samsung Medical Center, Medison: Seoul, Republic of Korea, 2014; Available online: https://images.samsung.com/is/content/samsung/assets/pl/business/ultrasonograf/wiedza/White_Paper_S-Detect_Breast_1_RS80A_2014.pdf (accessed on 23 January 2025).
- Sorrenti, S.; Dolcetti, V.; Radzina, M.; Bellini, M.I.; Frezza, F.; Munir, K.; Grani, G.; Durante, C.; D’Andrea, V.; David, E.; et al. Artificial intelligence for thyroid nodule characterization: Where are we standing? Cancers 2022, 14, 3357. [Google Scholar] [CrossRef]
- Colakoglu, B.; Yildirim, D.; Alis, D.; Ucar, G.; Samanci, C.; Ustabasioglu, F.E.; Bakir, A.; Ulusoy, O.L. Elastography in distinguishing benign from malignant thyroid nodules. J. Clin. Imaging Sci. 2016, 6, 51. [Google Scholar] [CrossRef]
- Ali, S.Z.; Valoch, Z.W.; Cochand-Priollet, B.; Schmitt, F.C.; Vielh, P.; VanderLaan, P.A. The 2023 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2023, 33, 1039–1044. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The Bethesda System for Reporting Thyroid Cytopathology. Am. J. Clin. Pathol. 2009, 132, 658–665. [Google Scholar] [CrossRef]
- Park, J.Y.; Cho, Y.I.; Yang, S.H. Diagnostic usefulness of deep learning based S-detect using thyroid ultrasonography. Next-Gener. Converg. Technol. Assoc. 2024, 8, 343–350. [Google Scholar] [CrossRef]
- Ha, E.J.; Chung, S.R.; Na, D.G.; Ahn, H.S.; Chung, J.; Lee, J.Y.; Park, J.S.; Yoo, R.E.; Baek, J.H.; Baek, S.M.; et al. 2021 Korean thyroid imaging reporting and data system and imaging-based management of thyroid nodules: Korean society of thyroid radiology consensus statement and recommendations. Korean J. Radiol. 2021, 22, 2094–2123. [Google Scholar] [CrossRef]
- Ophir, J.; Garra, B.; Kallel, F.; Konofagou, E.; Krouskop, T.; Righetti, R.; Varghese, T. Elastographic imaging. Ultrasound Med. Biol. 2000, 26 (Suppl. S1), S23–S29. [Google Scholar] [CrossRef]
- Cho, Y.J.; Ha, E.J.; Han, M.R.; Choi, J.W. US elastography using carotid artery pulsation may increase the diagnostic accuracy for thyroid nodules with US-pathology discordance. Ultrasound Med. Biol. 2017, 43, 1587–1595. [Google Scholar] [CrossRef]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Korea Central Cancer Registry, National Cancer Center. Annual Report of Cancer Statistics in Korea in 2020. Ministry of Health and Welfare. Available online: https://www.data.go.kr/data/3039563/fileData.do (accessed on 20 May 2025).
- Hong, Y.; Liu, X.; Li, Z.; Zhang, X.; Chen, M.; Luo, Z. Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J. Ultrasound Med. 2009, 28, 861–867. [Google Scholar] [CrossRef]
- Yang, S.H.; Lee, J.S. Evaluation of breast ultrasound lesion recognition rate using machine learning application. Next-Gener. Converg. Technol. Assoc. 2023, 7, 1261–1267. [Google Scholar]
- Genere, N.; Hurtado, M.D.; Cortes, T.; Athimulam, S.; Al Ward, R.; Callstrom, M.R.; Stan, M.n.; Morris, J.C.; Brito, J.P. Drivers of the decision to biopsy and follow-up of small suspicious thyroid nodules. Endocr. Pract. 2020, 26, 857–868. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, S.J.; Kim, E.K.; Kim, M.J.; Son, E.J.; Kwak, J.Y. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am. J. Roentgenol. 2009, 193, 416–423. [Google Scholar] [CrossRef]
- Kim, H.L.; Ha, E.J.; Han, M. Real-World Performance of Computer-Aided Diagnosis System for Thyroid Nodules Using Ultraosonography. Ultrasound Med. Biol. 2019, 45, 2672–2678. [Google Scholar] [CrossRef]
- Sheng, J.G.; Wang, B.; Cao, K.K.; Zhang, S. Relationship of thyroid ultrasound elasticity contrast index with serum autoantibody and Th1/Th2 cytokine levels in patients with Hashimoto’s thyroiditis. J. Hainan Med. Univ. 2016, 22, 147–150. [Google Scholar]
- Di, Z.; Li, Z.; Tian, J.; Wang, D.; Liu, L.; Liu, C. The value of elasticity contrast index in the differential diagnosis of thyroid solid nodules. Ultrasound Q. 2019, 35, 259–263. [Google Scholar] [CrossRef]
- Aghaghazvini, L.; Maheronnaghsh, R.; Soltani, A.; Rouzrokh, P.; Chavoshi, M. Diagnostic value of shear wave sonoelastography in differentiation of benign from malignant thyroid nodules. Eur. J. Radiol. 2020, 126, 108926. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, L.L.; Zhang, C.J.; Wei, H.F.; Xu, L.L.; Zhang, M.R.; Li, Q.; He, G.F.; Edem Prince, G.A.; Li, S.Y. Comparison of S-Detect and thyroid imaging reporting and data system classifications in the diagnosis of cystologically indeterminate thyroid nodules. Front. Endocrinol. 2023, 14, 1098031. [Google Scholar] [CrossRef]
- Ziman, C.; Nonhlanhla, C.; Xina, L.; Shirley, Y.W.L.; Simon, T.G.; Xinyang, H.; Michael, T.C.Y. Improving the diagnostic strategy for thyroid nodules: A combination of artificial intelligence-based computer-aided diagnosis system and shear wave elastography. Endocrine 2025, 87, 744–757. [Google Scholar] [CrossRef]
- Du, Y.R.; Ji, C.L.; Wu, Y.; Gu, X.G. Combination of ultrasound elastography with TI-RADS in the diagnosis of small thyroid nodules (≤10 mm): A new method to increase the diagnostic performance. Eur. J. Radiol. 2018, 109, 33–40. [Google Scholar] [CrossRef]
- Wang, F.; Chang, C.; Chen, M.; Cao, Y.; Chen, Y.L.; Zhou, S.C.; Li, J.W.; Zhi, W.X. Does lesion size affect the value of shear wave elastography for differentiating between benign and malignant thyroid nodules? J. Ultrasound Med. 2018, 37, 601–609. [Google Scholar] [CrossRef]
- Han, R.J.; Du, J.; Li, F.H.; Zong, H.R.; Wang, J.D.; Shen, Y.L.; Zhou, Q.Y. Comparisons and combined application of two-dimensional and three-dimensional real-time shear wave elastography in diagnosis of thyroid nodules. J. Cancer 2019, 10, 1975–1984. [Google Scholar] [CrossRef]
- Reverter, J.L.; Vázquez, F.; Puig-Domingo, M. Diagnostic performance evaluation of computer-assisted imaging analysis system for ultrasound risk stratification of thyroid nodules. AJR Am. J. Roentgenol. 2019, 213, 169–174. [Google Scholar] [CrossRef]
- Gao, L.; Liu, R.; Jiang, Y.; Song, W.; Wang, Y.; Liu, J.; Wang, J.; Wu, D.; Li, S.; Hao, A.; et al. Computer-aided system for diagnosing thyroid nodules on ultrasound: A comparison with radiologist-based clinical assessments. Head Neck 2018, 40, 778–783. [Google Scholar] [CrossRef]
Category | Meaning | Risk of Malignancy (%) |
---|---|---|
I | Non-diagnostic or inadequate | 1–4 |
II | Benign | 1–3 |
III | Atypia/follicular lesion of undetermined significance | 5–15 |
IV | Follicular neoplasm or suspicious for follicular neoplasm | 20–30 |
V | Suspicious for malignancy | 60–75 |
VI | Malignant | 97–99 |
Variable | n (%) | Benign | Malignant | χ2/t | p Value | |
---|---|---|---|---|---|---|
Sex | Male | 61 (38.4) | 36 (22.7) | 25 (15.7) | 0.87 | 0.352 |
Female | 98 (61.6) | 65 (40.9) | 33 (20.7) | |||
Age (year) | 56.14 ± 11.35 | 56.53 ± 10.29 | 55.45 ± 13.06 | 0.54 | 0.021 | |
Size (cm) | 1.07 ± 0.85 | 1.23 ± 0.94 | 0.79 ± 0.58 | 3.58 | 0.002 | |
Composition | Solid | 146 (91.8) | 89 (56.0) | 57 (35.8) | 5.12 | 0.077 |
Predominantly solid | 11 (6.9) | 10 (6.3) | 1 (0.6) | |||
Predominantly cystic | 2 (1.3) | 2 (1.3) | 0 (0.0) | |||
Echogenicity | Hypoechogenicity | 119 (74.8) | 62 (39.0) | 57 (35.8) | 26.63 | <0.001 |
Isoechogenicity | 40 (25.2) | 39 (24.6) | 1 (0.6) | |||
Orientation | Parallel | 105 (66.0) | 82 (51.5) | 23 (14.5) | 28.34 | <0.001 |
Nonparallel | 54 (34.0) | 19 (12.0) | 35(22.0) | |||
Margin | Circumscribed | 75 (47.2) | 64 (40.3) | 11 (6.9) | 29.99 | <0.001 |
Not circumscribed | 84 (52.8) | 37 (23.3) | 47 (29.5) | |||
Shape | Oval | 67 (42.1) | 60 (37.7) | 7 (4.4) | 36.84 | <0.001 |
Round | 34 (21.4) | 19 (12.0) | 15 (9.4) | |||
Irregular | 58 (36.5) | 22 (13.8) | 36 (22.7) | |||
Calcification | Presence | 111 (69.8) | 82 (51.6) | 29 (18.2) | 17.00 | <0.001 |
Absence | 48 (30.2) | 19 (12.0) | 29 (18.2) | |||
Posterior shadow | Presence | 131 (82.4) | 89 (56.0) | 42 (26.4) | 6.26 | 0.012 |
Absence | 28 (17.6) | 12 (7.5) | 16 (10.1) | |||
S-detect | Benign | 76 (47.8) | 69 (43.4) | 7 (4.4) | 46.72 | <0.001 |
Malignant | 83 (52.2) | 32 (20.1) | 51 (32.1) | |||
ECI | Benign | 89 (56.0) | 82 (51.6) | 7 (4.4) | 140.29 | 0.181 |
Malignant | 70 (44.0) | 19 (11.9) | 51 (32.1) | |||
Radiologist | Benign | 81 (50.9) | 80 (50.3) | 1 (0.6) | 88.51 | <0.001 |
Malignant | 78 (49.1) | 21 (13.2) | 57 (35.9) | |||
Total | 159 (100) | 101 (63.5) | 58 (36.5) |
Variable | AUC (95% CI) | Sensitivity | Specificity | Youden Index | PPV | NPV | p Value |
---|---|---|---|---|---|---|---|
S-detect | 0.78 (0.72–0.84) | 87.93 | 68.32 | 0.562 | 61.4 | 90.8 | <0.001 |
ECI | 0.85 (0.79–0.90) | 87.93 | 81.19 | 0.773 | 72.9 | 92.1 | <0.001 |
Radiologist | 0.89 (0.84–0.93) | 98.28 | 79.21 | 0.775 | 73.1 | 98.8 | <0.001 |
Variable | Kappa | SE | 95% CI | p Value |
---|---|---|---|---|
S-detect | 0.52 | 0.06 | 0.38~0.64 | <0.001 |
ECI | 0.66 | 0.06 | 0.54~0.78 | <0.001 |
Radiologist | 0.72 | 0.05 | 0.62~0.83 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-Y.; Yang, S.-H. Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection. Diagnostics 2025, 15, 2191. https://doi.org/10.3390/diagnostics15172191
Park J-Y, Yang S-H. Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection. Diagnostics. 2025; 15(17):2191. https://doi.org/10.3390/diagnostics15172191
Chicago/Turabian StylePark, Jee-Yeun, and Sung-Hee Yang. 2025. "Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection" Diagnostics 15, no. 17: 2191. https://doi.org/10.3390/diagnostics15172191
APA StylePark, J.-Y., & Yang, S.-H. (2025). Comparative Analysis of Diagnostic Performance Between Elastography and AI-Based S-Detect for Thyroid Nodule Detection. Diagnostics, 15(17), 2191. https://doi.org/10.3390/diagnostics15172191