Enhancing Alzheimer’s Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Dataset
3.2. Pre-Processing
3.3. Feature Extraction
3.4. Feature Selection
3.5. Hyperparameter Optimization
3.6. Classification
3.7. Performance Evaluation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
AUC | Area Under Curve |
BILSTM | Bidirectional Long Short-Term Memory |
BCR | Balanced Classification Rate |
CC | Conventional Coherence |
CNN | Convolutional Neural Networks |
CWT | Continuous Wavelet Transform |
DT | Decision Trees |
DWT | Discrete Wavelet Transform |
ELM | Extreme Learning Machine |
EMD | Empirical Mode Decomposition |
FDR | False Discovery Rate |
FFT | Fast Fourier Transform |
FTD | Frontotemporal Dementia |
HC | Healthy Individuals |
ICA | Independent Component Analysis |
k-NN | k-Nearest Neighbors |
ML | Machine Learning |
MLP | Multilayer Perceptron Model |
MMSE | Mini-Mental State Examination |
NN | Neural Network |
NPV | Negative Predictive Value |
PCLDA | Principal Component Linear Discriminant Analysis |
PCLR | Principal Component Logistic Regression |
PLSLDA | Partial Least Squares LDA |
PNN | Probabilistic Neural Network |
PSD | Power Spectral Density |
QDA | Quadratic Discriminant Analysis |
RF | Random Forest |
ROC | Receiver Operating Characteristic |
SVMs | Support Vector Machines |
t-SNE | t-distributed Stochastic Neighbor Embedding |
WC | Wavelet coherence |
References
- Safi, M.S.; Safi, S.M.M. Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed. Signal Process. Control 2021, 65, 102338. [Google Scholar] [CrossRef]
- Patterson, C. World Alzheimer report 2018: The state of the art of dementia research: New frontiers. Alzheimer’s Dis. Int. (ADI) 2018, 2, 14–20. [Google Scholar]
- Durongbhan, P.; Zhao, Y.; Chen, L.; Zis, P.; De Marco, M.; Unwin, Z.C.; Sarrigiannis, P.G. A dementia classification framework using frequency and time-frequency features based on EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 826–835. [Google Scholar] [CrossRef]
- Alsubaie, M.G.; Luo, S.; Shaukat, K. Alzheimer’s disease detection using deep learning on neuroimaging: A systematic review. Mach. Learn. Knowl. Extr. 2024, 6, 464–505. [Google Scholar] [CrossRef]
- Fonteijn, H.M.; Modat, M.; Clarkson, M.J.; Barnes, J.; Lehmann, M.; Hobbs, N.Z.; Alexander, D.C. An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease. NeuroImage 2012, 60, 1880–1889. [Google Scholar] [CrossRef] [PubMed]
- Ghanemi, A. Alzheimer’s disease therapies: Selected advances and future perspectives. Alex. J. Med. 2015, 51, 1–3. [Google Scholar] [CrossRef]
- AlSharabi, K.; Salamah, Y.B.; Abdurraqeeb, A.M.; Aljalal, M.; Alturki, F.A. EEG signal processing for Alzheimer’s disorders using discrete wavelet transform and machine learning approaches. IEEE Access 2022, 10, 89781–89797. [Google Scholar] [CrossRef]
- Alberdi, A.; Aztiria, A.; Basarab, A. On the early diagnosis of Alzheimer’s Disease from multimodal signals: A survey. Artif. Intell. Med. 2016, 71, 1–29. [Google Scholar] [CrossRef]
- Ruiz-Gómez, S.J.; Gómez, C.; Poza, J.; Gutiérrez-Tobal, G.C.; Tola-Arribas, M.A.; Cano, M.; Hornero, R. Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment. Entropy 2018, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Miltiadous, A.; Gionanidis, E.; Tzimourta, K.D.; Giannakeas, N.; Tzallas, A.T. DICE-net: A novel Convolution-Transformer Architecture for Alzheimer Detection in EEG Signals. IEEE Access 2023, 11, 71840–71858. [Google Scholar] [CrossRef]
- Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? Curr. Alzheimer Res. 2010, 7, 487–505. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Tsolaki, A.; Kazis, D.; Kompatsiaris, I.; Kosmidou, V.; Tsolaki, M. Electroencephalogram and Alzheimer’s disease: Clinical and research approaches. Int. J. Alzheimer’s Dis. 2014, 2014, 349249. [Google Scholar] [CrossRef]
- Berger, H. Über das Elektrenkephalogramm des Menschen: Dritte Mitteilung. Arch. Psychiatr. Nervenkr. 1931, 94, 16–60. [Google Scholar] [CrossRef]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef] [PubMed]
- Özbilgin, F.; Kurnaz, Ç.; Aydın, E. Prediction of coronary artery disease using machine learning techniques with iris analysis. Diagnostics 2023, 13, 1081. [Google Scholar] [CrossRef] [PubMed]
- Özbilgin, F.; Kurnaz, Ç.; Aydın, E. Non-invasive coronary artery disease identification through the iris and bio-demographic health profile features using stacking learning. Image Vision. Comput. 2024, 146, 105046. [Google Scholar] [CrossRef]
- Özbilgin, F.; Kurnaz, Ç. An alternative approach for determining the cholesterol level: Iris analysis. Int. J. Imaging Syst. Technol. 2022, 32, 1159–1171. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939. [Google Scholar] [CrossRef]
- Penttilä, M.; Partanen, J.V.; Soininen, H.; Riekkinen, P.J. Quantitative analysis of occipital EEG in different stages of Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1985, 60, 1–6. [Google Scholar] [CrossRef]
- Brenner, R.P.; Reynolds, C.F., III; Ulrich, R.F. Diagnostic efficacy of computerized spectral versus visual EEG analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 1988, 69, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, C.; Koenig, T.; Jelic, V.; Prichep, L.; John, R.E.; Wahlund, L.O.; Dierks, T. Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 2007, 161, 342–350. [Google Scholar] [CrossRef]
- Sankari, Z.; Adeli, H. Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J. Neurosci. Methods 2011, 197, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Morabito, F.C.; Campolo, M.; Ieracitano, C.; Ebadi, J.M.; Bonanno, L.; Bramanti, A.; Bramanti, P. Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings. In Proceedings of the IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Fiscon, G.; Weitschek, E.; Cialini, A.; Felici, G.; Bertolazzi, P.; De Salvo, S.; De Cola, M.C. Combining EEG signal processing with supervised methods for Alzheimer’s patients classification. BMC Med. Inform. Decis. Mak. 2018, 18, 35. [Google Scholar] [CrossRef]
- Bairagi, V. EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features. Int. J. Inf. Technol. 2018, 10, 403–412. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Alù, F.; Menna, M.; Judica, E.; Cotelli, M.; Rossini, P.M. Classification of Alzheimer’s disease with respect to physiological aging with innovative EEG biomarkers in a machine learning implementation. J. Alzheimer’s Dis. 2020, 75, 1253–1261. [Google Scholar] [CrossRef]
- Göker, H. Welch Spectral Analysis and Deep Learning Approach for Diagnosing Alzheimer’s Disease from Resting-State EEG Recordings. Trait. Du Signal 2023, 40, 257–264. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, J.B.; Kim, H.; Kim, L.; Kim, S.H. Early Diagnosis of Alzheimer’s Disease in Human Participants Using EEG Conformer and Attention-Based LSTM During the Short Question Task. Diagnostics 2025, 15, 448. [Google Scholar] [CrossRef]
- OpenNeuro. Available online: https://openneuro.org/datasets/ds004504/versions/1.0.6 (accessed on 4 September 2024).
- Chang, C.Y.; Hsu, S.H.; Pion-Tonachini, L.; Jung, T.P. Evaluation of artifact subspace reconstruction for automatic EEG artifact removal. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 1242–1245. [Google Scholar] [CrossRef]
- Jung, T.P.; Humphries, C.; Lee, T.W.; Makeig, S.; McKeown, M.; Iragui, V.; Sejnowski, T.J. Extended ICA removes artifacts from electroencephalographic recordings. In Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10 (NIPS ’97), Denver, CO, USA, 31 July 1997; pp. 894–900. [Google Scholar]
- Smith, E.E.; Reznik, S.J.; Stewart, J.L.; Allen, J.J. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. Int. J. Psychophysiol. 2017, 111, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, M. Review of the emotional feature extraction and classification using EEG signals. Cogn. Robot. 2021, 1, 29–40. [Google Scholar] [CrossRef]
- Parhi, K.K.; Ayinala, M. Low-complexity Welch power spectral density computation. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 61, 172–182. [Google Scholar] [CrossRef]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar] [CrossRef]
- Xiao, C.; Ye, J.; Esteves, R.M.; Rong, C. Using Spearman’s correlation coefficients for exploratory data analysis on big dataset. Concurr. Comput. Pract. Exp. 2016, 28, 3866–3878. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y. On the importance of the Pearson correlation coefficient in noise reduction. IEEE Trans. Audio Speech Lang. Process. 2008, 16, 757–765. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar] [CrossRef]
- Garnett, R. Bayesian Optimization; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Frazier, P.I. A tutorial on Bayesian optimization. arXiv 2018. [Google Scholar] [CrossRef]
- Telikani, A.; Tahmassebi, A.; Banzhaf, W.; Gandomi, A.H. Evolutionary machine learning: A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–35. [Google Scholar] [CrossRef]
- Lujan, M.Á.; Jimeno, M.V.; Mateo Sotos, J.; Ricarte, J.J.; Borja, A.L. A survey on EEG signal processing techniques and machine learning: Applications to the neurofeedback of autobiographical memory deficits in schizophrenia. Electronics 2021, 10, 3037. [Google Scholar] [CrossRef]
- Günal, S. Örüntü Tanıma Uygulamalarında Alt Uzay Analiziyle Öznitelik Seçimi ve Sınıflandırma. Doctoral Thesis, Osmangazi University, Eskişehir, Turkey, 2008. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A review of feature selection and feature extraction methods applied on microarray data. Advemces Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef]
- Hosseini, M.P.; Hosseini, A.; Ahi, K. A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 2020, 14, 204–218. [Google Scholar] [CrossRef]
- Kızılaslan, G. Meta Sezgisel Algoritmalar İle Biyolojik Sinyallerin İşlenmesi. Master’s Thesis, İstanbul Üniversitesi, İstanbul, Turkey, 2012. [Google Scholar]
- Musolf, A.M.; Holzinger, E.R.; Malley, J.D.; Bailey-Wilson, J.E. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics. Hum. Genet. 2022, 141, 1515–1528. [Google Scholar] [CrossRef]
- Eşme, E.; Karlık, B. Design of intelligent garment with sensor fusion for rescue teams. J. Fac. Eng. Archit. Gazi Univ. 2019, 34, 1187–1200. [Google Scholar]
- Maria Navin, J.R.; Pankaja, R. Performance analysis of text classification algorithms using confusion matrix. Int. J. Eng. Tech. Res. (IJETR) 2016, 6, 75–78. [Google Scholar]
- Heydarian, M.; Doyle, T.E.; Samavi, R. MLCM: Multi-label confusion matrix. IEEE Access 2022, 10, 19083–19095. [Google Scholar] [CrossRef]
- Bergil, E. EEG İşaretlerinin Epileptik Nöbet Kestiriminde Modern Yöntemlerle Analizi ve Sınıflandırılması. Doctoral Thesis, Sakarya University, Sakarya, Turkey, 2018. [Google Scholar]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Process 2015, 5, 1. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, A.; Yu, J.; Wang, P.; Bi, Y.; Xue, S.; Zhang, J.; Guo, H.; Zhang, W. The effect of aperiodic components in distinguishing Alzheimer’s disease from frontotemporal dementia. Geroscience 2024, 46, 751–768. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Zhang, D.; Zhang, L.; Tao, L. Multi-feature fusion learning for Alzheimer’s disease prediction using EEG signals in resting state. Front. Neurosci. 2023, 17, 1272834. [Google Scholar] [CrossRef] [PubMed]
- Velichko, A.; Belyaev, M.; Izotov, Y.; Murugappan, M.; Heidari, H. Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation. Algorithms 2023, 16, 255. [Google Scholar] [CrossRef]
- Ma, Y.; Bland, J.K.S.; Fujinami, T. Classification of Alzheimer’s disease and frontotemporal dementia using electroencephalography to quantify communication between electrode pairs. Diagnostics 2024, 14, 2189. [Google Scholar] [CrossRef]
- Rostamikia, M.; Sarbaz, Y.; Makouei, S. EEG-based classification of Alzheimer’s disease and frontotemporal dementia: A comprehensive analysis of discriminative features. Cogn. Neurodynamics 2024, 18, 3447–3462. [Google Scholar] [CrossRef]
- Stefanou, K.; Tzimourta, K.D.; Bellos, C.; Stergios, G.; Markoglou, K.; Gionanidis, E.; Tsipouras, M.G.; Giannakeas, N.; Tzallas, A.T.; Miltiadous, A. A novel CNN-based framework for alzheimer’s disease detection using EEG spectrogram representations. J. Pers. Med. 2025, 15, 27. [Google Scholar] [CrossRef] [PubMed]
Author(s), Year | Dataset | Bands Used | Feature Extraction | Classifiers Applied | Metrics & Performance | Limitations | Significance |
---|---|---|---|---|---|---|---|
Lehmann et al., 2007 [22] | 116 mild AD, 81 moderate AD, 45 HC | Delta, Theta, Alpha1, Alpha2, Beta1–3 | Spectral power, centroids, synchronization (hand-crafted) | PC-LDA, PLS-LDA, PC-LR, PLS-LR, Bagging, RF, SVM, NN | SVM and NN (Mod. AD vs. HC: Sens. 89%, Spec. 88%) | High sensitivity to feature selection, sample imbalance risk. | Demonstrated feasibility of EEG-based AD classification; modern ML methods are slightly superior. |
Sankari and Adeli, 2011 [23] | 20 AD, 7 HC | Delta, Theta, Alpha, Beta | Coherence and wavelet coherence (hand-crafted) | PNN | Conventional coherence: 100% accuracy | Small sample size, potential overfitting. | Demonstrated potential of coherence measures and PNN in early AD diagnosis using EEG. |
Morabito et al., 2016 [24] | 63 AD, 56 MCI, 23 HC | 0.1–30 Hz total (includes Delta, Theta, Alpha, Beta) | CWT + time–frequency stats; CNN learns latent features; mix of hand-crafted and automatic | CNN | AD/MCI/HC: 82% acc., 83% sens., 75% spec. | Better training accuracy (95%). | Deep CNN effectively extracted latent EEG features. |
Fiscon et al., 2018 [25] | 49 AD, 37 MCI, 23 HC | Delta, Theta, Alpha, Beta, Gamma | FFT, DWT (hand-crafted) | DT | AD vs. HC: 83% acc. | Small sample, limited generalizability. | Shows strong potential for early AD detection. |
Bairagi et al., 2018 [26] | 20AD, 25HC | Delta, Theta, Alpha, Beta | DWT (hand-crafted) | SVM, k-NN | 94% acc. | Small dataset; limited generalizability. | Combining entropy and fractal features with wavelet analysis yields high accuracy for AD detection. |
Durongbhan et al., 2019 [3] | 20 AD, 20 HC | Delta, Theta, Alpha, Beta | FFT, CWT (hand-crafted); | k-NN, SVM, DT | k-NN: FFT features: 97% acc., CWT features: 99% acc. | Relatively small dataset, class balance and overfitting risk not detailed. | Spectral features from FFT and CWT combined with k-NN yielded high AD classification accuracy. |
Vecchio et al., 2020 [27] | 175 AD, 120 HC | Delta, Theta Alpha1, Alpha2, Beta 1, Beta2, Gamma | Lagged Linear Coherence (hand-crafted) | SVM | 95% ± 3% acc. | Limited to logistic regression, no external validation. | LLC features can effectively classify AD vs. HC with high accuracy. |
Safi & Safi, 2021 [1] | EEG; 31 mild AD, 20 moderate AD, 35 HC | Delta, Theta, Alpha, Beta | PSD, DWT, EMD (hand-crafted) | k-NN, SVM, RLDA | 97.64% acc. | Performance varies across decomposition methods. | Demonstrated effectiveness of decomposition-based Hjorth features in classifying AD severity. |
AlSharabi et al., 2022 [7] | EEG; 31 mild AD, 22 moderate AD, 35 HC; | Delta, Theta, Alpha, Beta, Gamma | DWT + statistical features (hand-crafted) | LDA, QDA, SVM, k-NN, NB, DT, ELM, ANN, RF | 99.98% acc. with k-NN using DWT features | No external validation, dataset overlap risk. | Very high accuracy using DWT-based features suggests strong discriminative potential for AD stages. |
Göker et al., 2023 [28] | 24 AH, 24 HC | Delta, Theta, Alpha, Beta, Gamma | PSD (hand-crafted) | SVM, k-NN, RF, BiLSTM | 98.85% acc. for the HC class | Relatively small dataset, no external validation. | In the EEG dataset, channels from individual subjects were treated as independent recordings. |
Kim et al., 2025 [29] | 20 SCD, 28 MCI, 10 AD | Delta, Theta, Alpha, Beta, Gamma | Automatic feature extraction | EEG Conformer/ Attention-LSTM | Resting-state acc: 71.67%, Tasking-state acc: 79.16% | AD-MCI separation remains challenging. | Shows promise in differentiating SCD, MCI, and AD using EEG-based deep learning. |
Gender | Mean Age | |
---|---|---|
AD | 13 Males/23 Females | 66.4 (±7.9) |
FTD | 14 Males/9 Females | 63.6 (±8.2) |
HC | 11 Males/18 Females | 67.9 (±5.4) |
Recording Time (Minute) | |||
---|---|---|---|
Minimum | Maximum | Total | |
AD | 5.1 | 21.3 | 485.5 |
FTD | 7.9 | 16.9 | 276.5 |
HC | 12.5 | 16.5 | 402 |
Feature Number | Domain | Feature | Equation | Equation Number |
---|---|---|---|---|
1 | Time | Kurtosis (KU) | (2) | |
2 | Average (AVG) | (3) | ||
3 | Root Mean Square (RMS) | (4) | ||
4 | Skewness (SK) | (5) | ||
5 | Standard deviation (SD) | (6) | ||
6 | Variance (VAR) | (7) | ||
7 | Norm (NOR) | (8) | ||
8 | Spectral | Delta Band Power (DBP) | (9) | |
9 | Theta Band Power (TBP) | |||
10 | Alpha Band Power (ABP) | |||
11 | Beta Band Power (BBP) | |||
12 | Gamma Band Power (GBP) | |||
13 | Delta-Theta Band Power Ratio (DTBPR) | |||
14 | Delta-Alpha Band Power Ratio (DABPR) | (10) | ||
15 | Delta-Beta Band Power Ratio (DTBPR) | |||
16 | Theta-Alpha Band Power Ratio (TABPR) | |||
17 | Theta-Beta Band Power Ratio (TBBPR) | |||
18 | Alpha-Beta Band Power Ratio (ABBPR) |
Frequency Range | |
---|---|
Delta | 0.5–4 Hz |
Theta | 4–8 Hz |
Alpha | 8–13 Hz |
Beta | 13–25 Hz |
Gamma | 25–45 Hz |
Predicted | |||
---|---|---|---|
Positive | Negative | ||
True | Positive | TP | FN |
Negative | FP | TN |
Feature | Equation | Equation Number |
---|---|---|
Accuracy | (20) | |
Sensitivity | (21) | |
Specificity | (22) | |
Precision | (23) | |
NPV | (24) | |
FDR | 1-Precision | (25) |
BCR | (26) | |
F1 Score | (27) |
Dataset | Label | Data Count | Proportion | Total Data Count | Overall Ratio |
---|---|---|---|---|---|
Training | AD | 1321 | 41.74% | 3165 | 70% |
FTD | 750 | 23.70% | |||
HC | 1094 | 34.57% | |||
Testing | AD | 567 | 41.81% | 1356 | 30% |
FTD | 320 | 23.60% | |||
HC | 469 | 34.59% |
No | Feature | Data Number | Spearman Corr. Coeff. | Pearson Corr. Coeff. | ||
---|---|---|---|---|---|---|
1 | 1189 | 3452 | ||||
Label | ||||||
AD | HC | FTD | ||||
1 | Fp1/KU | 2.9388 | 3.7483 | 2.7580 | −0.0016 | 0.0111 |
2 | Fp1/AVG | 0.5395 | 0.0301 | −0.6613 | −0.0258 | 0.0251 |
3 | Fp1/RMS | 31.3199 | 36.5374 | 32.3603 | 0.0383 | 0.0451 |
4 | Fp1/SK | 0.1353 | 0.5760 | 0.1422 | 0.0361 | 0.0266 |
5 | Fp1/SS | 31.3163 | 36.5386 | 32.3546 | 0.0382 | 0.0447 |
6 | Fp1/VAR | 980.7131 | 1335.0740 | 1046.8250 | 0.0382 | 0.0415 |
7 | Fp1/NO | 3835.8940 | 4474.9080 | 3963.3200 | 0.0383 | 0.0451 |
8 | Fp1/DBP | 398.0764 | 617.8834 | 668.4050 | −0.0224 | −0.0444 |
9 | Fp1/TBP | 53.1110 | 43.7246 | 54.8660 | −0.2247 | −0.1329 |
10 | Fp1/ABP | 13.0952 | 26.2170 | 20.6642 | 0.2161 | 0.2019 |
11 | Fp1/BBP | 15.7033 | 11.5111 | 9.4213 | 0.0866 | 0.0487 |
12 | Fp1/GBP | 22.1014 | 5.0517 | 3.8901 | −0.0849 | −0.0089 |
13 | Fp1/DTBPR | 0.1334 | 0.0707 | 0.0820 | −0.2062 | −0.1416 |
14 | Fp1/DABPR | 0.0328 | 0.0424 | 0.0309 | 0.2393 | 0.2055 |
15 | Fp1/DBBPR | 0.0394 | 0.0186 | 0.0140 | 0.0983 | 0.0573 |
16 | Fp1/TABPR | 0.2465 | 0.5995 | 0.3766 | 0.4279 | 0.2785 |
17 | Fp1/TBBPR | 0.2956 | 0.2632 | 0.1717 | 0.2610 | 0.0969 |
18 | Fp1/ABBPR | 1.1991 | 0.4390 | 0.4559 | −0.1956 | −0.0893 |
Selected Features |
---|
268, 178, 286, 160, 124, 176, 172, 269, 266, 262, 232, 179, 340, 125, 16, 233, 34, 142, 287, 304, 158, 214, 263, 154, 280, 180, 284, 70, 161, 267, 173, 52, 118, 122, 250, 162, 196, 177, 341, 119, 143, 270, 305, 338, 334, 288, 140, 281, 136, 155, 123, 159, 189, 88, 285, 227, 106, 335, 231, 342, 251, 230, 144, 126, 89, 107, 225, 137, 226, 17, 36, 339, 197, 297, 141, 32, 53, 193, 14, 45, 207, 322, 49, 243, 215, 302, 9, 28, 301, 212, 229, 27, 10, 83, 248, 63, 216, 244, 298, 208, 13, 82, 101, 35, 68, 71, 67, 247, 18, 64, 211, 72, 31, 100, 50, 174, 86, 306, 135, 46, 194, 104, 279, 299, 283, 245, 316, 87, 105, 303 |
Kernel Function | Kernel Scale | Number of Features | Box Constraint Level | Training % |
---|---|---|---|---|
Quadratic | Automatic | 342 | 1 | 89.66 |
2.4972 | 90.81 | |||
3 | 89.98 | |||
4 | 89.98 | |||
5 | 90.58 | |||
130 | 1 | 92.13 | ||
2 | 93.23 | |||
3 | 93.17 | |||
3.9812 | 92.60 | |||
5 | 92.92 | |||
50 | 2 | 87.42 | ||
3 | 87.29 | |||
4 | 87.64 | |||
5 | 87.14 | |||
5.5952 | 88.06 |
Distance Metric | Distance Weight | Number of Features | k | Training % |
---|---|---|---|---|
Cosine | Squared Inverse | 342 | 2 | 76.87 |
3 | 77.21 | |||
4 | 78.60 | |||
5 | 77.34 | |||
6 | 77.88 | |||
130 | 2 | 90.05 | ||
3 | 89.92 | |||
4 | 89.73 | |||
5 | 89.85 | |||
6 | 89.98 | |||
50 | 2 | 88.65 | ||
3 | 88.49 | |||
4 | 88.69 | |||
5 | 89.03 | |||
6 | 88.53 |
Classification | Number of Features | Accuracy% | Sensitivity | Specificity | Precision | NPV | FDR | BCR | F1 Score | AUC |
---|---|---|---|---|---|---|---|---|---|---|
SVM | 342 | 95.94 | 0.96 | 0.95 | 0.93 | 0.97 | 0.06 | 0.96 | 0.95 | 0.98 |
130 | 96.01 | 0.97 | 0.95 | 0.93 | 0.97 | 0.06 | 0.96 | 0.95 | 0.98 | |
50 | 92.99 | 0.97 | 0.89 | 0.87 | 0.97 | 0.12 | 0.93 | 0.92 | 0.98 | |
k-NN | 342 | 84.29 | 0.86 | 0.82 | 0.78 | 0.89 | 0.21 | 0.85 | 0.82 | 0.93 |
130 | 94.54 | 0.93 | 0.95 | 0.93 | 0.95 | 0.06 | 0.95 | 0.93 | 0.96 | |
50 | 92.62 | 0.92 | 0.92 | 0.89 | 0.94 | 0.10 | 0.93 | 0.91 | 0.97 |
Ref. | Year | Band Power | Feature Extraction | Classifiers Applied | Metric and Performance |
---|---|---|---|---|---|
Miltidaous et al. [10] | 2023 | Delta, Theta, Alpha Beta, Gamma | Relative Band Power, Spectral Coherence Connectivity (SCC) | DICE-net | Acc: AD/HC = 83.23% |
Wang et al. [60] | 2023 | Theta, Alpha Beta | PSD | SVM | AUC: AD/FTD = 0.73 |
Chen et al. [61] | 2023 | Delta, Theta, Alpha Beta, Gamma | CNN+ Visual Transformers (ViTs) | CNN | Acc: AD/FTD/HC = 80.23% |
Velichko et al. [62] | 2023 | Delta, Theta, Alpha Beta, Gamma | New entropy: Neural Network Entropy (NNetEn) | SVM | Acc: AD/HC = 88.45% |
Ma et al. [63] | 2024 | Delta, Theta, Alpha Beta, Gamma | PHI values for each electrode pair | SVM | Acc: AD/HC = 76.9%, FTD/HC = 90.4% |
Rostamikia et al. [64] | 2024 | Delta, Theta, Alpha Beta, Gamma | Time and DWT | SVM | Acc: AD/FTD = 87.8%, AD + FTD/HC = 93.5% |
Stefanou et al. [65] | 2025 | Delta, Theta, Alpha Beta, Gamma | FFT-based spectrograms | CNN | Acc: AD/HC = 79.45%, AD + FTD/HC = 80.69% |
Proposed | 2025 | Delta, Theta, Alpha Beta, Gamma | Time and PSD | SVM | Acc: AD/FTD/HC = 96.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senkaya, Y.; Kurnaz, C.; Ozbilgin, F. Enhancing Alzheimer’s Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis. Diagnostics 2025, 15, 2190. https://doi.org/10.3390/diagnostics15172190
Senkaya Y, Kurnaz C, Ozbilgin F. Enhancing Alzheimer’s Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis. Diagnostics. 2025; 15(17):2190. https://doi.org/10.3390/diagnostics15172190
Chicago/Turabian StyleSenkaya, Yeliz, Cetin Kurnaz, and Ferdi Ozbilgin. 2025. "Enhancing Alzheimer’s Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis" Diagnostics 15, no. 17: 2190. https://doi.org/10.3390/diagnostics15172190
APA StyleSenkaya, Y., Kurnaz, C., & Ozbilgin, F. (2025). Enhancing Alzheimer’s Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis. Diagnostics, 15(17), 2190. https://doi.org/10.3390/diagnostics15172190