Influence of Aortoiliac Geometry on Non-Occlusive Thrombotic Risk Following Endovascular Repair of Abdominal Aortic Aneurysms
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Demographic
2.2. CTA Data Acquisition and Interpretation
2.3. Geometry Reconstruction and Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EVAR | Endovascular aneurysm repair |
AAA | Abdominal aortic aneurysms |
CTA | Computed tomography angiography |
GLA | Graft limb angle |
AIA | Aortoiliac angle |
GLT | Graft limb tortuosity |
rho | Spearman correlation coefficient |
CFD | Computational fluid dynamics |
AI | Artificial intelligence |
Appendix A
Previous Study [12] | Present Study | |
---|---|---|
Inclusion criteria | Post-EVAR thrombosis of aorta and/or iliac artery | Only thrombosis of iliac artery |
Measurements of vessel dimension | Circumferences and sectional areas of the aorta and iliac components | Diameter and cross-sectional area of iliac components |
Angles measurement | Bifurcation angle: angle between two iliac arteries | Aortoiliac angle (AIA): angle between aorta and iliac artery. Graft limb angle (GLA): angle between iliac stent and non-stent segments |
Tortuosity measurement | Proximal aorta to distal iliac stent segment | 3 cm above and below iliac stent distal end |
Results for iliac thrombosis | Statistically significant difference in iliac circumference sectional area. | Statistically significant difference in maximal diameter, GLA, AIA, and iliac tortuosity |
References
- Chinsakchai, K.; Thorthititum, D.; Hongku, K.; Wongwanit, C.; Tongsai, S.; Sermsathanasawadi, N.; Hahtapornsawan, S.; Puangpunngam, N.; Prapassaro, T.; Pruekprasert, K.; et al. Endovascular Versus Open Repair for Asymptomatic Abdominal Aortic Aneurysms: A 12-Year Retrospective Cohort Analysis. Ann. Vasc. Surg. 2025, 112, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.R.; Mao, J.; Beck, A.W.; Venermo, M.; Sedrakyan, A.; Behrendt, C.A.; Szeberin, Z.; Eldrup, N.; Schermerhorn, M.; Beiles, B.; et al. Variation in Intact Abdominal Aortic Aneurysm Repair Outcomes by Country: Analysis of International Consortium of Vascular Registries 2010–2016. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Jetty, P.; Husereau, D. Trends in the utilization of endovascular therapy for elective and ruptured abdominal aortic aneurysm procedures in Canada. J. Vasc. Surg. 2012, 56, 1518–1526, 1526.e1. [Google Scholar] [CrossRef] [PubMed]
- Braet, D.J.; Taaffe, J.P.; Singh, P.; Bath, J.; Kruse, R.L.; Vogel, T.R. Readmission and Utilization After Repair of Ruptured Abdominal Aortic Aneurysms in the United States. Vasc. Endovasc. Surg. 2021, 55, 245–253. [Google Scholar] [CrossRef]
- Levin, D.C.; Rao, V.M.; Parker, L.; Frangos, A.J.; Sunshine, J.H. Endovascular repair vs open surgical repair of abdominal aortic aneurysms: Comparative utilization trends from 2001 to 2006. J. Am. Coll. Radiol. 2009, 6, 506–515. [Google Scholar] [CrossRef]
- Daye, D.; Walker, T.G. Complications of endovascular aneurysm repair of the thoracic and abdominal aorta: Evaluation and management. Cardiovasc. Diagn. Ther. 2018, 8, S138–S156. [Google Scholar] [CrossRef]
- Draper, K.; Choi, S.H.J.; Fung, A.; Baxter, K.; Taylor, D.; Chen, J.C.; Misskey, J. Evaluation of factors associated with limb thrombus formation after endovascular aortic aneurysm repair. J. Vasc. Surg. 2023, 77, 440–445. [Google Scholar] [CrossRef]
- Mestres, G.; Maeso, J.; Fernandez, V.; Allegue, N.; Constenla, I.; Matas, M. Incidence and evolution of mural thrombus in abdominal aortic endografts. Ann. Vasc. Surg. 2009, 23, 627–660. [Google Scholar] [CrossRef]
- Wegener, M.; Görich, J.; Krämer, S.; Fleiter, T.; Tomczak, R.; Scharrer-Pamler, R.; Kapfer, X.; Brambs, H.J. Thrombus formation in aortic endografts. J. Endovasc. Ther. 2001, 8, 372–381. [Google Scholar] [CrossRef]
- Coelho, A.; Nogueira, C.; Lobo, M.; Gouveia, R.; Campos, J.; Augusto, R.; Coelho, N.; Semião, A.C.; Ribeiro, J.P.; Canedo, A. Impact of Post-EVAR Graft Limb Kinking in EVAR Limb Occlusion: Aetiology, Early Diagnosis, and Management. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 681–689. [Google Scholar] [CrossRef]
- Tzirakis, K.; Kontopodis, N.; Kehagias, E.; Ioannou, C.V. Effect of Sac Asymmetry, Neck and Iliac Angle on the Hemodynamic Behavior of Idealized Abdominal Aortic Aneurysm Geometries. Ann. Vasc. Surg. 2023, 93, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.H.A.; Lee, K.H.; Lee, J.I.; Hwang, H.P.; Han, Y.M.; Kwak, H.S. Impact of aorto-iliac hemodynamics and geometry on thrombotic complications following abdominal aortic endovascular aneurysm repair. Eur. J. Radiol. 2025, 187, 112116. [Google Scholar] [CrossRef] [PubMed]
- Mill, J.; Harrison, J.; Legghe, B.; Olivares, A.L.; Morales, X.; Noailly, J.; Iriart, X.; Cochet, H.; Sermesant, M.; Camara, O. In-Silico Analysis of the Influence of Pulmonary Vein Configuration on Left Atrial Haemodynamics and Thrombus Formation in a Large Cohort. In Proceedings of the Functional Imaging and Modeling of the Heart: 11th International Conference, FIMH 2021, Stanford, CA, USA, 21–25 June 2021; pp. 605–616. [Google Scholar]
- Heikkinen, M.A.; Alsac, J.M.; Arko, F.R.; Metsänoja, R.; Zvaigzne, A.; Zarins, C.K. The importance of iliac fixation in prevention of stent graft migration. J. Vasc. Surg. 2006, 43, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Schuurmann, R.C.; Ouriel, K.; Muhs, B.E.; Jordan, W.D., Jr.; Ouriel, R.L.; Boersen, J.T.; de Vries, J.P. Aortic curvature as a predictor of intraoperative type Ia endoleak. J. Vasc. Surg. 2016, 63, 596–602. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Xin, H.; Li, J.; Wang, H. Predisposing Factors for Migration of the Iliac Limb and Reintervention after Endovascular Abdominal Aortic Aneurysm Repair. Ann. Vasc. Surg. 2019, 59, 91–101. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases: Developed by the task force on the management of peripheral arterial and aortic diseases of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS), the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), and the European Society of Vascular Medicine (ESVM). Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef] [PubMed]
- Bindlish, S.; Ng, J.; Ghusn, W.; Fitch, A.; Bays, H.E. Obesity, thrombosis, venous disease, lymphatic disease, and lipedema: An obesity medicine association (OMA) clinical practice statement (CPS) 2023. Obes. Pillars 2023, 8, 100092. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; Anderson, K.R.; Topper, J.N. The Critical Role of Mechanical Forces in Blood Vessel Development, Physiology and Pathology. J. Vasc. Surg. 1999, 29, 1104–1151. [Google Scholar] [CrossRef]
- Lurie, J.M.; Png, C.Y.M.; Subramaniam, S.; Chen, S.; Chapman, E.; Aboubakr, A.; Marin, M.; Faries, P.; Ting, W. Virchow’s triad in “silent” deep vein thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2019, 7, 640–645. [Google Scholar] [CrossRef]
- Rana, A.; Westein, E.; Niego, B.; Hagemeyer, C.E. Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities. Front. Cardiovasc. Med. 2019, 6, 12. [Google Scholar] [CrossRef]
- Branchford, B.R.; Carpenter, S.L. The Role of Inflammation in Venous Thromboembolism. Front. Pediatr. 2018, 6, 142. [Google Scholar] [CrossRef]
- Aliseda, A.; Chivukula, V.K.; McGah, P.; Prisco, A.R.; Beckman, J.A.; Garcia, G.J.; Mokadam, N.A.; Mahr, C. LVAD Outflow Graft Angle and Thrombosis Risk. Asaio J. 2017, 63, 14–23. [Google Scholar] [CrossRef]
- Grewal, S.; Chamarthy, M.R.; Kalva, S.P. Complications of inferior vena cava filters. Cardiovasc. Diagn. Ther. 2016, 6, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Menichini, C.; Pirola, S.; Guo, B.; Fu, W.; Dong, Z.; Xu, X.Y. High Wall Stress May Predict the Formation of Stent-Graft-Induced New Entries After Thoracic Endovascular Aortic Repair. J. Endovasc. Ther. 2018, 25, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.F.; Bastos Gonçalves, F.M.; Hoeks, S.E.; Ten Raa, S.; Ultee, K.H.; Rouwet, E.; Hendriks, J.M.; Verhagen, H.J. Clinical outcome and morphologic determinants of mural thrombus in abdominal aortic endografts. J. Vasc. Surg. 2015, 61, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.H.; Liang, P.C.; Huang, S.C.; Chi, N.S.; Lin, F.Y.; Wang, S.S. The Significance of Endograft Geometry on the Incidence of Intraprosthetic Thrombus Deposits after Abdominal Endovascular Grafting. Eur. J. Vasc. Endovasc. Surg. 2009, 38, 741–747. [Google Scholar] [CrossRef]
- Kranendonk, J.; Vermulst, A.A.; van der Veen, D.; Kramers, C.; Warlé, M.C.; Reijnen, M.M.P.J. Impact of Antithrombotic Therapy on Thrombotic and Bleeding Complications after Elective Endovascular Repair of Abdominal Aortic Aneurysms. Cardiovasc. Interv. Radiol. 2025, 48, 157–166. [Google Scholar] [CrossRef]
- Mathlouthi, A.; Abdelkarim, A.; Elsayed, N.; Ramakrishnan, G.; Naazie, I.; Malas, M.B. Novel Risk Score Calculator for Perioperative Mortality after EVAR with Incorporation of Anatomical Factors. Ann. Vasc. Surg. 2023, 94, 289–295. [Google Scholar] [CrossRef]
- Saitta, S.; Sturla, F.; Caimi, A.; Riva, A.; Palumbo, M.C.; Nano, G.; Votta, E.; Corte, A.D.; Glauber, M.; Chiappino, D. A Deep Learning-Based and Fully Automated Pipeline for Thoracic Aorta Geometric Analysis and Planning for Endovascular Repair from Computed Tomography. J. Digit. Imaging 2022, 35, 226–239. [Google Scholar] [CrossRef]
Variables | No Thrombus (n = 36, 66.7%) | Thrombus (n = 18, 33.3%) | p Value |
---|---|---|---|
Age, years | 72.11 ± 7.64 | 70.56 ± 9.19 | 0.51 |
Sex, male | 30 (55.6) | 16 (29.6) | 0.59 |
BMI | 25.24 ± 4.16 | 24.03 ± 3.86 | 0.31 |
Alcohol | 12 (22.2) | 6 (11.1) | 1.0 |
Smoking | 18 (33.3) | 10 (18.5) | 0.70 |
Hypertension | 21 (38.9) | 13 (24.1) | 0.32 |
Diabetes | 10 (18.5) | 4 (7.4) | 0.66 |
Atrial fibrillation | 1 (1.9) | 0 | n/a |
Dyslipidemia | 9 (16.7) | 9 (16.7) | 0.07 |
Old stroke | 36 (67.9) | 17 (32.1) | 0.15 |
Antithrombotic therapy | |||
Anti-platelet therapy | 2 (3.7) | n/a | |
Oral antithrombotic therapy. | 4 (7.4) | n/a |
Variables | Iliac Thrombotic Segments (N = 18) | Normal Iliac Segments (N = 90) | p Value * | Correlation with Thrombotic Status p Value (Spearman’s Rho) ** |
---|---|---|---|---|
Maximum diameter, mm | 17.48 ± 0.95 | 14.14 ± 0.62 | 0.006 | 0.002 (0.362) |
Minimum diameter, mm | 9.47 ± 0.78 | 9.88 ± 0.59 | 0.682 | 0.201 (−0.380) |
Maximum sectional area, mm2 | 195.81 (65.11–301.12) | 147.4 (110.87–258.13) | 0.093 | 0.395 (0.102) |
Minimum sectional area, mm2 | 67.01 (47.18–84.24) | 76.09 (61.89–89.12) | 0.339 | 0.969 (−0.005) |
Graft limb angle, degree | 117.52 ± 5.61 | 148.54 ± 4.31 | <0.001 | 0.004 (−0.332) |
Aortoiliac angle, degree | 123.48 ± 4.66 | 141.96 ± 4.76 | 0.009 | 0.047 (−0.225) |
Graft limb tortuosity | 0.2 ± 0.03 | 0.12 ± 0.02 | 0.021 | 0.011 (0.189) |
Variable | Thrombotic Group (n = 18) | Control Group (n = 36) | ||
---|---|---|---|---|
p Value (Paired t-Test) | Mean Difference Thrombus Minus Normal | p Value (Paired t-Test) | Mean Difference: Right Minus Left | |
Maximum diameter, mm | 0.012 | 3.339 | 0.12 | 1.8 |
Minimum diameter, mm | 0.404 | −0.406 | 0.78 | −1.2 |
Maximum sectional area, mm2 | 0.088 | 44.116 | 0.042 | 10.1 |
Minimum sectional area, mm2 | 0.794 | −13.211 | 0.94 | −8.2 |
Graft limb angle, degree | 0.001 | −31.022 | 0.25 | 7.2 |
Aortoiliac angle, degree | 0.005 | −18.472 | 0.48 | −8.2 |
Graft limb tortuosity | 0.027 | 0.077 | 0.98 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.I.; Ngo, D.H.A.; Hwang, H.P.; Han, Y.M.; Kwak, H.S. Influence of Aortoiliac Geometry on Non-Occlusive Thrombotic Risk Following Endovascular Repair of Abdominal Aortic Aneurysms. Diagnostics 2025, 15, 2134. https://doi.org/10.3390/diagnostics15172134
Lee JI, Ngo DHA, Hwang HP, Han YM, Kwak HS. Influence of Aortoiliac Geometry on Non-Occlusive Thrombotic Risk Following Endovascular Repair of Abdominal Aortic Aneurysms. Diagnostics. 2025; 15(17):2134. https://doi.org/10.3390/diagnostics15172134
Chicago/Turabian StyleLee, Jeong In, Dac Hong An Ngo, Hong Pil Hwang, Young Min Han, and Hyo Sung Kwak. 2025. "Influence of Aortoiliac Geometry on Non-Occlusive Thrombotic Risk Following Endovascular Repair of Abdominal Aortic Aneurysms" Diagnostics 15, no. 17: 2134. https://doi.org/10.3390/diagnostics15172134
APA StyleLee, J. I., Ngo, D. H. A., Hwang, H. P., Han, Y. M., & Kwak, H. S. (2025). Influence of Aortoiliac Geometry on Non-Occlusive Thrombotic Risk Following Endovascular Repair of Abdominal Aortic Aneurysms. Diagnostics, 15(17), 2134. https://doi.org/10.3390/diagnostics15172134