Quantifying “Medical Renal Disease”: A Pediatric Pilot Study Using Ultrasound Radiomics for Differentiating Acute Kidney Injury and Chronic Kidney Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Selection Criteria
2.2. Quantitative Ultrasound Image Analysis
2.2.1. Region of Interest Selection
2.2.2. Feature Extraction
2.3. Statistical Analysis
2.4. Feature Selection and Classification Model
3. Results
3.1. Patient Characteristics
3.2. Ultrasound Radiomics Comparison Across Study Groups
3.3. Radiomic Features Classification Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sethi, S.K.; Bunchman, T.; Chakraborty, R.; Raina, R. Pediatric acute kidney injury: New advances in the last decade. Kidney Res. Clin. Pract. 2021, 40, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, K.R.; Harshman, L.A. Renal replacement therapies for infants and children in the ICU. Curr. Opin. Pediatr. 2020, 32, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.H.; Coca, S.; Parikh, C.R. Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: A systematic review. BMC Nephrol. 2014, 15, 184. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.B.; Muñoz, A.; Ng, D.K.; Warady, B.A.; Furth, S.L.; Schwartz, G.J. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021, 99, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.A.; Ng, D.K.; Warady, B.A.; Furth, S.L.; Flynn, J.T. The CKiD study: Overview and summary of findings related to kidney disease progression. Pediatr. Nephrol. 2021, 36, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Serai, S.D.; Morales, T.; Vossough, D.; Amaral, S.; Otero, H.J.; Baquerizo, B.V. Diffusion Tensor Imaging (DTI) as a Non-Invasive Tool for Assessing Pediatric Kidney Transplants: A Feasibility Study. Pediatr. Transplant. 2025, 29, e70119. [Google Scholar] [CrossRef] [PubMed]
- Larroza, A.; Bodí, V.; Moratal, D. Texture analysis in magnetic resonance imaging: Review and considerations for future applications. In Assessment of Cellular and Organ Function and Dysfunction Using Direct and Derived MRI Methodologies; Constantinides, C., Ed.; InTech: Hyogo, Japan, 2016; ISBN 978-953-51-2722-2. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Molinari, F.; Caresio, C.; Acharya, U.R.; Mookiah, M.R.K.; Minetto, M.A. Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Ultrasound Med. Biol. 2015, 41, 2520–2532. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, M.; Sultan, L.R.; Sagreiya, H.; Cary, T.W.; Karmacharya, M.B.; Sehgal, C.M. Ultrasound Radiomics for the Detection of Early-Stage Liver Fibrosis. Diagnostics 2022, 12, 2737. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Ashman, J.; Baker, L.A.; Watson, E.L.; Smith, A.C. Quantitative muscle ultrasonography using 2D textural analysis: A novel approach to assess skeletal muscle structure and quality in chronic kidney disease. Ultrason Imaging 2021, 43, 1617346211009788. [Google Scholar] [CrossRef] [PubMed]
- Priyanka; Kumar, D. Feature Extraction and Selection of kidney Ultrasound Images Using GLCM and PCA. Procedia Comput. Sci. 2020, 167, 1722–1731. [Google Scholar] [CrossRef]
- Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 2011, 7, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Sultan, L.R.; Grasso, V.; Jose, J.; Al-Hasani, M.; Karmacharya, M.B.; Sehgal, C.M. Advanced techniques for liver fibrosis detection: Spectral photoacoustic imaging and superpixel photoacoustic unmixing analysis for collagen tracking. Sensors 2024, 24, 4617. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, D.; Wang, F.; Gore, J.C.; Harris, R.C.; Takahashi, T. Clinical and experimental approaches for imaging of acute kidney injury. Clin. Exp. Nephrol. 2021, 25, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Faubel, S.; Patel, N.U.; Lockhart, M.E.; Cadnapaphornchai, M.A. Renal relevant radiology: Use of ultrasonography in patients with AKI. Clin. J. Am. Soc. Nephrol. 2014, 9, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Giakoumoglou, N. PyFeats: Open-source software for image feature extraction. Zenodo 2021. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine Learning in Python. arXiv 2012, arXiv:1201.0490. [Google Scholar] [CrossRef]
- Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2018, 37, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.T.; Selby, N.M.; Taal, M.W. Magnetic resonance imaging to evaluate kidney structure, function, and pathology: Moving toward clinical application. Am. J. Kidney Dis. 2023, 82, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Chirra, P.; Sleiman, J.; Gandhi, N.S.; Gordon, I.O.; Hariri, M.; Baker, M.; Ottichilo, R.; Bruining, D.H.; Kurowski, J.A.; Viswanath, S.E.; et al. Radiomics to detect inflammation and fibrosis on magnetic resonance enterography in stricturing Crohn’s disease. J. Crohn’s Colitis 2024, 18, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
AKI | CKD | Healthy Controls | |
---|---|---|---|
Criteria |
|
|
|
Imaging indication: Oliguric/anuric AKI with elevated serum creatinine levels, meeting indications for dialysis for fluid overload and/or electrolyte management | Imaging indication: first ultrasound performed in participants who consented to have images analyzed | Imaging indication: first ultrasound performed in participants who consented to have images analyzed |
Characteristics a | AKI | CKD | Healthy Controls |
---|---|---|---|
Total, n (kidney units) | 8 (16) | 14 (28) | 9 (18) |
Female: n (%) | 6 (75) | 6 (42.9) | 6 (66.7) |
Median age in years (IQR) | 3.5 (IQR: 0–11.5) | 3.5 (IQR: 0–6.8) | 15.5 (IQR: 12.8–21) |
Mean serum creatinine ± SD | 6.13 ± 6.13 | 0.76 ± 0.33 | 0.67 ± 0.22 |
Mean U25 eGFR mL/ min/1.73m2 ± SD | 9.10 ± 8.48 | 61.98 ± 22.46 | 105.85 ± 25.21 |
Feature Category | Feature Code | Description |
---|---|---|
Gray-Level Co-occurrence Matrix [GLCM] | GLCM_4 GLCM_5 GLCM_6 | Second-order texture features quantifying spatial relationships between pixels |
Gray-Level Difference Statistics [GLDS] | GLDS_3 | Local texture features based on absolute gray-level differences |
Fractal Dimension Texture Analysis [FDTA] | FDTA_1 FDTA_3 | Measures of complexity and self-similarity based on fractal geometry |
Gray-Level Size Zone Matrix (GLSZM) | GLSZM_2 GLSZM_3 GLSZM_9 | Measures size and intensity homogeneity of connected pixel zones |
Wavelet Packet [WP] | WP_14 | Multiscale texture features extracted from wavelet packet decomposition |
Model (5-Fold CV) | Accuracy | Macro F1 Score |
---|---|---|
XGBoost | 0.90 | 0.90 |
SVM (RBF Kernel) | 0.90 | 0.88 |
Random Forest | 0.88 | 0.89 |
Logistic Regression | 0.88 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Leon-Benedetti, L.; Sultan, L.R.; Otero, H.J.; Morales-Tisnés, T.; Sims, J.; Fitzpatrick, K.; Fitzgerald, J.C.; Furth, S.; Laskin, B.L.; Viteri, B. Quantifying “Medical Renal Disease”: A Pediatric Pilot Study Using Ultrasound Radiomics for Differentiating Acute Kidney Injury and Chronic Kidney Disease. Diagnostics 2025, 15, 2112. https://doi.org/10.3390/diagnostics15162112
De Leon-Benedetti L, Sultan LR, Otero HJ, Morales-Tisnés T, Sims J, Fitzpatrick K, Fitzgerald JC, Furth S, Laskin BL, Viteri B. Quantifying “Medical Renal Disease”: A Pediatric Pilot Study Using Ultrasound Radiomics for Differentiating Acute Kidney Injury and Chronic Kidney Disease. Diagnostics. 2025; 15(16):2112. https://doi.org/10.3390/diagnostics15162112
Chicago/Turabian StyleDe Leon-Benedetti, Laura, Laith R. Sultan, Hansel J. Otero, Tatiana Morales-Tisnés, Joya Sims, Kate Fitzpatrick, Julie C. Fitzgerald, Susan Furth, Benjamin L. Laskin, and Bernarda Viteri. 2025. "Quantifying “Medical Renal Disease”: A Pediatric Pilot Study Using Ultrasound Radiomics for Differentiating Acute Kidney Injury and Chronic Kidney Disease" Diagnostics 15, no. 16: 2112. https://doi.org/10.3390/diagnostics15162112
APA StyleDe Leon-Benedetti, L., Sultan, L. R., Otero, H. J., Morales-Tisnés, T., Sims, J., Fitzpatrick, K., Fitzgerald, J. C., Furth, S., Laskin, B. L., & Viteri, B. (2025). Quantifying “Medical Renal Disease”: A Pediatric Pilot Study Using Ultrasound Radiomics for Differentiating Acute Kidney Injury and Chronic Kidney Disease. Diagnostics, 15(16), 2112. https://doi.org/10.3390/diagnostics15162112