Expression Analysis of miR-519a-3p and miR-379-5p in Colorectal Cancer Patients: A Combined Experimental and Bioinformatic Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Specimens
2.2. miRNA Isolation from Tissue Samples of CRC Patients
2.3. cDNA Synthesis by the Reverse Transcriptase PCR
2.4. Quantitative Real-Time PCR Assays
2.5. Statistical Analysis
2.6. Gene Ontology (GO) Annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analyses of miR-379-5p, miR-519a-3p
2.7. Construction of Gene Regulatory Networks Involving miR-379-5p, miR-519a-3p, and Transcription Factors (TFs)
3. Results
3.1. Clinical and Pathological Parameters of Patients with CRC
3.2. Expression Levels of miR-379-5p and miR-519a-3p
3.3. The Relationship Between Expressions of miR-379-5p and miR-519a-3p and Clinical-Pathological Characteristics of CRC Patients
3.4. GO Annotation and KEGG Pathway Analyses
3.5. miRNAs-TFs-Genes- Diseases Networks Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT3 | AKT serine/threonine kinase 3 |
APC | Adenomatous polyposis coli |
ATF1 | Activating transcription factor 1 |
CASP3 | Caspase 3 |
CRC | Colorectal cancer |
ceRNAs | Competitive endogenous RNAs |
EMT | Epithelial–mesenchymal transition |
ECM | Extracellular matrix |
EP300 | E1A binding protein p300 |
ESR1 | Estrogen receptor 1 |
FOXA1 | Forkhead box A1 |
GO | Gene Ontology |
HNF4A | Hepatocyte nuclear factor 4 alpha |
JUN | Jun proto-oncogene, AP-1 transcription factor subunit |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KLF4 | KLF transcription factor 4 |
MAZ | MYC associated zinc finger protein |
miRNA | microRNA |
NK | Natural killer |
PGR | Progesterone receptor |
RT-qPCR | Quantitative Real-time PCR |
SMAD2 | SMAD family member 2 |
STAT1 | Signal transducer and activator of transcription 1 |
STAT3 | Signal transducer and activator of transcription 3 |
ROR1 | Receptor Tyrosine Kinase Like Orphan Receptor 1 |
TF | Transcription factors |
TGF-β | Transforming growth factor beta |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Ozaslan, M.; Aytekin, T. Loss of heterozygosity in colorectal cancer. Afr. J. Biotechnol. 2009, 8, 7308–7312. [Google Scholar]
- Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers 2021, 13, 2025. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Avsar, R.; Gurer, T.; Aytekin, A. Bioinformatics and Expression Analyses of miR-639, miR-641, miR-1915-3p and miR-3613-3p in Colorectal Cancer Pathogenesis. J. Cancer 2023, 14, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Feng, B.; Liu, N.; Wu, Q.; Han, Y.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. STIM1, a direct target of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer. Oncogene 2015, 34, 4808–4820. [Google Scholar] [CrossRef]
- Forterre, A.; Komuro, H.; Aminova, S.; Harada, M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers 2020, 12, 1852. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xia, S.; Ye, X.; Jing, W.; Wu, B. MiR-379-5p targets microsomal glutathione transferase 1 (MGST1) to regulate human glioma in cell proliferation, migration and invasion and epithelial-mesenchymal transition (EMT). Biochem. Biophys. Res. Commun. 2021, 568, 8–14. [Google Scholar] [CrossRef]
- Aytekin, A.; Kadakal, H.; Mihcioglu, D.; Gurer, T. Bioinformatics analysis of miR-2861 and miR-5011-5p that function as potential tumor suppressors in colorectal carcinogenesis. BMC Med. Genom. 2025, 18, 1. [Google Scholar] [CrossRef]
- Mihcioglu, D.; Elihan, E.; Aytekin, A.; Gurer, T. miR-564 and miR-718 expressions are downregulated in colorectal cancer tissues. Turk. J. Biochem. 2023, 48, 570–580. [Google Scholar] [CrossRef]
- Yu, W.; Wang, J.; Li, C.; Xuan, M.; Han, S.; Zhang, Y.; Liu, P.; Zhao, Z. miR-17-5p promotes the invasion and migration of colorectal cancer by regulating HSPB2. J. Cancer 2022, 13, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Chen, H.; Min, J. miR-379-5p inhibits proliferation and invasion of the endometrial cancer cells by inhibiting expression of ROR1. Acta Biochim. Pol. 2021, 68, 659–665. [Google Scholar] [CrossRef]
- Shukla, D.; Mishra, S.; Mandal, T.; Charan, M.; Verma, A.K.; Khan, M.M.A.; Chatterjee, N.; Dixit, A.K.; Ganesan, S.K.; Ganju, R.K.; et al. MicroRNA-379-5p attenuates cancer stem cells and reduces cisplatin resistance in ovarian cancer by regulating RAD18/Polη axis. Cell Death Dis. 2025, 16, 140. [Google Scholar] [CrossRef]
- Meng, L.; Du, Y.; Deng, B.; Duan, Y. miR-379-5p regulates the proliferation, cell cycle, and cisplatin resistance of oral squamous cell carcinoma cells by targeting ROR1. Am. J. Transl. Res. 2023, 15, 1626–1639. [Google Scholar]
- Wu, D.; Niu, X.; Tao, J.; Li, P.; Lu, Q.; Xu, A.; Chen, W.; Wang, Z. MicroRNA-379-5p plays a tumor-suppressive role in human bladder cancer growth and metastasis by directly targeting MDM2. Oncol Rep. 2017, 37, 3502–3508, Corrigendum in Oncol. Rep. 2022, 48, 1–2. [Google Scholar] [CrossRef]
- Chen, J.S.; Li, H.S.; Huang, J.Q.; Dong, S.H.; Huang, Z.J.; Yi, W.; Zhan, G.F.; Feng, J.T.; Sun, J.C.; Huang, X.H. MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Lett. 2016, 375, 73–83. [Google Scholar] [CrossRef]
- Qiu, S.; Xie, L.; Lu, C.; Gu, C.; Xia, Y.; Lv, J.; Xuan, Z.; Fang, L.; Yang, J.; Zhang, L.; et al. Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis. J. Exp. Clin. Cancer Res. 2022, 41, 296. [Google Scholar] [CrossRef]
- Breunig, C.; Pahl, J.; Küblbeck, M.; Miller, M.; Antonelli, D.; Erdem, N.; Wirth, C.; Will, R.; Bott, A.; Cerwenka, A.; et al. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis. 2017, 8, e2973. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Zhao, Q.; Fan, L.; Tan, B.; Zang, A.; Yang, H. miR-519 regulates the proliferation of breast cancer cells via targeting human antigen R. Oncol. Lett. 2020, 19, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, Y.; Wang, Y. Effects of propofol on neuroblastoma cells via the HOTAIRM1/miR-519a-3p axis. Transl. Neurosci. 2022, 13, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Jácome, D.; Cotrufo, T.; Andrés-Benito, P.; Lidón, L.; Martí, E.; Ferrer, I.; Del Río, J.A.; Gavín, R. miR-519a-3p, found to regulate cellular prion protein during Alzheimer’s disease pathogenesis, as a biomarker of asymptomatic stages. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167187. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Botta-Orfila, T.; Morató, X.; Calatayud, C.; Ferrer-Lorente, R.; Martí, M.-J.; Fernández, M.; Gaig, C.; Raya, Á.; Consiglio, A.; et al. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol. Aging 2018, 69, 283–291. [Google Scholar] [CrossRef]
- Gurer, T.; Aytekin, A.; Caki, E.; Gezici, S. miR-485-3p and miR-4728-5p as Tumor Suppressors in Pathogenesis of Colorectal Cancer. Mol. Biol. 2022, 56, 474–488. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chen, W.; Gao, C.; Liu, Y.; Wen, Y.; Hong, X.; Huang, Z. Bioinformatics Analysis of Prognostic miRNA Signature and Potential Critical Genes in Colon Cancer. Front. Genet. 2020, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, C.; Yang, Y.; Cui, Q.; Zhang, J.; Cui, C. TransmiR v3.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2025, 53, D318–D323. [Google Scholar] [CrossRef]
- Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. [Google Scholar] [CrossRef]
- The Human Protein Atlas. Available online: https://www.proteinatlas.org (accessed on 5 June 2025).
- Shen, Y.T.; Huang, X.; Zhang, G.; Jiang, B.; Li, C.J.; Wu, Z.S. Pan-Cancer Prognostic Role and Targeting Potential of the Estrogen-Progesterone Axis. Front. Oncol. 2021, 11, 636365. [Google Scholar] [CrossRef]
- Liu, N.; Wang, A.; Xue, M.; Zhu, X.; Liu, Y.; Chen, M. FOXA1 and FOXA2: The regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov. 2024, 10, 172. [Google Scholar] [CrossRef]
- He, Z.; He, J.; Xie, K. KLF4 transcription factor in tumorigenesis. Cell Death Discov. 2023, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, C. Progesterone receptor gene serves as a prognostic biomarker associated with immune infiltration in gastric cancer: A bioinformatics analysis. Transl. Cancer Res. 2021, 10, 2663–2677. [Google Scholar] [CrossRef] [PubMed]
- Meissl, K.; Macho-Maschler, S.; Müller, M.; Strobl, B. The good and the bad faces of STAT1 in solid tumours. Cytokine 2017, 89, 12–20. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, F.; Wu, G.; Wang, D.; Liu, W.; Chen, J.; Qi, Y.; Wang, B.; Chen, Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics 2023, 13, 2769. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Luan, T.; Liu, N.; Kong, C.; Xu, L.; Yu, H.; Kang, Y.; Han, Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed. Pharmacother. 2023, 169, 115923. [Google Scholar] [CrossRef]
- Maity, G.; Haque, I.; Ghosh, A.; Dhar, G.; Gupta, V.; Sarkar, S.; Azeem, I.; McGregor, D.; Choudhary, A.; Campbell, D.R.; et al. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling. J. Biol. Chem. 2018, 293, 4334–4349. [Google Scholar] [CrossRef]
- Jafri, Z.; Li, Y.; Zhang, J.; O’Meara, C.H.; Khachigian, L.M. Jun, an Oncological Foe or Friend? Int. J. Mol. Sci. 2025, 26, 555. [Google Scholar] [CrossRef]
- Lu, Z.; Dong, H.; Tu, Z.; Liu, H. Expression, molecular mechanisms and therapeutic potentials of ATF1 in cancers. Life Sci. 2025, 360, 123256. [Google Scholar] [CrossRef]
- Gronkowska, K.; Robaszkiewicz, A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control—Targeting of p300-proficient and-deficient cancers. Mol. Ther. Oncol. 2024, 32, 200871. [Google Scholar] [CrossRef]
- Gururajan, M.; Josson, S.; Chu, G.C.; Lu, C.L.; Lu, Y.T.; Haga, C.L.; Zhau, H.E.; Liu, C.; Lichterman, J.; Duan, P.; et al. miR-154 and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin. Cancer Res. 2014, 20, 6559–6569. [Google Scholar] [CrossRef]
- Mosaad, H.; Abdelrahman, A.E.; Abdullatif, A.; Lashin, M.E.; Ramadan, M.S.H.; El-Azony, A.; Hussien, M.H.S. MIR-379-5p Expression in Endometrial Cancer and Its Correlation with ROR1 Expression. Asian Pac. J. Cancer Prev. 2023, 24, 239–248. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, W.; Li, D.; Zheng, J. MiR-379-5p Promotes Chondrocyte Proliferation via Inhibition of PI3K/Akt Pathway by Targeting YBX1 in Osteoarthritis. Cartilage 2022, 13, 19476035221074024. [Google Scholar] [CrossRef]
- Maemura, K.; Watanabe, K.; Ando, T.; Hiyama, N.; Sakatani, T.; Amano, Y.; Kage, H.; Nakajima, J.; Yatomi, Y.; Nagase, T.; et al. Altered editing level of microRNAs is a potential biomarker in lung adenocarcinoma. Cancer Sci. 2018, 109, 3326–3335. [Google Scholar] [CrossRef]
- Lv, X.; Wang, M.; Qiang, J.; Guo, S. Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379-5p/MAP3K2 axis. Eur. J. Pharmacol. 2019, 863, 172643. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Wu, S.; Wang, J.; Zhao, S. Long non-coding RNA LINC01419 mediates miR-519a-3p/PDRG1 axis to promote cell progression in osteosarcoma. Cancer Cell Int. 2020, 20, 147. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, L.; Li, J.-J.; Zhou, Q.; Huang, A.; Liu, W.-W.; Wang, K.; Gao, L.; Qi, S.-T.; Lu, Y.-T. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J. Hematol. Oncol. 2018, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, F.; Wang, J.; Fu, Y.; Li, Y.; Li, F. MiR-519a functions as a tumor suppressor and is negatively associated with poor prognosis of non-small cell lung cancer. Cancer Biomark. 2020, 28, 121–128. [Google Scholar] [CrossRef]
- Nong, K.; Zhang, D.; Chen, C.; Yang, Y.; Yang, Y.; Liu, S.; Cai, H. MicroRNA-519 inhibits hypoxia-induced tumorigenesis of pancreatic cancer by regulating immune checkpoint PD-L1. Oncol Lett. 2020, 19, 1427–1433. [Google Scholar] [CrossRef]
- Ward, A.; Shukla, K.; Balwierz, A.; Soons, Z.; König, R.; Sahin, O.; Wiemann, S. MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J. Pathol. 2014, 233, 368–379. [Google Scholar] [CrossRef]
- Liebl, M.C.; Hofmann, T.G. The Role of p53 Signaling in Colorectal Cancer. Cancers 2021, 13, 2125. [Google Scholar] [CrossRef]
- Fasano, M.; Pirozzi, M.; Miceli, C.C.; Cocule, M.; Caraglia, M.; Boccellino, M.; Vitale, P.; De Falco, V.; Farese, S.; Zotta, A.; et al. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int. J. Mol. Sci. 2024, 25, 7400. [Google Scholar] [CrossRef]
- Laissue, P. The forkhead-box family of transcription factors: Key molecular players in colorectal cancer pathogenesis. Mol. Cancer 2019, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int. J. Cancer 2018, 143, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.; Xicola, R.M.; Nguyen, V.; Lim, J.; Thorne, C.; Salhia, B.; Llor, X.; Ellis, N.; Padi, M. Molecular drivers of tumor progression in microsatellite stable APC mutation-negative colorectal cancers. Sci. Rep. 2021, 11, 23507. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liang, X.; Xu, J.; Cai, X. miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Manag. Res. 2018, 10, 6537–6547. [Google Scholar] [CrossRef]
- Hao, S.; Huo, S.; Du, Z.; Yang, Q.; Ren, M.; Liu, S.; Liu, T.; Zhang, G. MicroRNA-related transcription factor regulatory networks in human colorectal cancer. Medicine 2019, 98, e15158. [Google Scholar] [CrossRef]
- Qin, G.; Mallik, S.; Mitra, R.; Li, A.; Jia, P.; Eischen, C.M.; Zhao, Z. MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors. Sci. Rep. 2020, 10, 852. [Google Scholar] [CrossRef]
- Rawłuszko-Wieczorek, A.A.; Marczak, Ł.; Horst, N.; Horbacka, K.; Krokowicz, P.; Jagodziński, P.P. Significance of intratissue estrogen concentration coupled with estrogen receptors levels in colorectal cancer prognosis. Oncotarget 2017, 8, 115546–115560. [Google Scholar] [CrossRef]
- Lazar, S.B.; Pongor, L.; Li, X.L.; Grammatikakis, I.; Muys, B.R.; Dangelmaier, E.A.; Redon, C.E.; Jang, S.M.; Walker, R.L.; Tang, W.; et al. Genome-Wide Analysis of the FOXA1 Transcriptional Network Identifies Novel Protein-Coding and Long Noncoding RNA Targets in Colorectal Cancer Cells. Mol. Cell. Biol. 2020, 40, e00224-20. [Google Scholar] [CrossRef]
- Hussen, B.M.; Hidayat, H.J.; Salihi, A.; Sabir, D.K.; Taheri, M.; Ghafouri-Fard, S. MicroRNA: A signature for cancer progression. Biomed. Pharmacother. 2021, 138, 111528. [Google Scholar] [CrossRef]
- Yu, W.; Wang, Z.; Shen, L.I.; Wei, Q. Circulating microRNA-21 as a potential diagnostic marker for colorectal cancer: A meta-analysis. Mol. Clin. Oncol. 2016, 4, 237–244. [Google Scholar] [CrossRef]
- Toiyama, Y.; Hur, K.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann. Surg. 2014, 259, 735–743. [Google Scholar] [CrossRef]
- Sur, D.; Advani, S.; Braithwaite, D. MicroRNA panels as diagnostic biomarkers for colorectal cancer: A systematic review and meta-analysis. Front. Med. 2022, 9, 915226. [Google Scholar] [CrossRef]
Characteristics | Patients n (%) |
---|---|
Age (years) | |
≥55 | 29 (53.7) |
˂55 | 25 (46.3) |
Gender | |
Male | 31 (57.4) |
Female | 23 (42.6) |
Cigarette smoking | |
Yes | 15 (27.8) |
No | 39 (72.2) |
Alcohol drinking | |
Yes | 5 (9.3) |
No | 49 (90.7) |
Tumor location | |
Colon | 33 (61.1) |
Rectum | 21 (38.9) |
Neural invasion | |
Yes | 10 (18.5) |
No | 44 (81.5) |
Lymphovascular invasion | |
Yes | 14 (25.9) |
No | 40 (74.1) |
TNM stage | |
I–II | 29 (53.7) |
III–IV | 25 (46.3) |
Tumor size (cm) | |
≤6 | 30 (55.6) |
>6 | 24 (44.4) |
Tumor histological type | |
Adenocarcinoma | 38 (70.4) |
Mucinous adenocarcinoma | 16 (29.6) |
Variables | miR-379-5p Fold Change | miR-519a-3p Fold Change | ||||
---|---|---|---|---|---|---|
Mean ± SD | n (Mean Rank) | p | Mean ± SD | n (Mean Rank) | p | |
Age (years) | ||||||
≥55 | 1.85 ± 1.25 | 29 (31.79) | 0.031 | 0.49 ± 0.77 | 29 (27.52) | 0.993 |
˂55 | 1.25 ± 0.71 | 25 (22.52) | 0.52 ± 0.13 | 25 (27.48) | ||
Gender | ||||||
Male | 1.62 ± 1.16 | 31 (28.35) | 0.643 | 0.51 ± 0.12 | 31 (28.77) | 0.490 |
Female | 1.5 ± 0.95 | 23 (26.35) | 0.49 ± 0.09 | 23 (25.78) | ||
Cigarette smoking | ||||||
Yes | 1.95 ± 1.51 | 15 (31.20) | 0.284 | 0.5 ± 0.11 | 15 (29.40) | 0.582 |
No | 1.43 ± 0.82 | 39 (26.08) | 0.5 ± 0.1 | 39 (26.77) | ||
Alcohol drinking | ||||||
Yes | 1.9 ± 1.38 | 5 (28.60) | 0.664 | 0.52 ± 0.14 | 5 (30.60) | 0.885 |
No | 1.54 ± 1.05 | 64 (27.39) | 0.5 ± 0.1 | 49 (27.18) | ||
Tumor location | ||||||
Colon | 1.34 ± 0.76 | 33 (23.85) | 0.033 | 0.53 ± 0.13 | 33 (31.88) | 0.01 |
Rectum | 1.95 ± 1.37 | 21 (33.24) | 0.46 ± 0.02 | 21 (20.62) | ||
Neural invasion | ||||||
Yes | 1.64 ± 0.7 | 10 (32.00) | 0.316 | 0.5 ± 0.97 | 10 (27.70) | 0.964 |
No | 1.56 ± 1.14 | 44 (26.48) | 0.5 ± 0.1 | 44 (27.45) | ||
Lymphovascular invasion | ||||||
Yes | 1.35 ± 0.36 | 14 (28.86) | 0.708 | 0.48 ± 0.08 | 14 (23.36) | 0.252 |
No | 1.65 ± 1.22 | 40 (27.03) | 0.51 ± 0.11 | 44 (28.95) | ||
TNM stage | ||||||
I-II | 1.3 ± 0.85 | 29 (21.59) | 0.003 | 0.5 ± 0.11 | 29 (27.31) | 0.924 |
III-IV | 1.9 ± 1.21 | 25 (34.36) | 0.5 ± 0.1 | 25 (27.72) | ||
Tumor size (cm) | ||||||
≤6 | 1.8 ± 1.19 | 30 (32.30) | 0.012 | 0.51 ± 0.11 | 30 (28.00) | 0.794 |
>6 | 1.29 ± 0.84 | 24 (21.50) | 0.49 ± 0.09 | 24 (26.88) | ||
Tumor histological type | ||||||
Adenocarcinoma | 1.7 ± 1.13 | 38 (30.11) | 0.061 | 0.51 ± 0.12 | 38 (28.42) | 0.507 |
Mucinous adenocarcinoma | 1.28 ± 0.87 | 16 (21.31) | 0.47 ± 0.02 | 16 (25.31) |
A | ||||
GO Category | GO ID | miRNAs | Target Genes Count | p Value |
Cellular nitrogen compound metabolic process | 0034641 | miR-519a-3p | 17 | 3.67563626886 ×10−8 |
miR-379-5p | 33 | |||
Cellular protein metabolic process | 0044267 | miR-519a-3p | 1 | 7.5887688796 × 10−5 |
miR-379-5p | 10 | |||
Biosynthetic process | 0009058 | miR-519a-3p | 14 | 7.5887688796 × 10−5 |
miR-379-5p | 26 | |||
Response to stress | 0006950 | miR-519a-3p | 10 | 9.79296263689 × 10−5 |
miR-379-5p | 19 | |||
Symbiosis, encompassing mutualism through parasitism | 0044403 | miR-519a-3p | 3 | 0.000196157014163 |
miR-379-5p | 9 | |||
Viral process | 0016032 | miR-519a-3p | 3 | 0.000251538030074 |
miR-379-5p | 8 | |||
Gene expression | 0010467 | miR-519a-3p | 3 | 0.000251538030074 |
miR-379-5p | 9 | |||
Macromolecular complex assembly | 0065003 | miR-519a-3p | 5 | 0.000251538030074 |
miR-379-5p | 10 | |||
Neurotrophin TRK receptor signaling pathway | 0048011 | miR-519a-3p | 4 | 0.000583602418168 |
miR-379-5p | 3 | |||
Protein complex assembly | 0006461 | miR-519a-3p | 4 | 0.00129729179284 |
miR-379-5p | 9 | |||
Cellular component assembly | 0022607 | miR-519a-3p | 7 | 0.00201815811768 |
miR-379-5p | 10 | |||
Fc-epsilon receptor signaling pathway | 0038095 | miR-519a-3p | 3 | 0.00363189359633 |
miR-379-5p | 2 | |||
Catabolic process | 0009056 | miR-519a-3p | 7 | 0.00363189359633 |
miR-379-5p | 15 | |||
Fibroblast growth factor receptor signaling pathway | 0008543 | miR-519a-3p | 4 | 0.00417090394179 |
miR-379-5p | 2 | |||
Positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay | 1900153 | miR-519a-3p | 1 | 0.00434127923468 |
miR-379-5p | 2 | |||
Epidermal growth factor receptor signaling pathway | 0007173 | miR-519a-3p | 4 | 0.00434127923468 |
miR-379-5p | 2 | |||
Phosphatidylinositol-mediated signaling | 0048015 | miR-519a-3p | 3 | 0.00605246071122 |
miR-379-5p | 2 | |||
Positive regulation of nuclear-transcribed mRNA poly(A) tail shortening | 0060213 | miR-519a-3p | 1 | 0.00744380742909 |
miR-379-5p | 2 | |||
Blood coagulation | 0007596 | miR-519a-3p | 1 | 0.00744380742909 |
miR-379-5p | 7 | |||
Aging | 0007568 | miR-519a-3p | 3 | 0.00837634698204 |
miR-379-5p | 4 | |||
Cellular protein modification process | 0006464 | miR-519a-3p | 9 | 0.00880145157714 |
miR-379-5p | 13 | |||
Clathrin coat disassembly | 0072318 | miR-519a-3p | 1 | 0.00998188876802 |
miR-379-5p | 2 | |||
Vesicle-mediated transport | 0016192 | miR-519a-3p | 7 | 0.0106960983567 |
miR-379-5p | 8 | |||
Histone demethylation | 0016577 | miR-519a-3p | 1 | 0.0124862578037 |
miR-379-5p | 1 | |||
Extracellular matrix disassembly | 0022617 | miR-519a-3p | 1 | 0.0124862578037 |
miR-379-5p | 3 | |||
COPI coating of Golgi vesicle | 0048205 | miR-519a-3p | 1 | 0.0161387605594 |
miR-379-5p | 1 | |||
Organ regeneration | 0031100 | miR-519a-3p | 1 | 0.0206539512892 |
miR-379-5p | 3 | |||
Angiotensin maturation | 0002003 | miR-379-5p | 2 | 0.0215777282565 |
Negative regulation of cyclin-dependent protein serine/threonine kinase activity | 0045736 | miR-519a-3p | 2 | 0.0215777282565 |
miR-379-5p | 1 | |||
Cellular response to DNA damage stimulus | 0006974 | miR-519a-3p | 3 | 0.02427309224 |
miR-379-5p | 5 | |||
Extracellular matrix organization | 0030198 | miR-519a-3p | 1 | 0.0246965891574 |
miR-379-5p | 6 | |||
Nucleobase-containing compound catabolic process | 0034655 | miR-519a-3p | 4 | 0.0246965891574 |
miR-379-5p | 8 | |||
Cell–substrate junction assembly | 0007044 | miR-519a-3p | 1 | 0.0249599495373 |
miR-379-5p | 1 | |||
Axon guidance | 0007411 | miR-519a-3p | 5 | 0.0249599495373 |
miR-379-5p | 4 | |||
Platelet degranulation | 0002576 | miR-519a-3p | 1 | 0.0270931622974 |
miR-379-5p | 2 | |||
Regulation of cell cycle | 0051726 | miR-519a-3p | 4 | 0.0350158897279 |
miR-379-5p | 3 | |||
Androgen receptor signaling pathway | 0030521 | miR-519a-3p | 3 | 0.0356378038063 |
Regulation of gene silencing | 0060968 | miR-379-5p | 2 | 0.0378283730158 |
Female pregnancy | 0007565 | miR-379-5p | 4 | 0.0378283730158 |
Mitotic cell cycle | 0000278 | miR-519a-3p | 2 | 0.0378283730158 |
miR-379-5p | 4 | |||
Response to organonitrogen compound | 0010243 | miR-519a-3p | 1 | 0.0414573363362 |
miR-379-5p | 2 | |||
G2/M transition of mitotic cell cycle | 0000086 | miR-519a-3p | 2 | 0.0414573363362 |
miR-379-5p | 2 | |||
Prostate gland growth | 0060736 | miR-519a-3p | 2 | 0.0485118349745 |
Biological process (GO:0008150): 114 Target Genes | 3.09925838529 × 10−5 | |||
B | ||||
GO Category | GO ID | miRNAs | Target Genes Count | p Value |
Organelle | 0043226 | miR-519a-3p | 32 | 2.83862016795 × 10−14 |
miR-379-5p | 54 | |||
Protein complex | 0043234 | miR-519a-3p | 15 | 0.000439974683109 |
miR-379-5p | 23 | |||
Cytosol | 0005829 | miR-519a-3p | 14 | 0.000762521273454 |
miR-379-5p | 16 | |||
Nucleoplasm | 0005654 | miR-519a-3p | 4 | 0.0182290609436 |
miR-379-5p | 10 | |||
Male pronucleus | 0001940 | miR-379-5p | 2 | 0.0286881480324 |
Prp19 complex | 0000974 | miR-519a-3p | 1 | 0.0286881480324 |
miR-379-5p | 2 | |||
Cytoplasmic side of endoplasmic reticulum membrane | 0098554 | miR-519a-3p | 1 | 0.0405314868526 |
Female pronucleus | 0001939 | miR-379-5p | 2 | 0.0405314868526 |
Protein phosphatase type 1 complex | 0000164 | miR-519a-3p | 1 | 0.0405314868526 |
miR-379-5p | 1 | |||
Cellular component (GO:0005575): 113 Target Genes | 0.000439974683109 | |||
C | ||||
GO Category | GO ID | miRNAs | Target Genes Count | pValue |
Enzyme binding | 0019899 | miR-519a-3p | 8 | 0.00284609917602 |
miR-379-5p | 10 | |||
Ion binding | 0043167 | miR-519a-3p | 21 | 0.00284609917602 |
miR-379-5p | 26 | |||
Nucleic acid binding transcription factor activity | 0001071 | miR-519a-3p | 6 | 0.0124666471659 |
miR-379-5p | 7 | |||
Enzyme regulator activity | 0030234 | miR-519a-3p | 6 | 0.0393518807246 |
miR-379-5p | 5 | |||
Molecular function (GO:0003674): 115 Target Genes | 1.53107464023 × 10−5 |
KEGG Pathways | miRNAs | Target Genes | p Value |
---|---|---|---|
Endocytosis (hsa04144) | miR-519a-3p | ARAP2, PDGFRA, DAB2, NEDD4L, EEA1, PSD, PLD1, GBF1, ZFYVE9, HSPA8, RAB22A, LDLR, SMAD7, IQSEC2, TGFBR2, RAB5B, ERBB4 | 0.000791081026484 |
miR-379-5p | TGFBR1, HLA-E, EHD4, SMAP1, DNM3, MDM2 | ||
Gap junction (hsa04540) | miR-519a-3p | PDGFRA, GRM5, ITPR1, SOS1, GUCY1A2, PDGFD, GJA1, MAP3K2, MAPK1 | 0.00232477710776 |
miR-379-5p | MAP3K2 | ||
Signaling pathways regulating pluripotency of stem cells (hsa04550) | miR-519a-3p | STAT3, REST, FZD6, WNT2B, INHBA, ZFHX3, FZD3, PCGF5, RIF1, SMAD5, ACVR1C, IGF1, NEUROG1, MAPK1, JAK1, BMPR2, COMMD3-BMI1 | 0.00232477710776 |
miR-379-5p | WNT2B, PCGF5 | ||
p53 signaling pathway (hsa04115) | miR-519a-3p | CDK2, RCHY1, MDM4, IGF1, CASP8, CDKN1A, SESN3, PTEN, CCNG2 | 0.00241402518873 |
miR-379-5p | CCNB1, RFWD2, MDM2 | ||
Proteoglycans in cancer (hsa05205) | miR-519a-3p | ESR1, STAT3, ROCK2, FRS2, FZD6, TLR4, FZD3, MMP2, HIF1A, ITPR1, SOS1, DDX5, IGF1, GAB1, CDKN1A, MAPK1, ERBB4 | 0.00241402518873 |
miR-379-5p | HBEGF, WNT2B, PTK2, MDM2 | ||
Hepatitis B (hsa05161) | miR-519a-3p | STAT3, E2F1, E2F2, CREB5, CDK2, MAP3K1, TLR4, CREB1, MAPK8, CASP8, CDKN1A, PTEN, MAPK1, JAK1 | 0.00298589620707 |
miR-379-5p | TGFBR1, MAP3K1 | ||
Axon guidance (hsa04360) | miR-519a-3p | SEMA5A, EPHA5, ROCK2, PPP3R1, SRGAP1, NTNG1, CXCL12, PPP3CA, DPYSL5, DPYSL2, NTN4, SEMA7A, EPHA4, MAPK1 | 0.00515681863 |
miR-379-5p | ABLIM3, PTK2, UNC5D | ||
Estrogen signaling pathway (hsa04915) | miR-519a-3p | ESR1, CREB5, CREB1, MMP2, ITPR1, SOS1, HSPA8, MAPK1 | 0.00939898047994 |
miR-379-5p | HBEGF | ||
Glioma (hsa05214) | miR-519a-3p | PDGFRA, E2F1, E2F2, SOS1, IGF1, CDKN1A, PTEN, MAPK1 | 0.0114281552734 |
miR-379-5p | MDM2 | ||
Prostate cancer (hsa05215) | miR-519a-3p | PDGFRA, E2F1, E2F2, CREB5, CDK2, CREB1, SOS1, IGF1, PDGFD, CDKN1A, PTEN, MAPK1 | 0.0114281552734 |
miR-379-5p | MDM2 | ||
Oocyte meiosis (hsa04114) | miR-519a-3p | CDK2, PPP3R1, CPEB1, PPP3CA, ITPR1, CPEB2, RPS6KA3, IGF1, CPEB3, MAPK1, FBXW11 | 0.0161895429749 |
miR-379-5p | CCNB1, PPP2R5D | ||
TGF-beta signaling pathway (hsa04350) | miR-519a-3p | INHBA, ZFYVE9, SMAD5, ACVR1C, SMAD7, MAPK1, TGFBR2, BMPR2 | 0.0281334933867 |
miR-379-5p | FST, TGFBR1, LTBP1 | ||
FoxO signaling pathway (hsa04068) | miR-519a-3p | STAT3, CDK2, MAPK8, FOXG1, SOS1, IGF1, SOD2, CDKN1A, PTEN, MAPK1, CCNG2, TGFBR2 | 0.0455909431746 |
miR-379-5p | TGFBR1, CNB1, INSR, MDM2 |
miRNAs | Transcription Factor | Target Genes | Function of Transcription Factor | Diseases with Associated Transcription Factor |
---|---|---|---|---|
miR-519a-3p and miR-379-5p | ESR1 (Estrogen receptor 1) | ABCG2, AHR, AMH, AR, AVP, BCL2, BLM, BRCA1, BTG2, CCNA2, CCND1, CD24, CDH1, CDK4, CDKN1A, CDKN1B, CEBPB, CHAT, CRH, CRHBP, CTNNB1, CTSD, CXCL12, CYP19A1,CYP1A1, CYP1B1, CYP2C19,DCT, E2F1, EGFR, ESR1, ESRRA, F12, FLT1, FOS, FOXP1, GREB1, HSPB1, HTRA2, JAK2, JUN, JUNB, KDR, KRT19, MDM2, MICB, MMP13, MTA3, MYC, NQO1, NR5A2, NRF1, OXT, PELP1, PGR, PLAC1, PMAIP1, PTMA, RARA, RET, RUNX2, SERPINB9, SERPINE1, SP1, TAC3, TERT, TFF1, TGFA, TP53, TYMS, UGT1A4, UGT2B15, VEGFA, YWHAQ, ZEB1, ZFHX3 | Regulates of eukaryotic gene expression and affect cellular proliferation and differentiation, association with DNA-binding transcription factors. | Malignant neoplasm of prostate, Malignant neoplasm of ovary, Embryoma, Malignant tumor of colon, Malignant neoplasm of stomach, Primary carcinoma of the liver cells, Breast Carcinoma, Renal Cell Carcinoma, Carcinoma of the Large Intestine, Leukemia, Metastasis to Lymph Nodes |
FOXA1 (Forkhead box A1) | ABCA1, AGR2, APOB, BCL2, BRCA1, CCNG2, CFTR, ESR1, GCG, HSPA1A, KRT7, MYC, NF1, NKX2-1, RET, RPRM, SERPINC1, SFTPB, TFF1, UGT2B15, UGT2B17 | Participates in embryogenesis, aids in defining tissue-specific gene expression patterns, and modulates gene regulation in differentiated tissues. | Cancer, Fibroadenoma, Breast Carcinoma, Prostate carcinoma, Myocardial Ischemia, Primary Tumor, Medullary carcinoma of thyroid, Infertility, Congenital Abnormality, Endometrial Carcinoma, Malignant neoplasm of prostate, Primary carcinoma of the liver cells, Malignant neoplasm of male breast, Embryoma, Renal Cell Carcinoma, Neoplasm Metastasis, Breast diseases, Myeloid leukemia, Coronary heart disease, Obesity, Carcinoma of the Large Intestine, Diabetes Mellitus, Laryngeal Squamous Cell Carcinoma, Lung diseases, Bilateral Breast Cancer, Gastrointestinal Stromal Tumors, Malignant neoplasm of pancreas, Malignant tumor of colon, Squamous cell carcinoma | |
miR-519a-3p | KLF4 (KLF transcription factor 4) | ALPI, ATF3, BDKRB2, BIRC5, CCNB1, CCND1, CD14, CDH1, CDH5, CDKN1A, CDKN1B, CDKN1C, CDX2, CYP1A1, GDF15, GPA33, HBA1, HBA2, HDC, HSPA8, IFITM3, IL1B, IL6, IVL, KRT19, LAMA1, LAMA3, LXN, MMP2, NANOG, ODC1, PFKP, RARA, SOD1, TAGLN, THBD, TP53, VDR, VEGFA, ZNF750 | Functions as both an activator and a repressor, influencing the expression of critical transcription factors throughout embryonic development. | Carcinoma of the Large Intestine, Thyroid carcinoma, Carcinoma of Nasopharynx, Stomach Carcinoma, Renal Cell Carcinoma, Embryoma, Myeloid leukemia, Breast Carcinoma, Malignant neoplasm of prostate, Leukemia, Malignant neoplasm of lung, Glioma, Malignant neoplasm of ovary, Colorectal Neoplasms, Endometriosis, Cervical Squamous Cell Carcinoma, Malignant tumor of colon, small cell carcinoma of lung, Cervix carcinoma |
miR-519a-3p | PGR (Progesterone receptor) | ABCG2, ATP1B1, BCL2, CCND1, CYP19A1, DUSP1, E2F1, EGFR, ERBB2, ESR1, FOXP3, HLTF, IGFBP1, IL10, IRS2, KLK3, KLK4, MYC, PLD1, PTGS2, RELA, RLN1, RLN2, VEGFA, YWHAQ | Regulates of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. | Malignant neoplasm of ovary, Breast Carcinoma, Embryoma, Malignant tumor of colon, Uterine Fibroids, Melanoma, Primary carcinoma of the liver cells, Renal Cell Carcinoma, Squamous Cell Carcinoma of Esophagus, Stomach Carcinoma, Endometrial Carcinoma, Neuroblastoma, Carcinoma of the Large Intestine, Endometriosis, Infiltrating Malignant Neoplasm, Prostate carcinoma Parkinson disease |
miR-379-5p | STAT1 (Signal transducer and activator of transcription 1) | ACAT1, APP, BAX, CCL2, CCL3, CCR1, CD22, CD40, CD40LG, CD86, CDKN1A, CEBPE, CFTR, CHAT, CIITA, CTSB, CTSL, CXCL10, EDN1, EGFR, FAS, FCGR1A, FCGRT, FGF2, FGFR3, FOXP3, GAST, GLS, HLA-E, HMOX1, HSP90AA1, ICAM1, IFIT3, IFNA1, IFNA1, IFNB1, IFNG, IFNLR1, IL10, IL1B, IL1R1, IL27, IL2RA, IL6, IRF1, IRF7, IRF8, IVL, JAK2, KRT17, LCN2, LY96, MMP13, MMP9, MUC1, MUC4, MVP, NOS2, NOX1, NOX4, NOX5, NR1H4, OPRM1, PIM1, PLSCR1, PML, PPARA, PRKCE, PSMB9, PTGS2, PTGS2, S100A10, SCARB1, SMARCA4, SOCS3, STAT2, STAT3, TAP1, TBX21, TIMP1, TLR3, TNFSF13B, TP53, UPP1, VIP, XAF1 | Mediates cellular responses by interferons (IFNs), the cytokine KITLG/SCF, and other cytokines and other growth factors. | Rheumatoid Arthritis, Malignant neoplasm of breast, Squamous cell carcinoma, Malignant neoplasm of prostate, Asthma, Melanoma, Myeloid leukemia, Systemic lupus erythematosus, Lymphoma, Leukemia, Carcinoma of the Large Intestine, Endometriosis, Diabetes Mellitus, Primary carcinoma of the liver cells, Malignant tumor of colon, Glioblastoma, Multiple Myeloma, Stomach Carcinoma |
miR-379-5p | SMAD2 (SMAD family member 2) | SMAD2, BCL2, CDKN1A, GLI1, NKX2-1 | Modulator activator of intracellular signal transducer | Gastrointestinal Stromal Tumors, Carcinoma of lung, Malignant neoplasm of stomach, Malignant neoplasm of esophagus, Metastasis to Lymph Nodes, Lymphoma, Leiomyosarcoma, Malignant Glioma, Neuroendocrine Tumors, Sarcoma, Laryngeal Squamous Cell Carcinoma, Malignant tumor of colon, Fibroid Tumor, Melanoma, Cervix carcinoma, Thyroid carcinoma, Myeloid leukemia |
miR-379-5p | HNF4A (Hepatocyte nuclear factor 4 alpha) | ABCC6, ABCG5, ABCG8, ACAT2, AFP, AKR1C4, APOA1, APOA2, APOB, APOC3, C1QTNF5, CDKN1A, CEACAM1, CYP27A1, CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP3A4, CYP7A1, FABP2, GCK, GFER, GH1, GPR39, HNF1A, CNJ11, LDLR, LIPC, MP7, MTTP, MYC, PC1L1, NR1I2, PCSK9, PPARA, RNASE2, SERPINC1, SHBG, SLC22A6, SLC26A3, TBP, TCF7L2, UGT1A7, UGT2B7 | Transcriptional regulation/Regulates the recruitment of RNA pol II to the promoters of target genes | Hypercholesterolemia, Coronary Arteriosclerosis, Liver neoplasms, Obesity, Diabetes Mellitus, Endometrial Carcinoma, Bile duct carcinoma, Epithelial ovarian cancer, Myoma, Breast Carcinoma, Polycystic Ovary syndrome, Renal Cell Carcinoma, Skin Melanoma, Malignant neoplasm of prostate, Ulcerative colitis, Neuroendocrine Tumors, Malignant tumor of colon, Laryngeal Squamous Cell Carcinoma |
miR-379-5p | MAZ (MYC associated zinc finger protein) | CD4, CLCNKA, HRAS, HTR1A, MMP1, MMP14, MMP9, TSG101 | Transcriptional regulator | Epithelial ovarian cancer, Embryoma, Malignant neoplasm of breast, Cervical Squamous Cell Carcinoma, Carcinoma of the Large Intestine, Diabetes Mellitus, Metastasis to Lymph Nodes, Carcinoma of larynx, Endometrial Carcinoma, Hereditary Nonpolyposis Colorectal Neoplasms, Renal Cell Carcinoma, Colorectal Neoplasms |
miR-379-5p | JUN (Jun proto-oncogene, AP-1 transcription factor subunit) | ABCB1, ALOX12, APOC3, APP, AR, ATF3, BATF3, BCL2L1, BECN1, BEX2, BRCA1, CA2, CCK, CCL2, CCL5, CCND1, CD82, CDK5R1, CDKN1A, CREM, CSF1, CSF2, CSTA, CTGF, CTSL, CXCL8, CYP11A1, CYP19A1, CYP1A2, CYP2J2, DCN, DDIT3, DDX21, EDN1, EGFR, ELN, ETS1, ETS2, EZH2, EZR, F3, FAS, FASLG, FGF7, VEGFD, FOSL1, GCLC, GJA1, GSTP1, HEY1, IBSP, IFNB1, IFNG, IL12A, IL12B, IL1A, IL1B, IL2, IL23A, IL24, IL3, IL5RA, IL6, ITGAX, ITGB8, JUN, KRT16, LBP, LDHA, LGALS3, LOR, MAP3K1, MAPK8, MAT2A, MEF2D, MELTF, MGMT, MGP, MMP1, MMP12, MMP13, MMP2, MMP20, MMP3, MMP7, MMP9, MSR1, MSR1, MYB, MYC, NAMPT, NEFL, NEIL1, NFKB2, NGF, NOS2, NOS3, NOX5, NPY, NQO1, NTS, OPRM1, OXTR, PCK2, PDHA1, PDK1, PGR, PPARA, PTN, RHOB, RUNX2, SLC19A1, SMAD7, SOD2, SOX7, SPI1, STAR, TERT, TNF, TP53, TXN, VDR, VEGFA | Activator/Transcription regulation | Malignant neoplasm of prostate, Melanoma, Malignant neoplasm of breast, Neoplasm Metastasis, Embryoma, Carcinoma of the Large Intestine, Malignant neoplasm of stomach, Squamous cell carcinoma, Malignant neoplasm of pancreas, Rheumatoid Arthritis, Malignant neoplasm of urinary bladder, Endometrial Carcinoma, Malignant tumor of colon, Myeloid leukemia, Multiple Sclerosis |
miR-379-5p | ATF1 (Activating transcription factor 1) | BCL2, CCNA1, CFTR, CGA, CYP11B1, CYP11B2, ERBB2, FLT1, FTH1, GABPA, IL10, LDHA, MAP1LC3B, MITF, MUC2, NTS, PCSK1, PLAUR, SLC20A1, SLC22A8, TGFB2, TH, TOP2A, USP7 | Regulates cell proliferation and transformation | Malignant tumor of colon, Stomach Neoplasms, Carcinoma of lung, Melanoma, Cholangiocarcinoma, Peptic Ulcer, Malignant neoplasm of prostate, Carcinoma of the Large Intestine, Adenocarcinoma of the Pancreas, Fibroadenoma, Malignant Squamous Cell Neoplasm, Small cell carcinoma of lung, Leukemia, Malignant neoplasm of cervix uteri, Glioblastoma, Colorectal Neoplasms |
miR-379-5p | EP300 (E1A binding protein p300) | ABCB1, ALOX15, BIRC5, BRCA1, CA9, CCNB2, CCND1, CCNE1, CDKN1A, CDKN2B, COL1A2, CRABP1, CREBBP, CXCL8, CYBB, CYP1B1, DNMT1, EIF2AK1, EPO, ERBB2, EZH2, GFAP, HINFP, IFNG, IGF1, IGFBP3, IL12B, IL5, IL6, KLK3, KRT16, LAMA3, MDM2, MGMT, MMP9, MYC, NFKB1, NR0B2, NR1H4, PARP1, PCNA, PTGS2, RAD51, RELA, RS1, S100A4, SLC9A2, TBXAS1, THBD, TP73, TRIM22, VCAM1, VEGFA, WT1, YY1, ZEB1 | Regulates transcription via chromatin remodeling | Malignant neoplasm of breast, Embryoma, Malignant Neoplasms, Carcinoma of the Large Intestine, Squamous cell carcinoma, Malignant neoplasm of lung, Endometrial Carcinoma, Melanoma, Colorectal Neoplasms, Malignant neoplasm of ovary, Malignant neoplasm of prostate, Glioblastoma, Leukemia, Malignant tumor of colon, Meningioma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurer, T.; Kizakoglu, M.E.; Aytekin, A.; Avsar, R. Expression Analysis of miR-519a-3p and miR-379-5p in Colorectal Cancer Patients: A Combined Experimental and Bioinformatic Approach. Diagnostics 2025, 15, 2023. https://doi.org/10.3390/diagnostics15162023
Gurer T, Kizakoglu ME, Aytekin A, Avsar R. Expression Analysis of miR-519a-3p and miR-379-5p in Colorectal Cancer Patients: A Combined Experimental and Bioinformatic Approach. Diagnostics. 2025; 15(16):2023. https://doi.org/10.3390/diagnostics15162023
Chicago/Turabian StyleGurer, Turkan, Mehmet Emin Kizakoglu, Alper Aytekin, and Rusen Avsar. 2025. "Expression Analysis of miR-519a-3p and miR-379-5p in Colorectal Cancer Patients: A Combined Experimental and Bioinformatic Approach" Diagnostics 15, no. 16: 2023. https://doi.org/10.3390/diagnostics15162023
APA StyleGurer, T., Kizakoglu, M. E., Aytekin, A., & Avsar, R. (2025). Expression Analysis of miR-519a-3p and miR-379-5p in Colorectal Cancer Patients: A Combined Experimental and Bioinformatic Approach. Diagnostics, 15(16), 2023. https://doi.org/10.3390/diagnostics15162023