Prognostic Significance of Left Ventricular Global Work Efficiency in Obese Patients with Acute ST-Segment Elevation Myocardial Infarction—A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
- Group 1: Non-obese (BMI < 30 kg/m2);
- Group 2: Obese (BMI ≥ 30 kg/m2).
2.2. Demographic and Clinical Characteristics
2.3. Echocardiographic Assessment
2.4. Myocardial Work Analysis
- LV Global Work Index (LVGWI)—total myocardial work from mitral valve closure to opening;
- LV Global Constructive Work (LVGCW)—work contributing to LV ejection (systolic shortening and isovolumic relaxation lengthening);
- LV Global Wasted Work (LVGWW)—energy expenditure that does not contribute to ejection (systolic lengthening and isovolumic shortening);
- LV Global Work Efficiency (LVGWE)—calculated as follows:
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Patient Population
3.2. Echocardiographic Results
3.3. Receiver Operating Characteristics (ROC) Analysis
3.4. Kaplan–Meier Survival Analysis
3.5. Cox Regression Analysis
3.6. Correlation Analysis
3.7. Reliability of MW Parameters
4. Discussion
4.1. Prognostic Value of LVGWE in STEMI
4.2. Impact of Obesity on STEMI Outcomes
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
BMI | Body mass index |
GLS | Global longitudinal strain |
LV | Left ventricle |
LVEF | Left ventricular ejection fraction |
LVGCW | Left ventricular global constructive work |
LVGWE | Left ventricular global work efficiency |
LVGWI | Left ventricular global work index |
LVGWW | Left ventricular global wasted work |
LVMW | Left ventricular myocardial work |
MACE | Major adverse cardiac events |
PCI | Percutaneous coronary intervention |
ROC | Receiver operating characteristics |
STEMI | ST-elevation myocardial infarction |
TTE | Transthoracic echocardiography |
References
- Fruh, S.M. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Adult BMI Collaborators. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 8, 813–838. [Google Scholar]
- Kolwicz, S.C., Jr.; Purohit, S.; Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 2013, 113, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.A.; Murray, A.J.; Cochlin, L.E.; Heather, L.C.; McAleese, S.; Knight, N.S.; Sutton, E.; Jamil, A.A.; Parassol, N.; Clarke, K. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res. Cardiol. 2011, 106, 447–457. [Google Scholar] [CrossRef]
- Huang, J.; Li, G.A.; Wang, J.; Jiao, Y.W.; Qian, Z.F.; Fan, L.; Tang, L.M. Evaluation of subclinical left ventricular systolic dysfunction in obese patients by global myocardial work. Diabetol. Metab. Syndr. 2023, 15, 254. [Google Scholar] [CrossRef]
- Parto, P.; Lavie, C.J. Obesity and CardiovascularDiseases. Curr. Probl. Cardiol. 2017, 42, 376–394. [Google Scholar] [CrossRef]
- Amir, O.; Elbaz-Greener, G.; Carasso, S.; Claggett, B.; Barbarash, O.; Zaman, A.; Christersson, C.; Kiatchoosakun, S.; Anonuevo, J.; Opolski, G.; et al. Association between body mass index and clinical outcomes in patients with acute myocardial infarction and reduced systolic function: Analysis of PARADISE-MI trial data. Eur. J. Heart Fail. 2025, 27, 558–565. [Google Scholar] [CrossRef]
- Basha, M.; Stavropoulou, E.; Nikolaidou, A.; Dividis, G.; Peteinidou, E.; Tsioufis, P.; Kamperidis, N.; Dimitriadis, K.; Karamitsos, T.; Giannakoulas, G.; et al. Diagnosing Heart Failure with Preserved Ejection Fraction in Obese Patients. J. Clin. Med. 2025, 14, 1980. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. 2016–2018 EACVI Scientific Documents Committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef]
- Edwards, N.F.A.; Scalia, G.M.; Shiino, K.; Sabapathy, S.; Anderson, B.; Chamberlain, R.; Khandheria, B.K.; Chan, J. Global myocardial work is superior to global longitudinal strain to predict significant coronary artery disease in patients with normal left ventricular function and wall motion. J. Am. Soc. Echocardiogr. 2019, 32, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, F.; D’Andrea, A.; D’Ascenzi, F.; Bandera, F.; Benfari, G.; Esposito, R.; Malagoli, A.; Mandoli, G.E.; Santoro, C.; Russo, V.; et al. Myocardial Work by Echocardiography: Principles and Applications in Clinical Practice. J. Clin. Med. 2021, 10, 4521. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.; Ozden, T.O.; Mitrousi, K.; Ikonimidis, I. Myocardial work: Methodology and clinical applications. Diagnostics 2021, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- El Mahdiui, M.; van der Bijl, P.; Abou, R.; Ajmone, M.N.; Delgado, V.; Bax, J.J. Global Left Ventricular Myocardial Work Efficiency in Healthy Individuals and Patients with Cardiovascular Disease. J. Am. Soc. Echocardiogr. 2019, 32, 1120–1127. [Google Scholar] [CrossRef]
- Marzlin, N.; Hays, A.G.; Peters, M.; Kaminski, A.; Roemer, S.; O’Leary, P.; Kroboth, S.; Harland, D.R.; Khandheria, B.K.; Tajik, A.J.; et al. Myocardial Work in Echocardiography. Circ. Cardiovasc. Imaging 2023, 16, e014419. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, M.; Wang, W.; Tao, Z.; Wang, X.; Chai, Y.; Han, Y.; Liu, Q.; Chen, Y.; Yue, J.; et al. Subclinical myocardial work impairment in non-diabetic overweight and obese individuals: Impact of cardiometabolic traits. Int. J. Cardiol. 2025, 26, 133321. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Pasquali, R.; Casanueva, F.; Haluzik, M.; van Hulsteijn, L.; Ledoux, S.; Monteiro, M.P.; Salvador, J.; Santini, F.; Toplak, H.; Dekkers, O.M. European Society of Endocrinology Clinical Practice Guideline: Endocrine work-up in obesity. Eur. J. Endocrinol. 2020, 182, G1–G32. [Google Scholar] [CrossRef]
- Lei, Z.; Li, B.; Li, B.; Peng, W. Predictors and prognostic impact of left ventricular ejection fraction trajectories in patients with ST-segment elevation myocardial infarction. Aging Clin. Exp. Res. 2022, 34, 1429–1438. [Google Scholar] [CrossRef]
- Yahud, E.; Tzuman, O.; Fink, N.; Goldenberg, I.; Goldkorn, R.; Peled, Y.; Lev, E.; Asher, E. Trends in long-term prognosis according to left ventricular ejection fraction after acute coronary syndrome. J. Cardiol. 2020, 76, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Otero-García, O.; Cid-Álvarez, A.B.; Juskova, M.; Álvarez-Álvarez, B.; Tasende-Rey, P.; Gude-Sampedro, F.; García-Acuña, J.M.; Agra-Bermejo, R.; López-Otero, D.; Sanmartín-Pena, J.C.; et al. Prognostic impact of left ventricular ejection fraction recovery in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: Analysis of an 11-year all-comers registry. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Holzknecht, M.; Reindl, M.; Tiller, C.; Reinstadler, S.J.; Lechner, I.; Pamminger, M.; Schwaiger, J.P.; Klug, G.; Bauer, A.; Metzler, B.; et al. Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: A comparative prognostic evaluation of left ventricular functional parameters. Clin. Res. Cardiol. 2021, 110, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Akkuş, Ö.F.; Gürdoğan, M. Effect of Global Longitudinal Strain at Discharge Period on Predicting Cardiac Defibrillator Implantation in STEMİ Patients with Impaired Left Ventricle Systolic Functions. Medicina 2025, 61, 545. [Google Scholar] [CrossRef]
- Lustosa, R.P.; Fortuni, F.; van der Bijl, P.; Mahdiui, M.E.; Montero-Cabezas, J.M.; Kostyukevich, M.V.; Knuuti, J.; Marsan, N.A.; Delgado, V.; Bax, J.J. Changes in Global Left Ventricular Myocardial Work Indices and Stunning Detection 3 Months After ST-Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2021, 157, 15–21. [Google Scholar] [CrossRef]
- Lustosa, R.P.; van der Bijl, P.; El Mahdiui, M.; Montero-Cabezas, J.M.; Kostyukevich, M.V.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Noninvasive Myocardial Work Indices 3 Months after ST-Segment Elevation Myocardial Infarction: Prevalence and Characteristics of Patients with Postinfarction Cardiac Remodeling. J. Am. Soc. Echocardiogr. 2020, 33, 1172–1179. [Google Scholar] [CrossRef]
- Sabatino, J.; De Rosa, S.; Leo, I.; Strangio, A.; Spaccarotella, C.; Polimeni, A.; Sorrentino, S.; Di Salvo, G.; Indolfi, C. Prediction of Significant Coronary Artery Disease Through Advanced Echocardiography: Role of Non-invasive Myocardial Work. Front. Cardiovasc. Med. 2021, 24, 719603. [Google Scholar] [CrossRef]
- Pan, J.C.; Lyu, L.J.; Liu, Q.D.; Yang, W.; Li, X.H.; Han, Y.M.; Sun, J.Y.; Dong, M.; Zhang, P.F.; Zhang, M. Association between resting myocardial work indices and stress myocardial perfusion in patients with angina and non-obstructive coronary artery disease. Quant. Imaging Med. Surg. 2023, 13, 4563–4577. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, X.; Wang, J.; Li, Y.; Ding, X.; Guo, D.; Jiang, Z.; Zhu, W.; Cai, Q.; Lu, X. Value of territorial work efficiency estimation in non-ST-segment-elevation acute coronary syndrome: A study with non-invasive left ventricular pressure-strain loops. Int. J. Cardiovasc. Imaging 2021, 37, 1255–1265. [Google Scholar] [CrossRef]
- Lustosa, R.P.; Butcher, S.C.; van der Bijl, P.; El Mahdiui, M.; Montero-Cabezas, J.M.; Kostyukevich, M.V.; Rocha De Lorenzo, A.; Knuuti, J.; Ajmone, M.N.; Bax, J.J.; et al. Global Left Ventricular Myocardial Work Efficiency and Long-Term Prognosis in Patients After ST-Segment-Elevation Myocardial Infarction. Circ. Cardiovasc. Imaging 2021, 14, e012072. [Google Scholar] [CrossRef]
- Coisne, A.; Fourdinier, V.; Lemesle, G.; Delsart, P.; Aghezzaf, S.; Lamblin, N.; Schurtz, G.; Verdier, B.; Ninni, S.; Delobelle, A.; et al. Clinical significance of myocardial work parameters after acute myocardial infarction. Eur. Heart J. Open 2022, 2, oeac037. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wu, N.N.; Wang, S.; Sowers, J.R.; Zhang, Y. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol. Rev. 2021, 101, 1745–1807. [Google Scholar] [CrossRef] [PubMed]
- Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019, 92, 98–107. [Google Scholar] [CrossRef] [PubMed]
- El Hadj Othmane, T.; El Hadj Othmane, O.; Nizar, H. Obesity-Related Phenotype of Heart Failure with Preserved Ejection Fraction: A Comprehensive Review. Cureus 2025, 17, e81512. [Google Scholar] [CrossRef]
- Taverna, G.; Trimarchi, G.; Lofrumento, F.; Mancinelli, A.; Teresi, L.; Alagna, G.; Carerj, S.; Zito, C.; Di Bella, G. The impact of BMI on myocardial work and left atrial strain in young overweight patients with preserved left ventricular ejection fraction. Eur. Heart J. 2022, 24, jead119-230. [Google Scholar] [CrossRef]
- Alansari, H.; Lazzara, G.; Taha, M.B.; Gorthi, J.R. The Impact of Obesity on Cardiovascular Diseases: Heart Failure. Methodist. Debakey Cardiovasc. J. 2025, 21, 44–52. [Google Scholar] [CrossRef]
- Welsh, A.; Hammad, M.; Piña, I.L.; Kulinski, J. Obesity and cardiovascular health. Eur. J. Prev. Cardiol. 2024, 31, 1026–1035. [Google Scholar] [CrossRef]
- Abid, A.R.; El-Menyar, A.; Singh, R.; Gomaa, M.; Habib, S.; Abdelrahman, A.S.; Asaad, N.; AlQahtani, A.; Al-Thani, H.; AlBinali, H.; et al. Patterns and Outcomes of Obesity Using Body Mass Index in Patients Hospitalized with Acute Cardiovascular Disorders: A Retrospective Analysis of 7284 Patients in a Middle Eastern Country. J. Clin. Med. 2023, 12, 7263. [Google Scholar] [CrossRef]
- Pop, A.D.; Pop, D.; Buzoianu, A. Particularities of arrhythmias and obesity in heart failure. Rom. J. Cardiol. 2020, 30, 7–11. [Google Scholar]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
Variable | All Patients (n = 143) | Non-Obese STEMI Patients (n = 90) | Obese STEMI Patients (n = 53) | p Value |
---|---|---|---|---|
Age, years | 59 ± 11 | 60 ± 11 | 56 ± 10 | 0.035 |
Man, n (%) | 111 (77.7) | 71 (78.9) | 40 (75.5) | 0.636 |
Heart rate, bpm | 82 ± 16 | 78 ± 15 | 83 ± 13 | 0.084 |
SBP, mmHg | 146 ± 23 | 140 ± 23 | 155 ± 20 | <0.001 |
DBP, mmHg | 89 ± 15 | 86 ± 15 | 93 ± 14 | 0.011 |
Height, cm | 170 (162–176) | 170 (160–178) | 171 (165–175) | 0.678 |
Weight, kg | 85 (71–104) | 75 (65–87) | 101 (96–114) | <0.001 |
BMI, kg/m2 | 28.80 (24.90–33.62) | 25.40 (23.69–27.17) | 34.25 (31.48–37.95) | <0.001 |
BSA, m2 | 2.06 (1.80–2.20) | 1.85 (1.72–2.07) | 2.20 (2.14–2.28) | <0.001 |
Creatinine level, mg/dL | 1.08 (0.93–1.24 | 1.07 (0.84–1.27) | 1.09 (1.00–1.18) | 0.606 |
eGFR, ml/min/1.73 m2 | 75 ± 18 | 82.02 ± 21.11 | 83.13 ± 21.41 | 0.763 |
Glycemia, mg/dL | 134 (111–168) | 132 (109–154) | 135 (113–217) | 0.003 |
LDLc, mg/dL | 117 ± 38 | 115.99 ± 30.76 | 121.57 ± 33.24 | 0.313 |
Triglycerides, mg/dL | 129 (101–186) | 103 (70–158) | 154 (114–328) | 0.006 |
Total cholesterol, mg/dL | 185 ± 45 | 186.78 ± 37.74 | 190.68 ± 51.57 | 0.634 |
Hemoglobin, g/dL | 14 ± 1.5 | 14.42 ± 1.51 | 14.96 ± 1.31 | 0.052 |
ESR, mm/h | 12 (6–21) | 12 (10–29) | 10 (5–20) | 0.443 |
Leukocytes, 103 /µL | 11.31 (9.54–13.72) | 11.34 (8.88–12.55) | 11.29 (9.81–14.78) | 0.509 |
Neutrophiles, 103 /µL | 8.33 (6.68–10.54) | 8.35 (7.03–9.82) | 7.81 (6.58–12.04) | 0.530 |
Peak troponin I, ng/L | 1622 (220–23162) | 5675 (287–34107) | 445 (155–9715) | 0.307 |
Peak CK-MB, U/L | 222 (114–341) | 222 (120–322) | 212 (101–408) | 0.524 |
Smoking, n (%) | 98 (68.5) | 64 (71.1) | 34 (64.2) | 0.387 |
Dyslipidemia, n (%) | 137 (95.8) | 85 (94.4) | 52 (98.1) | 0.291 |
Previous CAD, n (%) | 9 (6.3) | 5 (5.6) | 4 (7.5) | 0.726 |
Cardiac inheritance, n (%) | 7 (4.9) | 4 (4.4) | 3 (5.7) | 0.710 |
Diabetes, n (%) | 30 (21) | 9 (10.0) | 21 (39.6) | <0.001 |
Hypertension, n (%) | 108 (75.5) | 59 (65.6) | 49 (92.5) | <0.001 |
CKD, n (%) | 16 (11.2) | 9 (10.0) | 7 (13.2) | 0.557 |
Killip Class I, n (%) | 120 (83.9) | 75 (83.3) | 45 (84.9) | 0.805 |
Killip Class II, n (%) | 20 (14) | 12 (13.3) | 8 (15.1) | 0.769 |
Killip Class III, n (%) | 2 (1.4) | 2 (2.2) | 0 (0.0) | 0.530 |
Killip Class IV, n (%) | 1 (0.7) | 1 (1.1) | 0 (0.0) | 1.000 |
Thrombolysis, n (%) | 39 (27.3) | 26 (28.9) | 13 (24.5) | 0.572 |
Single-vessel disease, n (%) | 63 (44.1) | 36 (40.0) | 27 (50.9) | 0.203 |
Two-vessel disease, n (%) | 47 (32.9) | 31 (34.4) | 16 (30.2) | 0.601 |
Three-vessel disease, n (%) | 33 (23.1) | 23 (25.6) | 10 (18.9) | 0.359 |
Treatment at Discharge | All Patients (n = 143) | Non-Obese STEMI Patients (n = 90) | Obese STEMI Patients (n = 53) | p Value |
---|---|---|---|---|
Aspirin, n (%) | 141 (98.6) | 88 (97.8) | 53 (100) | 0.530 |
Prasugrel/ticagrelor, n (%) | 109 (76.2) | 68 (75.6) | 41 (77.4) | 0.807 |
Clopidogrel, n (%) | 34 (23.8) | 22 (24.4) | 12 (22.6) | 0.807 |
Betablocker, n (%) | 109 (76.2) | 62 (68.9) | 47 (88.7) | 0.007 |
Nitrate, n (%) | 65 (45.5) | 39 (43.3) | 26 (49.1) | 0.507 |
ACE inhibitor/ARBs n (%) | 91 (63.6) | 48 (53.3) | 43 (81.1) | <0.001 |
MRAs, n (%) | 114 (79.7) | 71 (78.9) | 43 (81.1) | 0.747 |
Loop diuretics, n (%) | 111 (77.6) | 67 (74.4) | 44 (83.0) | 0.235 |
SGLT2i, n (%) | 23 (16.1) | 12 (13.3) | 11 (20.8) | 0.243 |
Statin, n (%) | 143 (100) | 90 (100) | 53 (100) |
Echocardiographic Parameter | All Patients (n = 143) | Non-Obese STEMI Patients (n = 90) | Obese STEMI Patients (n = 53) | p Value |
---|---|---|---|---|
Left ventricular end-diastolic volume, mL | 107.76 ± 26.59 | 104.44 ± 29.12 | 117.00 ± 22.18 | 0.008 |
Left ventricular end-systolic volume, mL | 63.47 ± 20.05 | 57.00 (44.50–72.50) | 68.50 (62.00–75.00) | 0.004 |
End-diastolic interventricular septal thickness, mm | 1.19 ± 0.20 | 1.15 ± 0.17 | 1.27 ± 0.22 | <0.001 |
End-diastolic posterior wall thickness, mm | 1.12 ± 0.15 | 1.10 ± 0.15 | 1.21 ± 0.16 | <0.001 |
Right ventricle diameter, cm | 2.62 ± 0.32 | 2.58 ± 0.41 | 2.64 ± 0.32 | 0.370 |
Estimated pulmonary artery systolic pressure, mmHg | 22 (21–29) | 22 (21–29) | 24 (20–29) | 0.961 |
Left atrial volume index, mL/m2 | 25.88 (21.11–30.99) | 24.82 (21.11–31.10) | 26.21 (20.68–30.64) | 0.278 |
Peak early diastolic mitral flow velocity (E), m/s | 0.66 ± 0.18 | 0.65 ± 0.18 | 0.65 ± 0.19 | 0.916 |
Late transmitral flow velocity (A), m/s | 0.78 ± 0.17 | 0.72 ± 0.19 | 0.82 ± 0.16 | 0.001 |
Mean peak early diastolic mitral annulus velocity (e’), m/s | 0.07 (0.04–0.08) | 0.07 (0.05–0.08) | 0.06 (0.04–0.07) | 0.579 |
Mean peak systolic mitral annulus velocity (s’), m/s | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.380 |
E/e’ ratio | 10.40 (8.33–13.41) | 10.00 (8.30–11.81) | 11.11 (8.33–14.89) | 0.206 |
Left ventricular ejection fraction, % | 41 ± 6 | 43 ± 7 | 43 ± 6 | 0.929 |
Global longitudinal strain, % | −12.03 ± 3.81 | −12.97 ± 3.60 | −12.08 ± 3.21 | 0.141 |
Myocardial Work Indices | All Patients (n = 143) | Non-Obese STEMI Patients (n = 90) | Obese STEMI Patients (n = 53) | p Value |
---|---|---|---|---|
Left ventricular global work index, mmHg% | 1105 ± 456 | 1255 ± 440 | 1170 ± 420 | 0.263 |
Left ventricular global constructive work, mmHg% | 1289 ± 445 | 1407 ± 427 | 1377 ± 407 | 0.680 |
Left ventricular global wasted work, mmHg% | 149 (98–200) | 133 (70–189) | 155 (124–301) | 0.005 |
Left ventricular global work efficiency, % | 86 (78–91) | 88 (80–93) | 85 (75–87) | 0.019 |
Parameters | AUC | 95% CI | p Value |
---|---|---|---|
LVEF, % | 0.540 | 0.329–0.751 | 0.709 |
GLS, % | 0.610 | 0.405–0.814 | 0.293 |
Mean s’, m/s | 0.664 | 0.466–0.861 | 0.104 |
E/e’ | 0.619 | 0.418–0.821 | 0.245 |
LA volume index, mL/m2 | 0.525 | 0.333–0.717 | 0.799 |
Estimated PASP, mmHg | 0.606 | 0.426–0.785 | 0.249 |
LVGWI, mmHg% | 0.621 | 0.381–0.860 | 0.323 |
LVGCW, mmHg% | 0.589 | 0.367–0.810 | 0.431 |
LVGWW, mmHg% | 0.688 | 0.503–0.872 | 0.046 |
LVGWE, % | 0.736 | 0.559–0.914 | 0.009 |
Parameters | AUC | 95% CI | p Value |
---|---|---|---|
LVEF, % | 0.493 | 0.348–0.638 | 0.921 |
GLS, % | 0.522 | 0.380–0.638 | 0.758 |
Mean s’, m/s | 0.474 | 0.340–0.608 | 0.104 |
E/e’ | 0.432 | 0.296–0.568 | 0.328 |
LA volume index, mL/m2 | 0.533 | 0.395–0.671 | 0.639 |
Estimated PASP, mmHg | 0.521 | 0.385–0.657 | 0.762 |
LVGWI, mmHg% | 0.568 | 0.423–0.712 | 0.359 |
LVGCW, mmHg% | 0.556 | 0.416–0.697 | 0.433 |
LVGWW, mmHg% | 0.581 | 0.435–0.728 | 0.277 |
LVGWE, % | 0.578 | 0.440–0.716 | 0.269 |
Univariate Cox Regression | Hazard Ratio | 95% CI | p Value |
---|---|---|---|
Age, years | 1.026 | 0.964–1.092 | 0.418 |
BMI, kg/mp | 0.966 | 0.820–1.139 | 0.680 |
Peak CK-MB, U/L | 1.002 | 1.000–1.004 | 0.029 |
Peak troponin I, ng/L | 1.000 | 1.000–1.002 | 0.144 |
LVEF, % | 0.970 | 0.860–1.094 | 0.621 |
GLS, % | 1.106 | 0.886–1.382 | 0.372 |
LVGWI, mmHg% | 0.999 | 0.997–1.001 | 0.378 |
LVGCW, mmHg% | 1.000 | 0.998–1.001 | 0.688 |
LVGWW, mmHg% | 1.003 | 0.998–1.008 | 0.230 |
LVGWE, % | 0.907 | 0.829–0.993 | 0.034 |
LVGWE < 79% | 5.592 | 1.330–23.509 | 0.019 |
Multivessel coronary artery disease | 2.669 | 0.638–11.176 | 0.179 |
Univariate Cox Regression | Multivariate Cox Regression | |||||
---|---|---|---|---|---|---|
Hazard Ratio | 95% CI | p Value | Hazard Ratio | 95% CI | p Value | |
Age, years | 1.017 | 0.985–1.050 | 0.312 | |||
BMI, kg/mp | 0.947 | 0.877–1.024 | 0.171 | |||
Obesity status | 0.621 | 0.276–1.395 | 0.248 | 0.534 | 0.233–1.223 | 0.138 |
Peak CK-MB, U/L | 1.001 | 1.000–1.003 | 0.031 | 1.001 | 1.000–1.002 | 0.113 |
Peak Troponin I, ng/L | 1.000 | 1.000–1.001 | 0.680 | |||
LVEF, % | 0.991 | 0.941–1.044 | 0.742 | |||
GLS, % | 1.038 | 0.935–1.153 | 0.485 | |||
LVGWI, mmHg% | 1.000 | 0.999–1.000 | 0.318 | |||
LVGCW, mmHg% | 1.000 | 0.999–1.001 | 0.529 | |||
LVGWW, mmHg% | 1.003 | 1.000–1.006 | 0.037 | |||
LVGWE, % | 0.957 | 0.921–0.995 | 0.025 | |||
LVGWE < 79% | 3.093 | 1.481–6.458 | 0.003 | 2.737 | 1.268–5.905 | 0.010 |
Multivessel coronary artery disease | 2.253 | 1.068–4.755 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frișan, A.-C.; Simonescu, M.; Lazăr, M.-A.; Crișan, S.; Mornoș, A.; Șoșdean, R.; Morar, A.-R.; Brie, D.-M.; Luca, C.-T.; Mornoș, C. Prognostic Significance of Left Ventricular Global Work Efficiency in Obese Patients with Acute ST-Segment Elevation Myocardial Infarction—A Pilot Study. Diagnostics 2025, 15, 1512. https://doi.org/10.3390/diagnostics15121512
Frișan A-C, Simonescu M, Lazăr M-A, Crișan S, Mornoș A, Șoșdean R, Morar A-R, Brie D-M, Luca C-T, Mornoș C. Prognostic Significance of Left Ventricular Global Work Efficiency in Obese Patients with Acute ST-Segment Elevation Myocardial Infarction—A Pilot Study. Diagnostics. 2025; 15(12):1512. https://doi.org/10.3390/diagnostics15121512
Chicago/Turabian StyleFrișan, Alexandra-Cătălina, Marius Simonescu, Mihai-Andrei Lazăr, Simina Crișan, Aniko Mornoș, Raluca Șoșdean, Andreea-Roxana Morar, Daniel-Miron Brie, Constantin-Tudor Luca, and Cristian Mornoș. 2025. "Prognostic Significance of Left Ventricular Global Work Efficiency in Obese Patients with Acute ST-Segment Elevation Myocardial Infarction—A Pilot Study" Diagnostics 15, no. 12: 1512. https://doi.org/10.3390/diagnostics15121512
APA StyleFrișan, A.-C., Simonescu, M., Lazăr, M.-A., Crișan, S., Mornoș, A., Șoșdean, R., Morar, A.-R., Brie, D.-M., Luca, C.-T., & Mornoș, C. (2025). Prognostic Significance of Left Ventricular Global Work Efficiency in Obese Patients with Acute ST-Segment Elevation Myocardial Infarction—A Pilot Study. Diagnostics, 15(12), 1512. https://doi.org/10.3390/diagnostics15121512