Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Participants
2.3. Clinical Assessments
- −
- SWMT: Assessed tactile sensitivity (≤2.83 normal, ≥3.84 sensory loss) [13].
- −
- Phalen’s Test: Positive if symptoms appeared within 60 s.
- −
- NCT: Measured DMLMN (>4 ms) and sensory conduction speed (<50 m/s) [14].
- −
- Ultrasound: Clarius system, CSA cutoff 10.5 mm2 (sensitivity 81%, specificity 95%) [16].
- −
- BCTQ: Symptom severity (11 items, 1–5) and functional status (8 items, 1–5) [15].
2.4. NEV Camera Imaging
2.5. Image Processing and Feature Extraction
- −
- Color Histograms: Hue, saturation, value distributions.
- −
- Local Binary Patterns (LBP): Texture patterns.
- −
- Haralick Texture Features: GLCM-based contrast, correlation, energy, entropy, homogeneity [18].
- −
- Color Proportions: Red, yellow-to-green, dark components.
- −
- Border Features: Edge density, gradient magnitude.
2.6. Statistical Analysis and Machine Learning
3. Results
3.1. Part 1: Classification of CTS vs. Control Hands
3.1.1. Demographic and Clinical Characteristics
3.1.2. SVM Classifier Performance
3.1.3. Feature Importance Analysis
3.1.4. Comparison with Existing Diagnostics
3.2. Clinical Correlations
3.2.1. Boston Carpal Tunnel Questionnaire (BCTQ)
3.2.2. Semmes-Weinstein Monofilament Testing (SWMT)
3.3. Part 2: MED vs. ULN Feature Analysis
3.3.1. Demographic Characteristics
3.3.2. Significant Feature Differences
- −
- Red_proportion: Higher in MED (0.18 ± 0.03 vs. 0.12 ± 0.02, p = 0.002), reflecting vascular changes.
- −
- Yellow_green_proportion: Lower in MED (0.25 ± 0.04 vs. 0.32 ± 0.05, p = 0.004), indicating reduced tissue vitality.
- −
- Avg_value (brightness): Lower in MED (120 ± 15 vs. 140 ± 18, p = 0.001), suggesting darker skin tones.
- −
- Haralick features: Contrast (haralick_2, 45.2 ± 8.1 vs. 38.7 ± 7.4, p = 0.003), entropy (haralick_7, 9.8 ± 1.2 vs. 8.5 ± 1.0, p = 0.002), and others (haralick_3, −5, −6, −9, −12, p < 0.05) showed increased textural complexity in MED areas.
3.3.3. Clinical and Physiological Correlations
3.3.4. Robustness and Limitations
3.4. Exploratory Analysis: Early Detection Potential
3.5. Physiological Implications
4. Discussion
4.1. Interpretation of Findings
4.2. Comparison with Existing Diagnostics
4.3. Necessity of Unconventional Devices in Science
4.4. Physiological Basis of Findings
4.5. Limitations and Future Directions
4.6. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Kim, M.W.; Kim, J.M. Enhanced diagnosis and severity assessment of carpal tunnel syndrome using combined shear wave elastography and cross-sectional area analysis: A prospective case-control study. PLoS ONE 2025, 20, e0320011. [Google Scholar] [CrossRef] [PubMed]
- Klauser, A.S.; Halpern, E.J.; De Zordo, T.; Feuchtner, G.M.; Arora, R.; Gruber, J.; Martinoli, C.; Löscher, W.N. Carpal tunnel syndrome assessment with US: Value of additional cross-sectional area measurements of the median nerve in patients versus healthy volunteers. Radiology 2009, 250, 171–177. [Google Scholar] [CrossRef]
- Yamada, S.; Yamaguchi, I. Magnetocardiograms in clinical medicine: Unique information on cardiac ischemia, arrhythmias, and fetal diagnosis. Intern. Med. 2005, 44, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Prince, J.; Mojtahed, H.; Kimball, D.; Shah, V.; Coleman, T.; Sarkar, M.; Rao, R.; Huang, M.; Schwindt, P.; et al. Peripheral nerve magnetoneurography with optically pumped magnetometers. Front. Physiol. 2022, 13, 798376. [Google Scholar] [CrossRef]
- Yang, A.; Cavanaugh, P.; Beredjiklian, P.K.; Matzon, J.L.; Seigerman, D.; Jones, C.M. Correlation of Carpal Tunnel Syndrome 6 Score and physical exam maneuvers with electrodiagnostic test severity in carpal tunnel syndrome: A blinded prospective cohort study. J. Hand Surg. Am. 2023, 48, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Zaki, H.A.; Shaban, E.; Salem, W.; Bilal, F.; Fayed, M.; Hendy, M.; Abdelrahim, M.G.; Masood, M.; Khair, Y.M.; A Shallik, N. A comparative analysis between ultrasound and electromyographic and nerve conduction studies in diagnosing carpal tunnel syndrome (CTS): A systematic review and meta-analysis. Cureus 2022, 14, e30476. [Google Scholar] [CrossRef]
- Dinescu, V.C.; Bica, M.; Vasile, R.C.; Gresita, A.; Catalin, B.; Rotaru-Zavaleanu, A.D.; Vreju, F.A.; Sas, L.; Bunescu, M. Limitations of the Boston Carpal Tunnel Questionnaire in assessing severity in a homogeneous occupational cohort. Life 2025, 15, 132. [Google Scholar] [CrossRef]
- Merkel, D.; Lueders, C.; Schneider, C.; Yousefzada, M.; Ruppert, J.; Weimer, A.; Herzog, M.; Lorenz, L.A.; Vieth, T.; Buggenhagen, H.; et al. Prospective comparison of nine different handheld ultrasound (HHUS) devices by ultrasound experts with regard to B-scan quality, device handling and software in abdominal sonography. Diagnostics 2024, 14, 1913. [Google Scholar] [CrossRef]
- Diagnosing and Assessing CTS. Available online: https://www.carpal-tunnel.net/diagnosing (accessed on 17 April 2025).
- Wilson, K.E.; Tat, J.; Keir, P.J. Effects of wrist posture and fingertip force on median nerve blood flow velocity. BioMed Res. Int. 2017, 2017, 7156489. [Google Scholar] [CrossRef]
- Prasad, A.; Mihacova, E.; Manoharan, R.R.; Pospisil, P. Application of ultra-weak photon emission imaging in plant stress assessment. J. Plant Res. 2025, 138, 389–400. [Google Scholar] [CrossRef]
- Casey, H.; DiBerardino, I.; Bonzanni, M.; Rouleau, N.; Murugan, N.J. Exploring ultraweak photon emissions as optical markers of brain activity. iScience 2025, 28, 112019. [Google Scholar] [CrossRef]
- Chikubu, H.; Inage, K.; Orita, S.; Shiga, Y.; Inoue, M.; Okuyama, K.; Tokeshi, S.; Shimizu, K.; Suzuki-Narita, M.; Ohtori, S. A study on subjective symptoms and plantar temperature imbalance in lumbar spinal stenosis: A preliminary study. Cureus 2025, 17, e79388. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Wang, T.; Qin, K.; Teng, J.; Qi, H. Comparison of ultrasound and magnetic resonance imaging of the median nerve’s recurrent motor branch and the value of its diameter in diagnosing carpal tunnel syndrome. Quant. Imaging Med. Surg. 2025, 15, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, S.; Poorolajal, J.; Mazaheri, A. Sensitivity and specificity of electrodiagnostic parameters in diagnosing carpal tunnel syndrome. Bone Jt. Open 2024, 5, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Atroshi, I.; Gummesson, C.; Johnsson, R.; Ornstein, E.; Ranstam, J.; Rosén, I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999, 282, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, Y.J.; Kim, J.K. Cost-effectiveness of carpal tunnel syndrome diagnosis and treatment: A systematic review. Hand Surg. Rehabil. 2023, 42, 103–112. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Werner, R.A.; Andary, M. Carpal tunnel syndrome: Pathophysiology and clinical neurophysiology. Clin. Neurophysiol. 2002, 113, 1373–1381. [Google Scholar] [CrossRef]
- Kennedy, W.R.; Wendelschafer-Crabb, G.; Polydefkis, M.; Mcarthur, J.C. Pathology and quantitation of cutaneous innervation. In Peripheral Neuropathy, 4th ed.; Dyck, P.J., Thomas, P.K., Eds.; Elsevier: Philadelphia, PA, USA, 2005; pp. 869–895. [Google Scholar]
- Monheit, G.; Cognetta, A.B.; Ferris, L. Multispectral imaging for melanoma diagnosis: A prospective study. J. Am. Acad. Dermatol. 2011, 64, 759–766. [Google Scholar] [CrossRef]
- Verdugo, R.J.; Salinas, R.A.; Castillo, J.L.; Cea, G. Surgical versus non-surgical treatment for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2008, 4, CD001552. [Google Scholar] [CrossRef]
- Ives, J.A.; van Wijk, E.P.; Bat, N.; Crawford, C.; Walter, A.; Jonas, W.B.; van Wijk, R.; van der Greef, J. Ultraweak photon emission as a non-invasive health assessment: A systematic review. PLoS ONE 2014, 9, e87401. [Google Scholar] [CrossRef] [PubMed]
- Panasyuk, S.V.; Yang, S.; Faller, D.V. Multispectral imaging for intraoperative tissue characterization in breast cancer surgery. J. Surg. Res. 2007, 138, 210–217. [Google Scholar] [CrossRef]
- Hochman, D.W.; Whalen, M.J.; Baraban, S.C. Multispectral imaging of cortical activity in epilepsy patients. Neuroimage 2006, 33, 1117–1125. [Google Scholar] [CrossRef]
- Jarvik, J.G.; Comstock, B.A.; Heagerty, P.J.; Haynor, D.R.; Fulton-Kehoe, D.; Kliot, M.; Franklin, G.M. Magnetic resonance imaging compared with electrodiagnostic studies in patients with suspected carpal tunnel syndrome: Predicting outcomes and costs. J. Hand Surg. Am. 2008, 33, 1519–1527. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Nevoret, M.L.; Casellini, C.; Parson, H. Diabetic neuropathy and nerve imaging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 823–848. [Google Scholar] [CrossRef]
- Pospíšil, P.; Prasad, A.; Rác, M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B 2014, 139, 11–23. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Shi, X.; Yu, T.; Yuan, Y.; Wang, D.; Cui, J.; Bai, L.; Zheng, F.; Dai, X.; Zhou, Z. Multimodal deep learning for grading carpal tunnel syndrome: A multicenter study in China. Acad. Radiol. 2025, in press. [Google Scholar] [CrossRef]
- Newington, L.; Harris, E.C.; Walker-Bone, K. Carpal tunnel syndrome and work: A systematic review. Occup. Med. 2015, 65, 529–536. [Google Scholar] [CrossRef]
- Jeffcoate, W.J.; Bus, S.A.; Game, F.L.; Hinchliffe, R.J.; Price, P.E.; Schaper, N.C.; International Working Group on the Diabetic Foot and the European Wound Management Association. Multispectral imaging in diabetic foot ulcer management: A systematic review. Diabetes Metab. Res. Rev. 2020, 36, e3285. [Google Scholar] [CrossRef]
Characteristic | Controls (n = 50) | CTS Group (n = 53) | p-Value |
---|---|---|---|
Age (years), mean ± SD | 45.2 ± 12.8 | 47.1 ± 13.5 | n.s. |
Age Range (min–max) | 20–75 | 22–78 | - |
Gender, n (%) | |||
Female | 30 (60.0%) | 35 (66.0%) | n.s. |
Male | 20 (40.0%) | 18 (34.0%) | n.s. |
Symptom Severity (BCTQ) | 0.6647 ± 0.0781 | 0.8792 ± 0.0735 | <0.001 |
Functional Status (BCTQ) | 15.92 ± 7.29 | 31.28 ± 6.47 | <0.001 |
Metric | Value |
---|---|
Accuracy | 93.33% |
Confusion Matrix | [[14, 1], [1, 14]] |
Precision | 0.93 |
Recall | 0.93 |
F1-Score | 0.93 |
Group | Symptom Severity Scale (Mean ± SD) | Functional Status Scale (Mean ± SD) |
---|---|---|
Normal | 0.6647 ± 0.0781 (0.5455–0.8182) | 15.92 ± 7.29 (8–32) |
Abnormal | 0.8792 ± 0.0735 (0.7273–1.0000) | 31.28 ± 6.47 (16–40) |
SWMT Threshold | n (%) | Interpretation |
---|---|---|
≤2.83 | 29 (29.6%) | Normal sensation |
3.22–3.84 | 35 (35.7%) | Diminished light touch |
4.08–4.56 | 24 (24.5%) | Diminished protective sensation |
≥4.74 | 10 (10.2%) | Loss of protective sensation |
Characteristic | CTS Group (n = 32) |
---|---|
Age (years), mean ± SD | 42.4 ± 14.9 |
Age Range (min–max) | 18–77 |
Gender, n (%) | |
Female | 21 (65.6%) |
Male | 11 (34.4%) |
Feature Category | Details |
---|---|
Significant Features | 10 features (p < 0.05): red_proportion, yellow_green_proportion, avg_value, haralick_2, haralick_3, haralick_5, haralick_6, haralick_7, haralick_9, haralick_12 |
Borderline Feature | avg_grad_magnitude (p = 0.0503) |
Non-Significant Features | 9 features (p > 0.05): e.g., dark_proportion, edge_density, haralick_4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinson, D.; Khatib, M.; Eissa, M.; Yassin, M. Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls. Diagnostics 2025, 15, 1417. https://doi.org/10.3390/diagnostics15111417
Robinson D, Khatib M, Eissa M, Yassin M. Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls. Diagnostics. 2025; 15(11):1417. https://doi.org/10.3390/diagnostics15111417
Chicago/Turabian StyleRobinson, Dror, Mohammad Khatib, Mohammad Eissa, and Mustafa Yassin. 2025. "Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls" Diagnostics 15, no. 11: 1417. https://doi.org/10.3390/diagnostics15111417
APA StyleRobinson, D., Khatib, M., Eissa, M., & Yassin, M. (2025). Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls. Diagnostics, 15(11), 1417. https://doi.org/10.3390/diagnostics15111417