Non-Invasive Myocardial Work Identifies Patients with Obstructive Coronary Lesions After Orthotopic Heart Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Demographic and Clinical Data
2.3. Two-Dimensional TTE
- Myocardial work index (MWI): the indexed total work performed by the LV during the systole, corresponding to the area of the loop.
- Global constructed work (GCW): the energy consumed by the myocardium contributing effectively to cardiac output (CO).
- Global wasted work (GWW): the myocardial work that does not contribute to CO.
2.4. CCTA Protocol and Study Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographics
3.2. Echocardiography Data
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A wave | late diastolic mitral inflow velocity |
ANT | anterior |
ANT_SEPT | anteroseptal |
AUC | area under the curve |
Biplane EDV index | left ventricular end-diastolic volume index |
LV-EF | biplane ejection fraction; left ventricular ejection fraction |
Biplane ESV index | left ventricular end-systolic volume index |
BMI | body mass index |
CAD | coronary artery disease |
CAV | cardiac allograft vasculopathy |
CCTA | coronary computed tomography angiography |
CI | confidence interval |
cm/s | centimeters per second |
CO | cardiac output |
DBP | diastolic blood pressure |
DT | deceleration time |
E wave | early diastolic mitral inflow velocity |
E/A | ratio of E-wave to A-wave |
e’ lateral | tissue Doppler E’ velocity at the lateral annulus |
e’ septal | tissue Doppler E’ velocity at the septal annulus |
ECMO | extracorporeal membrane oxygenation |
EDS | end systolic volume |
EDV | end diastolic volume |
eGFR | estimated glomerular filtration rate |
GCW | global constructed work |
GWE | global work efficiency |
GWW | global wasted work |
HLA | human leukocyte antigens |
HV | healthy volunteers |
IABP | intra-aortic balloon pump |
ICA | invasive coronary angiography |
INF | inferior |
IRT | isovolumetric relaxation time |
ISHLT | International Society for Heart and Lung Transplantation |
IVSd | interventricular septum thickness in diastole |
IVUS | intravascular ultrasound |
LAT | lateral |
LV | left ventricle, left ventricular |
LV-EF | left ventricular ejection fraction |
LV-GLS | left ventricular global longitudinal strain |
LV mass index | left ventricular mass index |
LVDd | left ventricular end-diastolic diameter |
Mean E/e’ | ratio of E-wave to tissue Doppler e’ velocity |
ms | millisecond |
MW | myocardial work |
MWI | myocardial work index |
NPV | negative predictive value |
OCL | obstructive coronary lesions |
OHT | orthotopic heart transplantation |
OHT-non-OCL | OHT patients without coronary lesions or with lesions <50% on the CCTA |
OHT-OCL | OHT patients with lesions ≥50% on the CCTA |
OR | odds ratio |
POST | posterior |
PRA | panel reactive antibodies |
PWd | posterior wall thickness in diastole |
ROC | receiver operating characteristic |
RWT | relative wall thickness |
SBP | systolic blood pressure |
SEPT | septal |
TTE | transthoracic echocardiography |
References
- Khush, K.K.; Cherikh, W.S.; Chambers, D.C.; Goldfarb, S.; Hayes, D.J.; Kucheryavaya, A.Y.; Levvey, B.J.; Meiser, B.; Rossano, J.W.; Stehlik, J.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-fifth Adult Heart Transplantation Report-2018; Focus Theme: Multiorgan Transplantation. J. Heart Lung Transplant. Off Publ. Int. Soc. Heart Transplant. 2018, 37, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Cruz, R.P.; Granville, D.J.; McManus, B.M. Allograft vasculopathy versus atherosclerosis. Circ. Res. 2006, 99, 801–815. [Google Scholar] [CrossRef]
- Chih, S.; Chong, A.Y.; Mielniczuk, L.M.; Bhatt, D.L.; Beanlands, R.S.B. Allograft Vasculopathy: The Achilles’ Heel of Heart Transplantation. J. Am. Coll. Cardiol. 2016, 68, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.; Nair, V.; Chih, S. Cardiac allograft vasculopathy: Insights on pathogenesis and therapy. Clin. Transplant. 2020, 34, e13794. [Google Scholar] [CrossRef]
- Pober, J.S.; Chih, S.; Kobashigawa, J.; Madsen, J.C.; Tellides, G. Cardiac allograft vasculopathy: Current review and future research directions. Cardiovasc. Res. 2021, 117, 2624–2638. [Google Scholar] [CrossRef]
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; García-Guereta, L.; Jamero, G.; Khush, K.; et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2023, 42, e1–e141. [Google Scholar] [CrossRef]
- Badano, L.P.; Miglioranza, M.H.; Edvardsen, T.; Colafranceschi, A.S.; Muraru, D.; Bacal, F.; Nieman, K.; Zoppellaro, G.; Braga, F.G.M.; Binder, T.; et al. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur. Heart J.—Cardiovasc. Imaging 2015, 16, 919–948. [Google Scholar] [CrossRef] [PubMed]
- Wever-Pinzon, O.; Romero, J.; Kelesidis, I.; Wever-Pinzon, J.; Manrique, C.; Budge, D.; Drakos, S.G.; Pina, I.L.; Kfoury, A.G.; Garcia, M.J.; et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: A meta-analysis of prospective trials. J. Am. Coll. Cardiol. 2014, 63, 1992–2004. [Google Scholar] [CrossRef]
- García-Baizán, A.; Caballeros, M.; Ezponda, A.; Manrique, R.; Gavira, J.J.; Rábago, G.; Bastarrika, G. Long-Term Prognostic Value of Coronary CTA in Orthotopic Heart Transplant Recipients. Am. J. Roentgenol. 2021, 216, 1216–1221. [Google Scholar] [CrossRef]
- Clemmensen, T.S.; Løgstrup, B.B.; Eiskjær, H.; Poulsen, S.H. Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: Relation to coronary allograft vasculopathy. J. Heart Lung Transplant. 2015, 34, 195–203. [Google Scholar] [CrossRef]
- Sciaccaluga, C.; Ghionzoli, N.; Mandoli, G.E.; Sisti, N.; D’ascenzi, F.; Focardi, M.; Bernazzali, S.; Vergaro, G.; Emdin, M.; Valente, S.; et al. The role of non-invasive imaging modalities in cardiac allograft vasculopathy: An updated focus on current evidences. Heart Fail. Rev. 2022, 27, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Smiseth, O.A.; Rider, O.; Cvijic, M.; Valkovič, L.; Remme, E.W.; Voigt, J.-U. Myocardial Strain Imaging: Theory, Current Practice, and the Future. JACC Cardiovasc. Imaging 2025, 18, 340–381. Available online: https://www.sciencedirect.com/science/article/pii/S1936878X24003012 (accessed on 22 May 2025). [CrossRef] [PubMed]
- Moya, A.; Buytaert, D.; Penicka, M.; Bartunek, J.; Vanderheyden, M. State-of-the-Art: Noninvasive Assessment of Left Ventricular Function Through Myocardial Work. J. Am. Soc. Echocardiogr. 2023, 36, 1027–1042. [Google Scholar] [CrossRef]
- Borrie, A.; Goggin, C.; Ershad, S.; Robinson, W.; Sasse, A. Noninvasive Myocardial Work Index: Characterizing the Normal and Ischemic Response to Exercise. J. Am. Soc. Echocardiogr. 2020, 33, 1191–1200. [Google Scholar] [CrossRef]
- Ran, H.; Yao, Y.; Wan, L.; Ren, J.; Sheng, Z.; Zhang, P.; Schneider, M. Characterizing stenosis severity of coronary heart disease by myocardial work measurement in patients with preserved ejection fraction. Quant. Imaging Med. Surg. 2023, 13, 5022–5033. [Google Scholar] [CrossRef]
- Lin, J.; Gao, L.; He, J.; Liu, M.; Cai, Y.; Niu, L.; Zhao, Y.; Li, X.; Wang, J.; Wu, W.; et al. Comparison of Myocardial Layer-Specific Strain and Global Myocardial Work Efficiency During Treadmill Exercise Stress in Detecting Significant Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 786943. [Google Scholar] [CrossRef] [PubMed]
- Edwards, N.F.A.; Scalia, G.M.; Shiino, K.; Sabapathy, S.; Anderson, B.; Chamberlain, R.; Khandheria, B.K.; Chan, J. Global Myocardial Work Is Superior to Global Longitudinal Strain to Predict Significant Coronary Artery Disease in Patients with Normal Left Ventricular Function and Wall Motion. J. Am. Soc. Echocardiogr. 2019, 32, 947–957. [Google Scholar] [CrossRef]
- Kacharava, A.G.; Gedevanishvili, A.T.; Imnadze, G.G.; Tsverava, D.M.; Brodsky, C.M. Pocket Guide to Echocardiography; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Samset, E.; Healthcare, G. Evaluation of Segmental Myocardial Work in the Left Ventricle; GE Healthcare Website. 2017. Available online: https://www.gehealthcare.com/-/media/8cab29682ace4ed7841505f813001e33.pdf@line-2@?srsltid=AfmBOopPgNu39xr-DeqnqU54O318wdIr29IkGPzYBCD7LPJDA5nnS4R7 (accessed on 30 April 2025).
- Austen, W.G.; Edwards, J.E.; Frye, R.L.; Gensini, G.G.; Gott, V.L.; Griffith, L.S.; McGoon, D.C.; Murphy, M.L.; Roe, B.B. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975, 51 (Suppl. S4), 5–40. [Google Scholar] [CrossRef]
- Mehra, M.R.; Crespo-Leiro, M.G.; Dipchand, A.; Ensminger, S.M.; Hiemann, N.E.; Kobashigawa, J.A.; Madsen, J.; Parameshwar, J.; Starling, R.C.; Uber, P.A. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy—2010. J. Heart Lung Transplant. 2010, 29, 717–727. [Google Scholar] [CrossRef]
- Sciaccaluga, C.; Mandoli, G.E.; Sisti, N.; Natali, M.B.; Ibrahim, A.; Menci, D.; D’errico, A.; Donati, G.; Benfari, G.; Valente, S.; et al. Detection of cardiac allograft vasculopathy by multi-layer left ventricular longitudinal strain in heart transplant recipients. Int. J. Cardiovasc. Imaging 2021, 37, 1621–1628. [Google Scholar] [CrossRef]
- Daud, A.; Xu, D.; Revelo, M.P.; Shah, Z.; Drakos, S.G.; Dranow, E.; Stoddard, G.; Kfoury, A.G.; Hammond, M.E.H.; Nativi-Nicolau, J.; et al. Microvascular Loss and Diastolic Dysfunction in Severe Symptomatic Cardiac Allograft Vasculopathy. Circ. Heart Fail. 2018, 11, e004759. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.K.; Villarraga, H.R.; Kane, G.C.; Pereira, N.L.; Raichlin, E.; Yu, Y.; Koshino, Y.; Kushwaha, S.S.; Miller, F.A.; Oh, J.K.; et al. Normal left ventricular mechanical function and synchrony values by speckle-tracking echocardiography in the transplanted heart with normal ejection fraction. J. Heart Lung Transplant. 2011, 30, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Amzulescu, M.S.; De Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J.—Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Mullikin, A.; Zang, H.; Ollberding, N.J.; Stark, S.; Hill, G.D.; Chin, C.; Tretter, J.T. Decreased Global Myocardial Work Efficiency Correlates with Coronary Vasculopathy in Pediatric Heart Transplant Patients. Pediatr. Cardiol. 2022, 43, 515–524. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.B.; Marwick, T.H. Normal Ranges of Left Ventricular Strain: A Meta-Analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Cacioli, G.; Ciabatti, M.; Cristiano, E.; Notari, C.; Papisca, I.; Distefano, G.; Menafra, G.; Della Monica, P.L.; Feccia, M.A.; Pergolini, A.; et al. Myocardial Work by Speckle-Tracking Echocardiography in Heart Transplant Recipients: Association Between Global Work Efficiency and Coronary Allograft Vasculopathy. Am. J. Cardiol. 2024, 228, 1–9. [Google Scholar] [CrossRef]
OHT-OCL (n = 7) | OHT-non-OCL (n = 48) | HV (n = 57) | p | |
Age, years | 65.20 (56.33–71.76) | 67.52 (54.89–73.48) | 63.10 (55.66–68.74) | 0.582 |
Sex, male | 7 (100) | 35 (72.92) | 47 (82.46) | 0.226 |
BMI, kg/m2 | 25.30 (21.60–29.80) | 26.20 (22.90–27.85) | 25.30 (24.20–27.77) | 0.965 |
SBP, mmHg | 126.14 (28.87) | 126.15 (17.80) | 130.86 (16.89) | 0.322 |
DBP, mmHg | 80 (17.50) | 80.50 (12.29) | 80.51 (9.85) | 0.975 |
Hypertension | 5 (71.43) | 30 (62.50) | 17 (29.82) | <0.01 |
Dyslipidemia | 6 (85.71) | 33 (68.75) | 23 (40.35) | <0.01 |
Diabetes mellitus | 5 (71.43) | 8 (16.67) | 3 (5.26) | <0.01 |
Tobaccouse Never Current Former | 1 (14.29) 0 (0) 6 (85.71) | 23 (48.94) 2 (4.26) 22 (46.81) | 34 (61.82) 5 (9.09) 16 (29.09) | 0.046 |
OHT-OCL (n = 7) | OHT-non-OCL (n = 48) | HV (n = 57) | p | |
IVSd, mm | 11.69 (1.73) | 10.62 (2.24) | 9.44 (1.85) | <0.01 |
PWd, mm | 11 (10.70–12) | 9.05 (8–10.95) | 9.10 (8.30–9.90) | <0.01 |
LVDd, mm | 43.71 (6.40) | 43.77 (5.17) | 44.46 (5.53) | 0.65 |
LV mass index, gr/m2 | 98.10 (85–106.30) | 84.45 (67.20–95.40) | 73.10 (56.70–89.40) | 0.01 |
RWT | 0.53 (0.44–0.57) | 0.44 (0.39–0.53) | 0.42 (0.38–0.47) | 0.129 |
Biplane EDV index, ml/m2 | 39.20 (24.30–43.50) | 29.45 (25.35–37.70) | 42 (36.30–51.10) | <0.01 |
Biplane ESV index, ml/m2 | 15.30 (10.30–21.50) | 10 (7.13–12.55) | 13.70 (10.40–17.90) | <0.01 |
LV-EF, % | 58.80 (55.60–74) | 68 (61.30–75) | 67.40 (62.60–72.80) | 0.191 |
E wave, cm/s | 52 (48–76) | 68 (58–82) | 67 (55–82) | 0.311 |
E wave DT, ms | 170 (120–210) | 171 (140–196) | 200 (170–240) | <0.01 |
E/A | 1.30 (0.95–1.43) | 1.51 (1.27–1.71) | 0.93 (0.77–1.30) | <0.01 |
e’ septal, cm/s | 7 (5–7) | 7 (6–8) | 7 (7–9) | 0.07 |
e’ lateral, cm/s | 10 (3) | 11 (3) | 10 (3) | 0.047 |
Mean E/e’ | 7.27 (6.50–8.44) | 7.22 (6.10–9.23) | 7.85 (6.40–9.40) | 0.862 |
IRT, ms | 86.14 (13.03) | 88.63 (19.12) | 101.25 (18.45) | <0.01 |
OHT-OCL (n = 7) | OHT-non-OCL (n = 48) | HV (n = 57) | p | |
LV-GLS, % | −10.60 (−14–−6.80) | −15.60 (−16.50–−13.40) | −18 (−20–−16) | <0.01 |
MWI, mmHg% | 1376 (665–1574) | 1389.50 (1205–1640) | 1853 (1613–2064) | <0.01 |
GCW, mmHg% | 1625 (796–1934) | 1667.50 (1409–1927) | 2142 (1879–2328) | <0.01 |
GWW, mmHg% | 136 (74–145) | 83.50 (62.50–118.50) | 59 (38–83) | <0.01 |
GWE, % | 87 (86–92) | 94 (91–95) | 96 (95–97) | <0.01 |
AUC | Lower Limit CI | Upper Limit CI | Cut-Off | Sensibility | Specificity | |
IVSd, mm | 0.63 | 0.41 | 0.84 | 11 | 0.71 | 0.625 |
PWd, mm | 0.76 | 0.64 | 0.89 | 9.9 | 1 | 0.646 |
LVDd, mm | 0.49 | 0.20 | 0.79 | 39 | 0.71 | 0.812 |
LV mass index, gr/m2 | 0.65 | 0.40 | 0.90 | 98 | 0.57 | 0.812 |
RWT | 0.65 | 0.44 | 0.86 | 0.48 | 0.71 | 0.71 |
Biplane EDV index, ml/m2 | 0.64 | 0.38 | 0.90 | 34.6 | 0.71 | 0.73 |
Biplane ESV index, ml/m2 | 0.70 | 0.44 | 0.95 | 15 | 0.14 | 0.83 |
LV-EF, % | 0.69 | 0.42 | 0.96 | 60.6 | 0.71 | 0.77 |
E wave cm/s | 0.31 | 0.07 | 0.54 | 53 | 0.43 | 0.21 |
E wave DT, ms | 0.50 | 0.20 | 0.79 | 131 | 0.43 | 0.81 |
E/A | 0.70 | 0.51 | 0.88 | 1.61 | 1 | 0.19 |
e’ septal cm/s | 0.61 | 0.37 | 0.86 | 59 | 0.43 | 0.85 |
e’ lateral cm/s | 0.62 | 0.37 | 0.85 | 86 | 0.57 | 0.79 |
Mean E/e’ | 0.48 | 0.26 | 0.70 | 7.4 | 0.29 | 0.47 |
IRT, ms | 0.54 | 0.32 | 0.76 | 83 | 0.57 | 0.67 |
LV-GLS, % | 0.80 | 0.59 | 1.01 | −14.4 | 0.86 | 0.71 |
MWI, mmHg% | 0.58 | 0.33 | 0.84 | 772 | 0.29 | 1 |
GCW, mmHg% | 0.57 | 0.29 | 0.85 | 1058 | 0.29 | 1 |
GWW, mmHg% | 0.70 | 0.49 | 0.90 | 117 | 0.71 | 0.75 |
GWE, % | 0.75 | 0.52 | 0.97 | 89 | 0.71 | 0.85 |
Parameter | OR | 95% CI | p | PseudoR |
GWE | 15.65 | 2.06–119.20 | 0.008 | 0.23 |
LV-EF | 9.08 | 1.17–70.22 | 0.034 | 0.15 |
Comparison | GWE Power (%) | LV-GLS Power (%) |
OHT-non-OCL vs. OHT-OCL | 62% | 41% |
HV vs. OHT-OCL | 99% | 63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manrique Antón, R.; Pascual Izco, M.; Bastarrika, G.; Díaz Dorronsoro, A.; Ezponda, A.; de la Torre Carazo, F.; Salteráin, N.; Jimeno-San Martín, L.; Martín-Calvo, N.; Iribarren, M.J.; et al. Non-Invasive Myocardial Work Identifies Patients with Obstructive Coronary Lesions After Orthotopic Heart Transplantation. Diagnostics 2025, 15, 1352. https://doi.org/10.3390/diagnostics15111352
Manrique Antón R, Pascual Izco M, Bastarrika G, Díaz Dorronsoro A, Ezponda A, de la Torre Carazo F, Salteráin N, Jimeno-San Martín L, Martín-Calvo N, Iribarren MJ, et al. Non-Invasive Myocardial Work Identifies Patients with Obstructive Coronary Lesions After Orthotopic Heart Transplantation. Diagnostics. 2025; 15(11):1352. https://doi.org/10.3390/diagnostics15111352
Chicago/Turabian StyleManrique Antón, Rebeca, Marina Pascual Izco, Gorka Bastarrika, Agnés Díaz Dorronsoro, Ana Ezponda, Fátima de la Torre Carazo, Nahikari Salteráin, Leticia Jimeno-San Martín, Nerea Martín-Calvo, María Josefa Iribarren, and et al. 2025. "Non-Invasive Myocardial Work Identifies Patients with Obstructive Coronary Lesions After Orthotopic Heart Transplantation" Diagnostics 15, no. 11: 1352. https://doi.org/10.3390/diagnostics15111352
APA StyleManrique Antón, R., Pascual Izco, M., Bastarrika, G., Díaz Dorronsoro, A., Ezponda, A., de la Torre Carazo, F., Salteráin, N., Jimeno-San Martín, L., Martín-Calvo, N., Iribarren, M. J., & Rábago, G. (2025). Non-Invasive Myocardial Work Identifies Patients with Obstructive Coronary Lesions After Orthotopic Heart Transplantation. Diagnostics, 15(11), 1352. https://doi.org/10.3390/diagnostics15111352