Radiomics and AI-Based Prediction of MGMT Methylation Status in Glioblastoma Using Multiparametric MRI: A Hybrid Feature Weighting Approach
Abstract
:1. Introduction
- This is the first study that employs a hybrid feature selection and weighting methodology for MGMT status prediction on a large-scale radiomics dataset employing multiparametric MRI (T1, T1-Gd, T2, and T2-FLAIR).
- Radiomics feature selection techniques (filtering (i.e., mRMR) and embedding-based (i.e., LASSO) selection) were employed to refine predictive models and enhance interpretation by identifying the most relevant and low-dimensional imaging features.
- This study focuses on the growing role of AI-driven radiomics in precision oncology, offering a non-invasive alternative to determine MGMT status in patients with GBM.
2. Materials and Methods
2.1. Dataset
2.2. Image Preprocessing
2.3. Tumor Segmentation
2.4. Feature Extraction
2.5. Feature Selection
Utilized Scheme for Feature Selection and Weighting
3. Results
3.1. Experimental Process
3.2. Performance Metric
3.3. Computational Results
3.4. Identified Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under the ROC Curve |
BraTS | Brain Tumor Segmentation |
CaPTk | Cancer Imaging Phenomics Toolkit |
CET | Contrast-Enhancing Tumor |
CNS | Central Nervous System |
DSC | Dynamic Susceptibility Contrast |
ED | Peritumoral Edema |
ET | Enhancing Tumor |
FLAIR | Fluid-Attenuated Inversion Recovery |
GBM | Glioblastoma |
LASSO | Least Absolute Shrinkage and Selection Operator |
MGMT | O6-Methylguanine-DNA Methyltransferase |
MRMR | Minimum Redundancy Maximum Relevance |
MRI | Magnetic Resonance Imaging |
NCR | Necrotic Tumor Core |
PSR | Percent Signal Recovery |
RBF | Radial Basis Function |
rCBV | Relative Cerebral Blood Volume |
SVM | Support Vector Machine |
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Butler, M.; Pongor, L.; Su, Y.T.; Xi, L.; Raffeld, M.; Quezado, M.; Trepel, J.; Aldape, K.; Pommier, Y.; Wu, J. MGMT Status as a Clinical Biomarker in Glioblastoma. Trends Cancer 2020, 6, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers 2024, 16, 331. [Google Scholar] [CrossRef]
- Katsigiannis, S.; Grau, S.; Krischek, B.; Er, K.; Pintea, B.; Goldbrunner, R.; Stavrinou, P. MGMT-Positive vs MGMT-Negative Patients With Glioblastoma: Identification of Prognostic Factors and Resection Threshold. Neurosurgery 2021, 88, E323–E329. [Google Scholar] [CrossRef]
- Samartha, M.V.S.; Dubey, N.K.; Jena, B.; Maheswar, G.; Lo, W.C.; Saxena, S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: A systematic review with bias analysis. J. Cancer Res. Clin. Oncol. 2024, 150, 57. [Google Scholar] [CrossRef]
- Bell, E.H.; Pugh, S.L.; McElroy, J.P.; Gilbert, M.R.; Mehta, M.; Klimowicz, A.C.; Magliocco, A.; Bredel, M.; Robe, P.; Grosu, A.L.; et al. Molecular-Based Recursive Partitioning Analysis Model for Glioblastoma in the Temozolomide Era: A Correlative Analysis Based on NRG Oncology RTOG 0525. JAMA Oncol. 2017, 3, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.S.; Kramp, T.R.; Palanichamy, K.; Tofilon, P.J.; Camphausen, K. MGMT inhibition regulates radioresponse in GBM, GSC, and melanoma. Sci. Rep. 2024, 14, 12363. [Google Scholar] [CrossRef]
- Smits, M.; van den Bent, M.J. Imaging Correlates of Adult Glioma Genotypes. Radiology 2017, 284, 316–331. [Google Scholar] [CrossRef]
- Han, Y.; Yan, L.F.; Wang, X.B.; Sun, Y.Z.; Zhang, X.; Liu, Z.C.; Nan, H.Y.; Hu, Y.C.; Yang, Y.; Zhang, J.; et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: A region of interest based analysis. BMC Cancer 2018, 18, 215. [Google Scholar] [CrossRef]
- Drabycz, S.; Roldán, G.; de Robles, P.; Adler, D.; McIntyre, J.B.; Magliocco, A.M.; Cairncross, J.G.; Mitchell, J.R. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 2010, 49, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.K.; Choi, S.H.; Shin, D.J.; Jo, S.W.; Yoo, R.E.; Kang, K.M.; Yun, T.J.; Kim, J.H.; Sohn, C.H.; Park, S.H.; et al. Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma. Eur. Radiol. 2018, 28, 4350–4361. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Ridzuan, M.; Alasmawi, H.; Sobirov, I.; Yaqub, M. MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models. Med. Image Anal. 2023, 90, 102989. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallieres, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Guo, J.; Yu, F.; Nasrallah, M.P.; Davatzikos, C. CDPNet: A radiomic feature learning method with epigenetic application to estimating MGMT promoter methylation status in glioblastoma. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 18–22 February 2024; Volume 12930. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Hussain, L.; Ibrar, U.; Alabdulkreem, E.; Nour, M.K.; Alqahtani, M.S.; Nafie, F.M.; Mohamed, A.; Mohammed, G.P.; Duong, T.Q. Radiogenomic classification for MGMT promoter methylation status using multi-omics fused feature space for least invasive diagnosis through mpMRI scans. Sci. Rep. 2023, 13, 3291. [Google Scholar]
- Farzana, W.; Temtam, A.G.; Shboul, Z.A.; Rahman, M.M.; Sadique, M.S.; Iftekharuddin, K.M. Radiogenomic prediction of MGMT using deep learning with Bayesian optimized hyperparameters. In Proceedings of the International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2021; pp. 357–366. [Google Scholar]
- Bakas, S.; Sako, C.; Akbari, H.; Bilello, M.; Sotiras, A.; Shukla, G.; Rudie, J.D.; Santamaría, N.F.; Kazerooni, A.F.; Pati, S.; et al. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics. Sci. Data 2022, 9, 453. [Google Scholar] [CrossRef]
- Joshi, S.; Davis, B.; Jomier, M.; Gerig, G. Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 2004, 23 (Suppl. S1), S151–S160. [Google Scholar] [CrossRef]
- Thakur, S.; Doshi, J.; Pati, S.; Rathore, S.; Sako, C.; Bilello, M.; Ha, S.M.; Shukla, G.; Flanders, A.; Kotrotsou, A.; et al. Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. NeuroImage 2020, 220, 117081. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- McKinley, R.; Rebsamen, M.; Daetwyler, K.; Meier, R.; Radojewski, P.; Wiest, R. Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D networks with label uncertainty. In Proceedings of the BrainLes@MICCAI, Lima, Peru, 4 October 2020. [Google Scholar]
- Isensee, F.; Jäger, P.F.; Full, P.M.; Vollmuth, P.; Maier-Hein, K.H. nnU-Net for Brain Tumor Segmentation; Springer: Cham, Switzerland, 2021; pp. 118–132. [Google Scholar]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Tasci, E.; Shah, Y.; Jagasia, S.; Zhuge, Y.; Shephard, J.; Johnson, M.O.; Elemento, O.; Joyce, T.; Chappidi, S.; Cooley Zgela, T. MGMT ProFWise: Unlocking a New Application for Combined Feature Selection and the Rank-Based Weighting Method to Link MGMT Methylation Status to Serum Protein Expression in Patients with Glioblastoma. Int. J. Mol. Sci. 2024, 25, 4082. [Google Scholar] [CrossRef] [PubMed]
- Tasci, E.; Jagasia, S.; Zhuge, Y.; Sproull, M.; Cooley Zgela, T.; Mackey, M.; Camphausen, K.; Krauze, A.V. RadWise: A Rank-Based Hybrid Feature Weighting and Selection Method for Proteomic Categorization of Chemoirradiation in Patients with Glioblastoma. Cancers 2023, 15, 2672. [Google Scholar] [CrossRef] [PubMed]
- Tasci, E.; Popa, M.; Zhuge, Y.; Chappidi, S.; Zhang, L.; Zgela, T.C.; Sproull, M.; Mackey, M.; Kates, H.R.; Garrett, T.J. MetaWise: Combined Feature Selection and Weighting Method to Link the Serum Metabolome to Treatment Response and Survival in Glioblastoma. Int. J. Mol. Sci. 2024, 25, 10965. [Google Scholar] [CrossRef]
- Scikit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 25 August 2022).
- mRMR Feature Selection. Available online: https://github.com/smazzanti/mrmr (accessed on 17 February 2023).
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Leske, H.; Camenisch Gross, U.; Hofer, S.; Neidert, M.C.; Leske, S.; Weller, M.; Lehnick, D.; Rushing, E.J. MGMT methylation pattern of long-term and short-term survivors of glioblastoma reveals CpGs of the enhancer region to be of high prognostic value. Acta Neuropathol. Commun. 2023, 11, 139. [Google Scholar] [CrossRef]
- Mansouri, A.; Hachem, L.D.; Mansouri, S.; Nassiri, F.; Laperriere, N.J.; Xia, D.; Lindeman, N.I.; Wen, P.Y.; Chakravarti, A.; Mehta, M.P.; et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 2019, 21, 167–178. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Tseng, C.L.; Zeng, K.L.; Mellon, E.A.; Soltys, S.G.; Ruschin, M.; Lau, A.Z.; Lutsik, N.S.; Chan, R.W.; Detsky, J.; Stewart, J.; et al. Evolving concepts in margin strategies and adaptive radiotherapy for glioblastoma: A new future is on the horizon. Neuro Oncol. 2024, 26, S3–S16. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, Y.X.; Zhang, W.L.; Lian, H.Y.; Iranzad, N.; Wang, E.; Li, Y.C.; Tong, H.C.; Li, L.Y.; Dong, L.Y.; et al. Intra-tumoral angiogenesis correlates with immune features and prognosis in glioma. Aging 2022, 14, 4402–4424. [Google Scholar] [CrossRef]
- Do, D.T.; Yang, M.-R.; Lam, L.H.T.; Le, N.Q.K.; Wu, Y.-W. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Sci. Rep. 2022, 12, 13412. [Google Scholar] [CrossRef]
- Qian, J.; Herman, M.G.; Brinkmann, D.H.; Laack, N.N.; Kemp, B.J.; Hunt, C.H.; Lowe, V.; Pafundi, D.H. Prediction of MGMT Status for Glioblastoma Patients Using Radiomics Feature Extraction From (18)F-DOPA-PET Imaging. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yushkevich, P.A. Multi-atlas segmentation with joint label fusion and corrective learning—An open source implementation. Front. Neuroinform. 2013, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Bonada, M.; Rossi, L.F.; Carone, G.; Panico, F.; Cofano, F.; Fiaschi, P.; Garbossa, D.; Di Meco, F.; Bianconi, A. Deep Learning for MRI segmentation and molecular subtyping in glioblastoma: Critical aspects from an emerging field. Biomedicines 2024, 12, 1878. [Google Scholar] [CrossRef] [PubMed]
Feature Type (Category) | Feature Description | Radiomic Features (n = 144) |
---|---|---|
Intensity-based features | Capture first-order intensity statistics | 20 |
Histogram-related features | Describe the intensity range and distribution of gray-level pixel intensities within each subregion | 61 |
Volumetric features | Measure area and volume | 2 |
Morphological features | Capture various shape metrics | 19 |
Texture descriptors | Represent local variation and spatial dependence of image intensities | |
Gray-Level Co-occurrence Matrix (GLCM) features | 8 | |
Gray-Level Run-Length Matrix (GLRLM) features | 10 | |
Gray-Level Size Zone Matrix (GLSZM) features | 18 | |
Neighborhood Gray-Tone Difference Matrix (NGTDM) features | 5 | |
Local Binary Pattern (LBP) feature | 1 |
Imaging Sequences (n = 11) |
---|
T1 pre-contrast |
T1 post-contrast (T1Gd) |
T2 weighted |
FLAIR |
DSC (perfusion)—rCBV map |
DSC—rCBF map |
DSC—PSR map |
DTI—FA map |
DTI—MD map |
ADC map (from DWI) |
SWI (susceptibility-weighted imaging) |
Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Mean | |
---|---|---|---|---|---|---|
Before FS | 0.667 | 0.69 | 0.655 | 0.655 | 0.586 | 0.651 |
LASSO | 0.533 | 0.724 | 0.655 | 0.655 | 0.552 | 0.624 |
mRMR | 0.667 | 0.69 | 0.69 | 0.655 | 0.448 | 0.630 |
Feature Weighting | 0.767 | 0.862 | 0.828 | 0.931 | 0.69 | 0.816 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasci, E.; Zhuge, Y.; Zhang, L.; Ning, H.; Cheng, J.Y.; Miller, R.W.; Camphausen, K.; Krauze, A.V. Radiomics and AI-Based Prediction of MGMT Methylation Status in Glioblastoma Using Multiparametric MRI: A Hybrid Feature Weighting Approach. Diagnostics 2025, 15, 1292. https://doi.org/10.3390/diagnostics15101292
Tasci E, Zhuge Y, Zhang L, Ning H, Cheng JY, Miller RW, Camphausen K, Krauze AV. Radiomics and AI-Based Prediction of MGMT Methylation Status in Glioblastoma Using Multiparametric MRI: A Hybrid Feature Weighting Approach. Diagnostics. 2025; 15(10):1292. https://doi.org/10.3390/diagnostics15101292
Chicago/Turabian StyleTasci, Erdal, Ying Zhuge, Longze Zhang, Holly Ning, Jason Y. Cheng, Robert W. Miller, Kevin Camphausen, and Andra V. Krauze. 2025. "Radiomics and AI-Based Prediction of MGMT Methylation Status in Glioblastoma Using Multiparametric MRI: A Hybrid Feature Weighting Approach" Diagnostics 15, no. 10: 1292. https://doi.org/10.3390/diagnostics15101292
APA StyleTasci, E., Zhuge, Y., Zhang, L., Ning, H., Cheng, J. Y., Miller, R. W., Camphausen, K., & Krauze, A. V. (2025). Radiomics and AI-Based Prediction of MGMT Methylation Status in Glioblastoma Using Multiparametric MRI: A Hybrid Feature Weighting Approach. Diagnostics, 15(10), 1292. https://doi.org/10.3390/diagnostics15101292