Sex-Specific Impact of Inflammation and Nutritional Indices on AVF Blood Flow and Maturation: A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Inclusion and Exclusion Criteria
2.3. Perioperative Assessments and Surgical Approach
2.4. Postoperative Follow-Up
2.5. Outcomes
3. Statistical Analysis
4. Results
4.1. Predictors of Postoperative AVF Blood Flow (Functional Effect)
4.2. Predictors of Inadequate AVF (Structural Effect)
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AVF | Arteriovenous fistula |
BMI | Body mass index |
CKD | Chronic kidney disease |
CrA | C-reactive protein to albumin ratio |
CRP | C-reactive protein |
DUS | Doppler ultrasonography |
GFR | Glomerular filtration rate |
HD | Hemodialysis |
NLR | Neutrophil-to-lymphocyte ratio |
PNI | Prognostic nutritional index |
SII | Systemic Immune–Inflammatory Index |
SIRI | Systemic inflammation response index |
TTFM | Transit-Time Flow Measurement |
References
- Marsh, A.M.; Genova, R.; Buicko Lopez, J.L. Dialysis Fistula. [Updated 2023 May 23]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559085/ (accessed on 10 February 2025).
- Hemodialysis Adequacy 2006 Work Group. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am. J. Kidney Dis. 2006, 48 (Suppl. 1), S2–S90. [Google Scholar] [CrossRef] [PubMed]
- Dember, L.M.; Imrey, P.B.; Beck, G.J.; Cheung, A.K.; Himmelfarb, J.; Huber, T.S.; Kusek, J.W.; Roy-Chaudhury, P.; Vazquez, M.A.; Alpers, C.E.; et al. Objectives and design of the hemodialysis fistula maturation study. Am. J. Kidney Dis. 2014, 63, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Pietryga, J.A.; Little, M.D.; Robbin, M.L. Sonography of arteriovenous fistulas and grafts. Semin. Dial. 2017, 30, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Saati, A.; Puffenberger, D.; Kirksey, L.; Fendrikova-Mahlay, N. The role of hemodialysis access duplex ultrasound for evaluation of patency and access surveillance. Cardiovasc. Diagn. Ther. 2023, 13, 190–195. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Ashraff, S.; Carline, T. Maturation of arteriovenous fistula: Analysis of key factors. Kidney Res. Clin. Pract. 2017, 36, 318–328. [Google Scholar] [CrossRef]
- Zheng, Q.; Xie, B.; Xie, X.; Zhang, W.; Hou, J.; Feng, Z.; Tao, Y.; Yu, F.; Zhang, L.; Ye, Z. Predictors associated with early and late restenosis of arteriovenous fistulas and grafts after percutaneous transluminal angiography. Ann. Transl. Med. 2021, 9, 132. [Google Scholar] [CrossRef]
- Correia, A.L.; Silva, A.R.; Mira, F.; Pinto, R.; Ferreira, E.; Guedes Marques, M.; Romãozinho, C.; Alves, R. Predictive factors for arteriovenous fistula maturation: A prospective study. Hemodial. Int. 2025, 29, 24–30. [Google Scholar] [CrossRef]
- Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; Voidăzan, S.; Arbănași, E.M.; Horváth, E.; Suciu, B.A.; Hosu, I.; Halmaciu, I.; Brinzaniuc, K.; et al. The Predictive Value of Systemic Inflammatory Markers, the Prognostic Nutritional Index, and Measured Vessels’ Diameters in Arteriovenous Fistula Maturation Failure. Life 2022, 12, 1447. [Google Scholar] [CrossRef]
- Brahmbhatt, A.; Remuzzi, A.; Franzoni, M.; Misra, S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016, 89, 303–316. [Google Scholar] [CrossRef]
- Oliver, M.J. The science of fistula maturation. J. Am. Soc. Nephrol. 2018, 29, 2607–2609. [Google Scholar] [CrossRef]
- Hakim, A.; Brooke, B.; Beckstrom, J.; Sarfati, M.; Kraiss, L. Predicting dialysis fistula maturation using the “Rule of 6’s”—Not all are created equal. J. Vasc. Surg. 2021, 74, e411–e412. [Google Scholar] [CrossRef]
- Silpe, J.E.; Rao, A.; Wang, B.; Mussa, F.; Landis, G.S.; Etkin, Y. Gender differences in arteriovenous fistula maturation. J. Vasc. Surg. 2020, 72, e240. [Google Scholar] [CrossRef]
- Chan, S.M.; Weininger, G.; Langford, J.; Jane-Wit, D.; Dardik, A. Sex differences in inflammation during venous remodeling of arteriovenous fistulae. Front. Cardiovasc. Med. 2021, 8, 715114. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.D.; Robbin, M.L.; Allon, M. Gender differences in outcomes of arteriovenous fistulas in hemodialysis patients. Kidney Int. 2003, 63, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, Y.; Guo, Y.; Cheng, P.; Li, Y.; Lu, C.; Cai, C.; Wang, W. Sex differences in arteriovenous fistula failure: Insights from bioinformatics analysis. J. Cardiovasc. Dev. Dis. 2022, 10, 3. [Google Scholar] [CrossRef]
- Angelici, L.; Marino, C.; Umbro, I.; Bossola, M.; Calandrini, E.; Tazza, L.; Agabiti, N.; Davoli, M.; On Behalf of the Regional Registry Dialysis and Transplant Lazio Region. Gender disparities in vascular access and one-year mortality among incident hemodialysis patients: An epidemiological study in Lazio Region, Italy. J. Clin. Med. 2021, 10, 5116. [Google Scholar] [CrossRef]
- Kane, J.; Lemieux, A.; Baranwal, G.; Misra, S. The role of cardio-renal inflammation in deciding the fate of the arteriovenous fistula in haemodialysis therapy. Cells 2024, 13, 1637. [Google Scholar] [CrossRef]
- Kaller, R.; Russu, E.; Arbănași, E.M.; Mureșan, A.V.; Jakab, M.; Ciucanu, C.C.; Arbănași, E.M.; Suciu, B.A.; Hosu, I.; Demian, L.; et al. Intimal CD31-positive relative surfaces are associated with systemic inflammatory markers and maturation of arteriovenous fistula in dialysis patients. J. Clin. Med. 2023, 12, 4419. [Google Scholar] [CrossRef]
- Schmidli, J.; Widmer, M.K.; Basile, C.; de Donato, G.; Gallieni, M.; Gibbons, C.P.; Haage, P.; Hamilton, G.; Hedin, U.; Kamper, L.; et al. Editor’s choice—Vascular access: 2018 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 757–818. [Google Scholar] [CrossRef]
- Kakkos, S.K.; Kaplanis, N.; Papachristou, E.C.; Papadoulas, S.I.; Lampropoulos, G.C.; Tsolakis, I.A.; Goumenos, D.S. The significance of inflow artery and tourniquet derived cephalic vein diameters on predicting successful use and patency of arteriovenous fistulas for haemodialysis. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 870–878. [Google Scholar] [CrossRef]
- Zamboli, P.; Fiorini, F.; D’Amelio, A.; Fatuzzo, P.; Granata, A. Color Doppler ultrasound and arteriovenous fistulas for hemodialysis. J. Ultrasound 2014, 17, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Khavanin Zadeh, M.; Gholipour, F.; Hadipour, R. The effect of hemoglobin level on arteriovenous fistula survival in Iranian hemodialysis patients. J. Vasc. Access 2008, 9, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Allon, M. Fistula first: Recent progress and ongoing challenges. Am. J. Kidney Dis. 2011, 57, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Shepshelovich, D.; Rozen-Zvi, B.; Avni, T.; Gafter, U.; Gafter-Gvili, A. Intravenous versus oral iron supplementation for the treatment of anemia in CKD: An updated systematic review and meta-analysis. Am. J. Kidney Dis. 2016, 68, 677–690. [Google Scholar] [CrossRef]
- Ren, S.; Xv, C.; Wang, D.; Xiao, Y.; Yu, P.; Tang, D.; Yang, J.; Meng, X.; Zhang, T.; Zhang, Y.; et al. The predictive value of systemic immune-inflammation index for vascular access survival in chronic hemodialysis patients. Front. Immunol. 2024, 15, 1382970. [Google Scholar] [CrossRef]
- Hu, S.; Wang, R.; Ma, T.; Lei, Q.; Yuan, F.; Zhang, Y.; Wang, D.; Cheng, J. Association between preoperative C-reactive protein to albumin ratio and late arteriovenous fistula dysfunction in hemodialysis patients: A cohort study. Sci. Rep. 2023, 13, 11184. [Google Scholar] [CrossRef]
- Mirabella, D.; Dinoto, E.; Rodriquenz, E.; Bellomo, M.; Miccichè, A.; Annicchiarico, P.; Pecoraro, F. Improved ultrasound-guided balloon-assisted maturation angioplasty using drug-eluting balloons in the first autogenous arteriovenous fistula procedure: Early experience. Biomedicines 2024, 12, 1005. [Google Scholar] [CrossRef]
- Zabo, B.; Gasz, B.; Fazekas, L.A.; Varga, A.; Kiss-Papai, L.; Matolay, O.; Rezsabek, Z.; Al-Smadi, M.W.; Nemeth, N. Heterogeneous maturation of arterio-venous fistulas and loop-shaped venous interposition grafts: A histological and 3D flow simulation comparison. Biomedicines 2022, 10, 1508. [Google Scholar] [CrossRef]
- Bylsma, L.C.; Gage, S.M.; Reichert, H.; Dahl, S.L.M.; Lawson, J.H. Arteriovenous fistulae for haemodialysis: A systematic review and meta-analysis of efficacy and safety outcomes. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 513–522. [Google Scholar] [CrossRef]
- Lok, C.E.; Huber, T.S.; Lee, T.; Shenoy, S.; Yevzlin, A.S.; Abreo, K.; Allon, M.; Asif, A.; Astor, B.C.; Glickman, M.H.; et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am. J. Kidney Dis. 2020, 75 (Suppl. 2), S1–S164. [Google Scholar] [CrossRef]
- Hoffstaetter, T.; Silpe, J.; Delijani, D.; Landis, G.S.; Etkin, Y. Sex disparities in arteriovenous fistula maturation outcomes. Ann. Vasc. Surg. 2023, 95, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Qian, J.; Thamer, M.; Allon, M. Gender disparities in vascular access surgical outcomes in elderly hemodialysis patients. Am. J. Nephrol. 2019, 49, 11–19. [Google Scholar] [CrossRef] [PubMed]
- de Winter, E.P.; Wilschut, D.; Plasmans, K.; Eefting, D.; van der Steenhoven, T.; Putter, H.; Rotmans, J.; van der Bogt, K. Intraoperative transit time flow measurement predicts maturation of radiocephalic arteriovenous fistulas. J. Vasc. Surg. 2024, 80, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.M.; Rigatto, C.; Komenda, P.; Mojica, J.; Tangri, N. Mortality risk for women on chronic hemodialysis differs by age. Can. J. Kidney Health Dis. 2014, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Satam, K.; Ohashi, Y.; Thaxton, C.; Gonzalez, L.; Setia, O.; Bai, H.; Aoyagi, Y.; Xie, Y.; Zhang, W.; Yatsula, B.; et al. Sex hormones impact early maturation and immune response in the arteriovenous fistula mouse model. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H77–H88. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Kudze, T.; Ono, S.; Fereydooni, A.; Gonzalez, L.; Isaji, T.; Hu, H.; Yatsula, B.; Taniguchi, R.; Koizumi, J.; Nishibe, T.; et al. Altered hemodynamics during arteriovenous fistula remodeling leads to reduced fistula patency in female mice. JVS Vasc. Sci. 2020, 1, 42–56. [Google Scholar] [CrossRef]
- White, R.E. Estrogen and vascular function. Vasc. Pharmacol. 2002, 38, 73–80. [Google Scholar] [CrossRef]
- Matsubara, Y.; Kiwan, G.; Fereydooni, A.; Langford, J.; Dardik, A. Distinct subsets of T cells and macrophages impact venous remodeling during arteriovenous fistula maturation. JVS Vasc. Sci. 2020, 1, 207–218. [Google Scholar] [CrossRef]
- Márquez, E.J.; Chung, C.H.; Marches, R.; Rossi, R.J.; Nehar-Belaid, D.; Eroglu, A.; Mellert, D.J.; Kuchel, G.A.; Banchereau, J.; Ucar, D. Sexual-dimorphism in human immune system aging. Nat. Commun. 2020, 11, 751. [Google Scholar] [CrossRef]
- van Ballegooijen, A.J.; Zelnick, L.; Hoofnagle, A.N.; Hamburg, N.M.; Robinson-Cohen, C.; Roy-Chaudhury, P.; Cheung, A.K.; Shiu, Y.T.; de Boer, I.H.; Himmelfarb, J.; et al. Association of vitamin D metabolites with arterial function in the Hemodialysis Fistula Maturation Study. Am. J. Kidney Dis. 2017, 69, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.; Duque, J.C.; Escobar, L.A.; Tabbara, M.; Asif, A.; Fayad, F.; Vazquez-Padron, R.I.; Salman, L.H. Distinct impact of three different statins on arteriovenous fistula outcomes: A retrospective analysis. J. Vasc. Access 2016, 17, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, S.; Lupattelli, G.; Siepi, D.; Schillaci, G.; Vaudo, G.; Roscini, A.R.; Sinzinger, H.; Mannarino, E. Short-term atorvastatin treatment improves endothelial function in hypercholesterolemic women. J. Cardiovasc. Pharmacol. 2000, 36, 617–621. [Google Scholar] [CrossRef]
- Chen, F.A.; Chien, C.C.; Chen, Y.W.; Wu, Y.T.; Lin, C.C. Angiotensin converting-enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers are associated with prolonged vascular access patency in uremic patients undergoing hemodialysis. PLoS ONE 2016, 11, e0166362. [Google Scholar] [CrossRef]
- Yevzlin, A.S.; Conley, E.L.; Sanchez, R.J.; Young, H.N.; Becker, B.N. Vascular access outcomes and medication use: A USRDS study. Semin. Dial. 2006, 19, 535–539. [Google Scholar] [CrossRef]
- Paraskevas, K.I.; Mikhailidis, D.P.; Roussas, N.; Giannoukas, A.D. Effect of antiplatelet agents, statins, and other drugs on vascular access patency rates. Angiology 2012, 63, 5–8. [Google Scholar] [CrossRef]
- Zhang, P.; Xun, L.; Bao, N.; Tong, D.; Duan, B.; Peng, D. Long-term mortality in patients with end-stage renal disease undergoing hemodialysis and peritoneal dialysis: A propensity score matching retrospective study. Ren. Fail. 2024, 46, 2321320. [Google Scholar] [CrossRef]
- Girerd, S.; Girerd, N.; Frimat, L.; Holdaas, H.; Jardine, A.G.; Schmieder, R.E.; Fellström, B.; Settembre, N.; Malikov, S.; Rossignol, P.; et al. Arteriovenous fistula thrombosis is associated with increased all-cause and cardiovascular mortality in haemodialysis patients from the AURORA trial. Clin. Kidney J. 2019, 13, 116–122. [Google Scholar] [CrossRef]
- Grosu, I.D.; Stirbu, O.; Schiller, A.; Bob, F. Arterio-venous fistula calcifications—Risk factors and clinical relevance. Biomedicines 2024, 12, 2464. [Google Scholar] [CrossRef]
- Meng, L.; Guo, W.; Ho, P. Risk score for the prediction of arteriovenous fistula maturation. J. Vasc. Surg. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.; Perla, M.; Tabbara, M.; Duque, J.C.; Rojas, M.G.; Falcon, N.S.; Pereira-Simon, S.; Salman, L.H.; Vazquez-Padron, R.I. Systemic profile of cytokines in arteriovenous fistula patients and their associations with maturation failure. Kidney360 2022, 3, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Stirbu, O.; Gadalean, F.; Pitea, I.V.; Ciobanu, G.; Schiller, A.; Grosu, I.; Nes, A.; Bratescu, R.; Olariu, N.; Timar, B.; et al. C-reactive protein as a prognostic risk factor for loss of arteriovenous fistula patency in hemodialyzed patients. J. Vasc. Surg. 2019, 70, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Stolic, R.V.; Trajkovic, G.Z.; Peric, V.M.; Jovanovic, A.N.; Markovic, S.R.; Sovtic, S.R.; Subaric-Gorgieva, G.D. The influence of atherosclerosis and plasma D-dimer concentration in patients with a functioning arteriovenous fistula for maintenance hemodialysis. Int. Urol. Nephrol. 2008, 40, 503–508. [Google Scholar] [CrossRef]
- Morton, S.K.; Rodríguez, A.J.; Morris, D.R.; Bhandari, A.P.; Moxon, J.V.; Golledge, J. A systematic review and meta-analysis of circulating biomarkers associated with failure of arteriovenous fistulae for haemodialysis. PLoS ONE 2016, 11, e0159963. [Google Scholar] [CrossRef]
- Eroglu, E.; Kocyiğit, I.; Karakukcu, C.; Tuncay, A.; Zararsiz, G.; Eren, D.; Kahriman, G.; Hayri Sipahioglu, M.; Tokgoz, B.; Tasdemir, K.; et al. Hypoxia-inducible factors in arteriovenous fistula maturation: A prospective cohort study. Eur. J. Clin. Investig. 2020, 50, e13350. [Google Scholar] [CrossRef]
- Ozmen, R.; Uysal, C.; Herdem, N.; Ipekten, F.; Gunturk, I.; Tuncay, A.; Ozocak, O.; Yazici, C.; Kocyigit, I. Gelsolin as a predictor of arteriovenous fistula maturation. Clin. Exp. Nephrol. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Taghavi, M.; Jacobs, L.; Kaysi, S.; Dernier, Y.; Cubilier, E.; Chebli, L.; Laureys, M.; Collart, F.; Demulder, A.; Antoine, M.H.; et al. Assessment of arteriovenous fistula maturation in hemodialysis patients with persistently positive antiphospholipid antibody: A prospective observational cohort study. Life 2025, 15, 168. [Google Scholar] [CrossRef]
- Lee, E.S.; Shen, Q.; Pitts, R.L.; Guo, M.; Wu, M.H.; Yuan, S.Y. Vein tissue expression of matrix metalloproteinase as biomarker for hemodialysis arteriovenous fistula maturation. Vasc. Endovascular Surg. 2010, 44, 674–679. [Google Scholar] [CrossRef]
- Furtună, O.; Muresan, A.V. The role of systemic inflammatory markers in arteriovenous fistula dysfunction—A state-of-the-art review. J. Interdiscip. Med. 2023; Epub ahead of print. [Google Scholar]
- Pasqui, E.; de Donato, G.; Lazzeri, E.; Molino, C.; Galzerano, G.; Giubbolini, M.; Palasciano, G. High neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios are associated with a higher risk of hemodialysis vascular access failure. Biomedicines 2022, 10, 2218. [Google Scholar] [CrossRef]
- Anees, M.; Jawed, K.; Ali, Z.; Khan, A.M.; Siddiqui, N.A. Association of neutrophil-to-lymphocyte ratio and hemodialysis access failure in patients with end-stage renal disease: A systematic review and meta-analysis. J. Vasc. Access 2024, 11297298241276560. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, M.S.; Muduroglu, A. Predictive ability of systemic coagulation-inflammation index on early fistula failure after radiocephalic arteriovenous fistula creation. Int. J. Artif. Organs, 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Marchi, F.; Pylypiv, N.; Parlanti, A.; Storti, S.; Gaggini, M.; Paradossi, U.; Berti, S.; Vassalle, C. Systemic immune-inflammation index and systemic inflammatory response index as predictors of mortality in ST-elevation myocardial infarction. J. Clin. Med. 2024, 13, 1256. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Satici, M.O.; Eroglu, S.E. Unraveling the clinical significance and prognostic value of the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune-inflammation index, systemic inflammation response index, and delta neutrophil index: An extensive literature review. Turk. J. Emerg. Med. 2024, 24, 8–19. [Google Scholar] [CrossRef]
- Huang, P.; Mai, Y.; Zhao, J.; Yi, Y.; Wen, Y. Association of systemic immune-inflammation index and systemic inflammation response index with chronic kidney disease: Observational study of 40,937 adults. Inflamm. Res. 2024, 73, 655–667. [Google Scholar] [CrossRef]
- Lai, W.; Xie, Y.; Zhao, X.; Xu, X.; Yu, S.; Lu, H.; Huang, H.; Li, Q.; Xu, J.Y.; Liu, J.; et al. Elevated systemic immune inflammation level increases the risk of total and cause-specific mortality among patients with chronic kidney disease: A large multi-center longitudinal study. Inflamm. Res. 2023, 72, 149–158. [Google Scholar] [CrossRef]
- Guo, W.; Song, Y.; Sun, Y.; Du, H.; Cai, Y.; You, Q.; Fu, H.; Shao, L. Systemic immune-inflammation index is associated with diabetic kidney disease in Type 2 diabetes mellitus patients: Evidence from NHANES 2011–2018. Front. Endocrinol. 2022, 13, 1071465. [Google Scholar] [CrossRef]
- Qin, Z.; Li, H.; Wang, L.; Geng, J.; Yang, Q.; Su, B.; Liao, R. Systemic immune-inflammation index is associated with increased urinary albumin excretion: A population-based study. Front. Immunol. 2022, 13, 863640. [Google Scholar] [CrossRef]
- Li, Y.; Bai, G.; Gao, Y.; Guo, Z.; Chen, X.; Liu, T.; Li, G. The systemic immune inflammatory response index can predict the clinical prognosis of patients with initially diagnosed coronary artery disease. J. Inflamm. Res. 2023, 16, 5069–5082. [Google Scholar] [CrossRef]
- Wongmahisorn, Y. Role of neutrophil-to-lymphocyte ratio as a prognostic indicator for hemodialysis arteriovenous fistula failure. J. Vasc. Access 2019, 20, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.S.; Chang, J.W.; Park, Y. Nutritional status predicts 10-year mortality in patients with end-stage renal disease on hemodialysis. Nutrients 2017, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Bocedi, A.; Campo, M.; Marrone, G.; Di Lauro, M.; Cattani, G.; Di Daniele, N.; Romani, A. A pilot study of a natural food supplement as a new possible therapeutic approach in chronic kidney disease patients. Pharmaceuticals 2020, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Atas, D.; Tugcu, M.; Asicioglu, E.; Velioglu, A.; Arikan, H.; Koc, M.; Tuglular, S. Prognostic nutritional index is a predictor of mortality in elderly patients with chronic kidney disease. Int. Urol. Nephrol. 2022, 54, 1155–1162. [Google Scholar] [CrossRef]
- Miyasato, Y.; Hanna, R.M.; Morinaga, J.; Mukoyama, M.; Kalantar-Zadeh, K. Prognostic nutritional index as a predictor of mortality in 101,616 patients undergoing hemodialysis. Nutrients 2023, 15, 311. [Google Scholar] [CrossRef]
- Kadatane, S.P.; Satariano, M.; Massey, M.; Mongan, K.; Raina, R. The role of inflammation in CKD. Cells 2023, 12, 1581. [Google Scholar] [CrossRef]
- Wilson, S.M.; Robertson, J.A.; Chen, G.; Goel, P.; Benner, D.A.; Krishnan, M.; Mayne, T.J.; Nissenson, A.R. The IMPACT (Incident Management of Patients, Actions Centered on Treatment) program: A quality improvement approach for caring for patients initiating long-term hemodialysis. Am. J. Kidney Dis. 2012, 60, 435–443. [Google Scholar] [CrossRef]
- Kushwaha, R.; Vardhan, P.S.; Kushwaha, P.P. Chronic kidney disease interplay with comorbidities and carbohydrate metabolism: A review. Life 2023, 14, 13. [Google Scholar] [CrossRef]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in chronic kidney disease—Potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2019, 21, 263. [Google Scholar] [CrossRef]
Index/Parameter | Calculation Method |
---|---|
Body mass index (kg/m2) (BMI) | Weight (kg)/Height (m2) |
C-reactive protein to albumin ratio (CrA) | CRP (mg/L)/Albumin (g/dL) |
Neutrophil to lymphocyte ratio (NLR) | Neutrophil count/Lymphocyte count |
Systemic Immune–Inflammatory Index (SII) | (Platelet count × Neutrophil count)/Lymphocyte count |
Systemic Inflammatory Response Index (SIRI) | (Neutrophil count × Monocyte count)/Lymphocyte count |
Prognostic Nutritional Index (PNI) | [10 × serum Albumin (g/dL)] + [0.005 × Lymphocyte count] |
Female (n = 50) | Male (n = 60) | p | ||
---|---|---|---|---|
Age (years) | 50.1 ± 12.8 | 54.8 ± 12.9 | 0.061 | |
Body mass index, (kg/m2) | 27.7 ± 3.7 | 25.7 ± 2.4 | 0.007 | |
Diabetes mellitus | 15 (30%) | 24 (40%) | 0.275 | |
Hypertension, (%) | 34 (68%) | 44 (73%) | 0.540 | |
Coronary artery disease, (%) | 6 (12%) | 22 (36.6%) | <0.01 | |
Smoker, (%) | 14 (28%) | 23 (38%) | 0.186 | |
Artery diameter, mm; median (Q1–Q3) | 3.8 (3.6–4.0) | 3.4 (2.8–4.08) | 0.013 | |
Vein diameter, mm, median (Q1–Q3) | 3.4 (3.13–3.68) | 3.2 (2.9–3.6) | 0.118 | |
Transit time flow measurement | Flow (mL/min);mean | 193 ± 92 | 282 ± 96 | <0.001 |
Pulsatility index | 2.6 ± 1.0 | 1.6 ± 0.8 | <0.001 | |
Hemoglobin, g/dL | 11.1 ± 1.2 | 11.9 ± 1.4 | 0.002 | |
Neutrophil count, 103/μL | 5.2 ± 1.6 | 5.4 ± 1.5 | 0.490 | |
Lymphocyte count, 103/μL | 1.9 ± 0.7 | 1.7 ± 0.6 | 0.114 | |
Monocyte count, 103/μL | 0.6 ± 0.3 | 0.7 ± 0.3 | 0.256 | |
Platelet count, 103/μL | 237 ± 65 | 240 ± 52 | 0.457 | |
GFR, mL/min/1.73 m2 | 45.7 ± 3.8 | 45.3 ±3.4 | 0.513 | |
Triglyceride, mg/dL | 148 ± 59 | 145 ± 66 | 0.544 | |
Albumin, g/dL | 3.8 ± 0.4 | 3.95 ± 0.4 | 0.139 | |
CRP, mg/L | 12.1 ± 6.2 | 12.2 ± 8.7 | 0.228 | |
HbA1c, % | 6.0 ± 1.2 | 6.3 ± 1.5 | 0.375 | |
Uric acid, mg/dL | 5.9 ± 1.1 | 5.8 ± 1.2 | 0.401 | |
Ferritin, ng/mL | 318 ± 120 | 278 ± 110 | 0.071 | |
Iron, µg/dL | 49.3 ± 20.8 | 64.1 ± 26.5 | 0.003 | |
Vitamin D, ng/mL | 24.4 ± 14.4 | 34.8 ± 16.3 | <0.001 | |
CrA, median (Q1–Q3) | 2.9 (1.9–3.8) | 2.1 (1.6–3.5) | 0.166 | |
NLR, median (Q1–Q3) | 2.5 (2.06–3.4) | 3.0 (2.3–4.3) | 0.040 | |
SII, median (Q1–Q3) | 598 (472–840) | 704 (515–970) | 0.172 | |
SIRI, median (Q1–Q3) | 1.64 (1.1–2.2) | 1.86 (1.3–2.8) | 0.037 | |
PNI, median (Q1–Q3) | 39 (35.5–42) | 40 (37–43) | 0.110 |
Female | Male | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters, Median | Preoperative | Fourth Week | Sixth Week | p | η2 | Preoperative | Fourth Week | Sixth Week | p | η2 |
Albumin | 3.9 (3.5–4.1) | 3.6 (3.1–3.9) | 3.8 (3.7–4.0) | <0.001 | 0.184 | 4.0 (3.7–4.2) | 3.9 (3.7–4.2) | 4.0 (3.8–4.2) | 0.030 | 0.057 |
CRP | 10.9 (7.9–14.9) | 14.2 (8.8–36.8) | 11.2 (6.1–40.1) | <0.001 | 0.279 | 8.9 (6.5–14.2) | 12.2 (6.7–24.3) | 7.1 (5.1–16.8) | 0.026 | 0.075 |
Neutrophil | 4.9 (3.9–6.4) | 5.5 (4.3–7.2) | 5.7 (4.6–7.3) | <0.001 | 0.261 | 5.5 (4.1–6.5) | 5.1 (4.1–6.5) | 5.6 (4.1–7.0) | 0.012 | 0.172 |
Lymphocyte | 1.8 (1.4–2.4) | 1.3 (1.1–2.0) | 1.4 (1.1–2.1) | <0.001 | 0.258 | 1.6 (1.3–2.1) | 1.4 (1.0–1.8) | 1.4 (1.0–1.7) | 0.001 | 0.130 |
Monocyte | 0.5 (0.4–0.7) | 0.5 (0.4–0.8) | 0.6 (0.5–0.8) | 0.054 | 0.058 | 0.54 (0.4–0.7) | 0.6 (0.5–0.8) | 0.6 (0.4–0.8) | 0.033 | 0.061 |
Ferritin | 299 (236–404) | 411 (263–636) | 422 (300–685) | <0.001 | 0.307 | 259 (201–347) | 319 (215–479) | 289 (226–385) | <0.001 | 0.133 |
CrA | 2.9 (1.9–3.8) | 3.6 (2.2–13.0) | 2.8 (1.6–10.5) | <0.001 | 0.287 | 2.1 (1.6–3.5) | 3.1 (0.6–6.7) | 1.7 (1.2–4.2) | 0.041 | 0.185 |
NLR | 2.5 (2.06–3.4) | 4.6 (3.0–8.5) | 4.6 (3.0–10.1) | <0.001 | 0.300 | 3.0 (2.3–4.3) | 3.9 (2.6–6.5) | 3.9 (2.7–6.7) | <0.001 | 0.175 |
SII | 598 (472–840) | 896 (591–1980) | 840 (664–2354) | <0.001 | 0.238 | 704 (515–970) | 964 (517–1360) | 758 (568–1480) | <0.001 | 0.136 |
SIRI | 1.64 (1.1–2.2) | 3.0 (1.8–6.3) | 3.3 (1.7–9.0) | <0.001 | 0.250 | 1.86 (1.3–2.8) | 2.7 (1.5–5.2) | 2.6 (1.6–4.9) | <0.001 | 0.173 |
PNI | 39 (35.5–42) | 36 (31–39) | 38 (37–41) | <0.001 | 0.184 | 40 (37–43) | 40 (37–42) | 41 (39–43) | 0.034 | 0.068 |
Fourth Week | Sixth Week | |||||
---|---|---|---|---|---|---|
Female | Male | p | Female | Male | p | |
CrA, median (Q1–Q3) | 3.6 (2.2–13.0) | 3.1 (.6–6.7) | 0.019 | 2.8 (1.6–10.5) | 1.7 (1.2–4.2) | 0.014 |
NLR, median (Q1–Q3) | 4.6 (3.0–8.5) | 3.9 (2.6–6.5) | 0.192 | 4.6 (3.0–10.1) | 3.9 (2.7–6.7) | 0.222 |
SII, median (Q1–Q3) | 896 (591–1980) | 964 (517–1360) | 0.469 | 840 (664–2354) | 758 (568–1480) | 0.186 |
SIRI, median (Q1–Q3) | 3.0 (1.8–6.3) | 2.7 (1.5–5.2) | 0.604 | 3.3 (1.7–9.0) | 2.6 (1.6–4.9) | 0.209 |
PNI, median (Q1–Q3) | 36 (31–39) | 40 (37–42) | 0.021 | 38 (37–41) | 41 (39–43) | 0.026 |
Albumin, median | 3.6 (3.1–3.9) | 3.9 (3.7–4.2) | 0.02 | 3.8 (3.7–4.0) | 4.0 (3.8–4.2) | 0.018 |
CRP, median | 14.2 (8.8–36.8) | 12.2 (6.7–24.3) | 0.037 | 11.2 (6.1–40.1) | 7.1 (5.1–16.8) | 0.025 |
Fourth Week | Sixth Week | |||
---|---|---|---|---|
OR (95% CI); | p | OR (95% CI) | p | |
Female | 0.80 (0.71–0.91) | <0.001 | 0.81 (0.73–0.88) | <0.001 |
Age, years | 0.93 (0.88–0.95) | 0.044 | 0.94 (0.90–0.98) | <0.001 |
Body mass index, (kg/m2) | 0.89 (0.84–0.93) | <0.001 | 0.91 (0.87–0.96) | 0.004 |
Arterial diameter, mm | 1.01 (0.95–1.1) | 0.737 | 1.0(0.95–1.18) | 0.680 |
Vein diameter, mm | 1.08 (0.95–1.17) | 0.789 | 1.02 (0.9–1.2) | 0.667 |
TTFM mean flow | 1.11 (1.03–1.4) | 0.001 | 1.28 (1.1-.1.9) | <0.001 |
Diabetes mellitus | 0.96 (0.86–1.06) | 0.095 | 0.93 (0.83–1.05) | 0.071 |
Coronary artery disease | 0.93 (0.83–1.04) | 0.192 | 0.89(0.81–0.96) | 0.012 |
Hypertension | 0.98 (0.95–1.2) | 0.175 | 0.95 (0.89–1.01) | 0.057 |
Current smoking | 0.84 (0.76–0.95) | 0.003 | 0.82 (0.74–0.90) | <0.001 |
Low Hemoglobin (<11.5 g/dL) | 0.97 (0.92–1.02) | 0.330 | 0.92 (0.8–1.03) | 0.287 |
Albumin (≥3.85 g/dL) | 1.15 (1.06–1.2) | <0.001 | 1.01 (0.98–1.05) | 0.429 |
C-Reactive Protein | 0.98 (0.9–1.05) | 0.815 | 0.94 (0.84–1.01) | 0.368 |
Vitamin D (≤ 22.7 ng/mL) | 0.86 (0.79–0.97) | 0.036 | 0.91 (0.85–0.99) | 0.003 |
Female | Male | |||
---|---|---|---|---|
Predictors | Fourth Week OR (95% CI); p | Sixth Week OR (95% CI), p | Fourth Week OR (95% CI), p | Sixth Week OR (95% CI), p |
CrA | 0.90 (0.78–1.28); p = 0.274 | 0.91 (0.72–1.34); p = 0.161 | 1.02 (0.98–1.08); p = 0.097 | 1.08 (0.86–1.3); p = 0.150 |
NLR | 0.68 (0.40–0.98); p = 0.044 | 0.68 (0.34–0.95); p = 0.020 | 1.07 (0.98–1.12); p = 0.125 | 1.01 (0.82–1.1); p = 0.379 |
SII | 1.1 (0.91–2.2); p = 0.202 | 1.1 (0.8–2.0); p = 0.598 | 0.73 (0.4–1.13); p = 0.077 | 0.85 (0.5–1.3); p = 0.304 |
SIRI | 1.2 (0.8–1.7); p = 0.152 | 1.3 (0.95–2.1); p= 0.105 | 0.79 (0.59–0.97); p = 0.049 | 0.73 (0.5–0.98); p = 0.005 |
PNI | 0.91 (0.8–1.03); p = 0.115 | 1.12 (0.92–1.4); p = 0.084 | 0.98 (0.9–1.12); p = 0.466 | 1.2 (0.9–1.8); p = 0.332 |
Predictor | Multivariate Regression OR (95% CI) | p-Value |
---|---|---|
Female sex | 1.7 (1.15–12) | 0.037 |
Advanced age | 1.3 (1.1–1.61) | 0.023 |
Obesity | 1.4 (1.3–1.86) | <0.001 |
Diabetes | 1.2 (1.1–1.37) | 0.001 |
Hypertension | 1.2 (1.17–1.39) | 0.004 |
Current smoking | 1.9 (1.3–1.61) | 0.02 |
Hemoglobin ≤ 11.5 g/dL | 1.7 (1.3–2.5) | 0.012 |
Vitamin D ≤ 22.7 ng/mL | 1.3 (1.05–1.91) | <0.01 |
NLR | 1.38 (1.1–1.32) | 0.004 |
SII | 1.5 (1.1–2.4) | 0.018 |
SIRI | 2.3 (1.2–5.0) | 0.021 |
CrA | 1.6 (0.8–3.3) | 0.257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkaya, Ö.; Arslan, Ü. Sex-Specific Impact of Inflammation and Nutritional Indices on AVF Blood Flow and Maturation: A Retrospective Analysis. Diagnostics 2025, 15, 1278. https://doi.org/10.3390/diagnostics15101278
Akkaya Ö, Arslan Ü. Sex-Specific Impact of Inflammation and Nutritional Indices on AVF Blood Flow and Maturation: A Retrospective Analysis. Diagnostics. 2025; 15(10):1278. https://doi.org/10.3390/diagnostics15101278
Chicago/Turabian StyleAkkaya, Özgür, and Ümit Arslan. 2025. "Sex-Specific Impact of Inflammation and Nutritional Indices on AVF Blood Flow and Maturation: A Retrospective Analysis" Diagnostics 15, no. 10: 1278. https://doi.org/10.3390/diagnostics15101278
APA StyleAkkaya, Ö., & Arslan, Ü. (2025). Sex-Specific Impact of Inflammation and Nutritional Indices on AVF Blood Flow and Maturation: A Retrospective Analysis. Diagnostics, 15(10), 1278. https://doi.org/10.3390/diagnostics15101278