Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions
Abstract
:1. Introduction
2. Colorectal Cancer
3. Breath Blueprint as Biomarker for Early Detection and Monitoring of CRC
4. Applications of Machine Learning in Exhaled Breath Analysis: The Case of CRC
4.1. Pre-Processing and Feature Extraction
4.2. Feature Selection
4.3. Modeling and Classification
4.4. Model Training and Validation
5. Future Considerations: Extending the AI Toolbox towards Disease Diagnosis
6. Challenges and Pitfalls in the Use of AI Modelling towards Diagnosis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Schwartzberg, L.; Broder, M.S.; Ailawadhi, S.; Beltran, H.; Blakely, L.J.; Budd, G.T.; Carr, L.; Cecchini, M.; Cobb, P.; Kansal, A.; et al. Impact of Early Detection on Cancer Curability: A Modified Delphi Panel Study. PLoS ONE 2022, 17, e0279227. [Google Scholar] [CrossRef]
- Krilaviciute, A.; Heiss, J.A.; Leja, M.; Kupcinskas, J.; Haick, H.; Brenner, H. Detection of Cancer through Exhaled Breath: A Systematic Review. Oncotarget 2015, 6, 38643. [Google Scholar] [CrossRef]
- Rex, D.K.; Boland, C.R.; Dominitz, J.A.; Giardiello, F.M.; Johnson, D.A.; Kaltenbach, T.; Levin, T.R.; Lieberman, D.; Robertson, D.J. Colorectal Cancer Screening: Recommendations for Physicians and Patients from the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2017, 153, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Gimeno Garcia, A.Z. Factors Influencing Colorectal Cancer Screening Participation. Gastroenterol. Res. Pract. 2012, 2012, 483417. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Dai, W.; Wang, H.; Lan, X.; Ma, C.; Su, Z.; Xiang, W.; Han, L.; Luo, W.; Zhang, L.; et al. Early Detection and Prognosis Prediction for Colorectal Cancer by Circulating Tumour DNA Methylation Haplotypes: A Multicentre Cohort Study. EClinicalMedicine 2023, 55, 101717. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, A.; Levin, T.R. Current and Future Colorectal Cancer Screening Strategies. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 521–531. [Google Scholar] [CrossRef]
- Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath Testing as Potential Colorectal Cancer Screening Tool. Int. J. Cancer 2016, 138, 229–236. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-Based Methods for Early Disease Diagnostics. Expert. Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward Personalized Medicine. Mass. Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef]
- Vadala, R.; Pattnaik, B.; Bangaru, S.; Rai, D.; Tak, J.; Kashyap, S.; Verma, U.; Yadav, G.; Dhaliwal, R.S.; Mittal, S.; et al. A Review on Electronic Nose for Diagnosis and Monitoring Treatment Response in Lung Cancer. J. Breath. Res. 2023, 17, 024002. [Google Scholar] [CrossRef]
- Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; Costello, B.D.L. A Literature Survey of All Volatiles from Healthy Human Breath and Bodily Fluids: The Human Volatilome. J. Breath. Res. 2021, 15, 34001. [Google Scholar] [CrossRef]
- van der Schee, M.; Pinheiro, H.; Gaude, E. Breath Biopsy for Early Detection and Precision Medicine in Cancer. Ecancermedicalscience 2018, 12, ed84. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, M.K.; Amal, H.; Jeries, R.; Broza, Y.Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; et al. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2017, 11, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s Contributions to Current Concepts of Cancer Metabolism. Nat. Rev. Cancer 2011, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Janfaza, S.; Banan Nojavani, M.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Cancer Odor Database (COD): A Critical Databank for Cancer Diagnosis Research. Database 2017, 2017, bax055. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.-C.; Tan, C.-E.; Wang, S.-Y.; Lin, O.A.; Su, B.-H.; Hsu, M.-T.; Lin, J.; Cheng, Y.-Y.; Chen, C.-S.; Yang, Y.-C.; et al. Human Breathomics Database. Database 2020, 2020, baz139. [Google Scholar] [CrossRef] [PubMed]
- Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging Deeper into Volatile Organic Compounds Associated with Cancer. Biol. Methods Protoc. 2019, 4, bpz014. [Google Scholar] [CrossRef]
- Keogh, R.J.; Riches, J.C. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr. Oncol. 2022, 29, 7355–7378. [Google Scholar] [CrossRef]
- Wang, C.; Long, Y.; Li, W.; Dai, W.; Xie, S.; Liu, Y.; Zhang, Y.; Liu, M.; Tian, Y.; Li, Q.; et al. Exploratory Study on Classification of Lung Cancer Subtypes through a Combined K-Nearest Neighbor Classifier in Breathomics. Sci. Rep. 2020, 10, 5880. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.; Muller, M.; Van Der Noort, V.; Theelen, W.; Schouten, R.D.; Hummelink, K.; Muller, S.H.; Wolf-Lansdorf, M.; Dagelet, J.W.F.; Monkhorst, K.; et al. Prediction of Response to Anti-PD-1 Therapy in Patients with Non-Small-Cell Lung Cancer by Electronic Nose Analysis of Exhaled Breath. Ann. Oncol. 2019, 30, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, M.H.M.C.; Al-Difaie, Z.; Brandts, L.; Peeters, A.; van Grinsven, B.; Bouvy, N.D. Diagnostic Performance of Electronic Noses in Cancer Diagnoses Using Exhaled Breath: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e2219372. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, M.; Pandya, H.J. Breath VOC Analysis and Machine Learning Approaches for Disease Screening: A Review. J. Breath. Res. 2023, 17, 024001. [Google Scholar]
- Oakley-Girvan, I.; Davis, S.W. Breath Based Volatile Organic Compounds in the Detection of Breast, Lung, and Colorectal Cancers: A Systematic Review. Cancer Biomark. 2018, 21, 29–39. [Google Scholar] [CrossRef]
- Steenhuis, E.G.M.; Schoenaker, I.J.H.; de Groot, J.W.B.; Fiebrich, H.B.; de Graaf, J.C.; Brohet, R.M.; van Dijk, J.D.; van Westreenen, H.L.; Siersema, P.D. Feasibility of Volatile Organic Compound in Breath Analysis in the Follow-up of Colorectal Cancer: A Pilot Study. Eur. J. Surg. Oncol. 2020, 46, 2068–2073. [Google Scholar] [CrossRef]
- van Keulen, K.E.; Jansen, M.E.; Schrauwen, R.W.M.; Kolkman, J.J.; Siersema, P.D. Volatile Organic Compounds in Breath Can Serve as a Non-Invasive Diagnostic Biomarker for the Detection of Advanced Adenomas and Colorectal Cancer. Aliment. Pharmacol. Ther. 2020, 51, 334–346. [Google Scholar] [CrossRef]
- Van De Goor, R.; Leunis, N.; Van Hooren, M.R.A.; Francisca, E.; Masclee, A.; Kremer, B.; Kross, K.W. Feasibility of Electronic Nose Technology for Discriminating between Head and Neck, Bladder, and Colon Carcinomas. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1053–1060. [Google Scholar] [CrossRef]
- Liu, T.; Guo, L.; Wang, M.; Su, C.; Wang, D.; Dong, H.; Chen, J.; Wu, W. Review on Algorithm Design in Electronic Noses: Challenges, Status, and Trends. Intell. Comput. 2023, 2, 12. [Google Scholar] [CrossRef]
- Amor, R.E.; Nakhleh, M.K.; Barash, O.; Haick, H. Breath Analysis of Cancer in the Present and the Future. Eur. Respir. Rev. 2019, 28, 190002. [Google Scholar] [CrossRef]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, Origin, and Implementation of Breath Volatile Cancer Markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Broadhurst, D.I.; Kell, D.B. Statistical Strategies for Avoiding False Discoveries in Metabolomics and Related Experiments. Metabolomics 2006, 2, 171–196. [Google Scholar] [CrossRef]
- Śmiełowska, M.; Ligor, T.; Kupczyk, W.; Szeliga, J.; Jackowski, M.; Buszewski, B. Screening for Volatile Biomarkers of Colorectal Cancer by Analyzing Breath and Fecal Samples Using Thermal Desorption Combined with GC-MS (TD-GC-MS). J. Breath. Res. 2023, 17, 47102. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.R.; van Vorstenbosch, R.W.R.; Pachen, D.M.; Meulen, L.W.T.; Straathof, J.W.A.; Dallinga, J.W.; Jonkers, D.M.A.E.; Masclee, A.A.M.; van Schooten, F.-J.; Mujagic, Z.; et al. Detecting Colorectal Adenomas and Cancer Using Volatile Organic Compounds in Exhaled Breath: A Proof-of-Principle Study to Improve Screening. Clin. Transl. Gastroenterol. 2022, 13, e00518. [Google Scholar] [CrossRef] [PubMed]
- Woodfield, G.; Belluomo, I.; Laponogov, I.; Veselkov, K.; Lin, G.; Myridakis, A.; Ayrton, O.; Španěl, P.; Vidal-Diez, A.; Romano, A.; et al. Diagnostic Performance of a Noninvasive Breath Test for Colorectal Cancer: COBRA1 Study. Gastroenterology 2022, 163, 1447–1449. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Monasta, L.; Rigressi, M.N.; Princivalle, A.; Gonfiotti, A.; Camiciottoli, G.; Perbellini, L. Discriminant Profiles of Volatile Compounds in the Alveolar Air of Patients with Squamous Cell Lung Cancer, Lung Adenocarcinoma or Colon Cancer. Molecules 2021, 26, 550. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Picciariello, A.; Rotelli, M.T.; De Fazio, M.; Aresta, A.; Zambonin, C.G.; Vincenti, L.; Trerotoli, P.; De Vietro, N. Chemical Signature of Colorectal Cancer: Case–Control Study for Profiling the Breath Print. BJS Open 2020, 4, 1189–1199. [Google Scholar] [CrossRef]
- Miller-Atkins, G.; Acevedo-Moreno, L.-A.; Grove, D.; Dweik, R.A.; Tonelli, A.R.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Breath Metabolomics Provides an Accurate and Noninvasive Approach for Screening Cirrhosis, Primary, and Secondary Liver Tumors. Hepatol. Commun. 2020, 4, 1041–1055. [Google Scholar] [CrossRef]
- Markar, S.R.; Chin, S.-T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Ziprin, P.; Darzi, A.; Hanna, G.B. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-Tube Mass Spectrometry. Ann. Surg. 2019, 269, 903–910. [Google Scholar] [CrossRef]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Travaglio, E.; Longobardi, F.; Tutino, M.; Depalma, N.; Tedesco, G.; Sardaro, A.; Memeo, R.; et al. Effects of Curative Colorectal Cancer Surgery on Exhaled Volatile Organic Compounds and Potential Implications in Clinical Follow-Up. Ann. Surg. 2015, 262, 862–867. [Google Scholar] [CrossRef]
- Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive Detection of Colorectal Cancer by Analysis of Exhaled Breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; De Gennaro, G. Exhaled Volatile Organic Compounds Identify Patients with Colorectal Cancer. J. Br. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of Lung, Breast, Colorectal, and Prostate Cancers from Exhaled Breath Using a Single Array of Nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.-C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society Technical Standard: Exhaled Biomarkers in Lung Disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Kortelainen, J.M.; Polaka, I.; Turppa, E.; Mitrovics, J.; Padilla, M.; Mochalski, P.; Shuster, G.; Pohle, R.; Kashanin, D.; et al. Sensing Gastric Cancer via Point-of-Care Sensor Breath Analyzer. Cancer 2021, 127, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.-D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.-H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef]
- Smith, R.A.; Fedewa, S.; Siegel, R. Early Colorectal Cancer Detection—Current and Evolving Challenges in Evidence, Guidelines, Policy, and Practices. Adv. Cancer Res. 2021, 151, 69–107. [Google Scholar] [PubMed]
- Perea García, J.; Arribas, J.; Cañete, Á.; García, J.L.; Álvaro, E.; Tapial, S.; Narváez, C.; Vivas, A.; Brandáriz, L.; Hernández-Villafranca, S.; et al. Association of Polyps with Early-Onset Colorectal Cancer and throughout Surveillance: Novel Clinical and Molecular Implications. Cancers 2019, 11, 1900. [Google Scholar] [CrossRef]
- Kim, M.; Vogtmann, E.; Ahlquist, D.A.; Devens, M.E.; Kisiel, J.B.; Taylor, W.R.; White, B.A.; Hale, V.L.; Sung, J.; Chia, N.; et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio 2020, 11, e03186-19. [Google Scholar] [CrossRef]
- Murakami, T.; Sakamoto, N.; Nagahara, A. Endoscopic Diagnosis of Sessile Serrated Adenoma/Polyp with and without Dysplasia/Carcinoma. World J. Gastroenterol. 2018, 24, 3250. [Google Scholar] [CrossRef]
- Eichenseer, P.J.; Dhanekula, R.; Jakate, S.; Mobarhan, S.; Melson, J.E. Endoscopic Mis-Sizing of Polyps Changes Colorectal Cancer Surveillance Recommendations. Dis. Colon. Rectum 2013, 56, 315–321. [Google Scholar] [CrossRef]
- Alecu, M.; Simion, L.; Straja, N.D.; Brătucu, E. Multiple Polyps and Colorectal Cancer. Chir. (Bucur) 2014, 109, 342–346. [Google Scholar]
- Waldum, H.; Fossmark, R. Gastritis, Gastric Polyps and Gastric Cancer. Int. J. Mol. Sci. 2021, 22, 6548. [Google Scholar] [CrossRef] [PubMed]
- Coleman, O.I.; Haller, D. Microbe–Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers 2021, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Steel, M.J.; Bukhari, H.; Gentile, L.; Telford, J.; Schaeffer, D.F. Colorectal Adenocarcinomas Diagnosed Following a Negative Faecal Immunochemical Test Show High-Risk Pathological Features in a Colon Screening Programme. Histopathology 2021, 78, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, X.; Wu, Z.; Hu, H.; Cai, Y.; Li, J.; Ling, J.; Ding, M.; Li, W.; Deng, Y. Mucinous Adenocarcinoma Predicts Poor Response and Prognosis in Patients with Locally Advanced Rectal Cancer: A Pooled Analysis of Individual Participant Data from 3 Prospective Studies. Clin. Color. Cancer 2021, 20, e240–e248. [Google Scholar] [CrossRef]
- Nitsche, U.; Zimmermann, A.; Späth, C.; Müller, T.; Maak, M.; Schuster, T.; Slotta-Huspenina, J.; Käser, S.A.; Michalski, C.W.; Janssen, K.-P.; et al. Mucinous and Signet-Ring Cell Colorectal Cancers Differ from Classical Adenocarcinomas in Tumor Biology and Prognosis. Ann. Surg. 2013, 258, 775. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.-Q.; Li, Q.-G.; Ma, Y.-L.; Peng, J.-J.; Cai, S. Mucinous Adenocarcinomas Histotype Can Also Be a High-Risk Factor for Stage II Colorectal Cancer Patients. Cell. Physiol. Biochem. 2018, 47, 630–640. [Google Scholar] [CrossRef]
- Park, E.J.; Baek, J.-H.; Choi, G.-S.; Park, W.C.; Yu, C.S.; Kang, S.-B.; Min, B.S.; Kim, J.H.; Kim, H.R.; Lee, B.H.; et al. The Role of Primary Tumor Resection in Colorectal Cancer Patients with Asymptomatic, Synchronous, Unresectable Metastasis: A Multicenter Randomized Controlled Trial. Cancers 2020, 12, 2306. [Google Scholar] [CrossRef]
- Chow, J.S.; Chen, C.C.; Ahsan, H.; Neugut, A.I. A Population-Based Study of the Incidence of Malignant Small Bowel Tumours: SEER, 1973–1990. Int. J. Epidemiol. 1996, 25, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J. Mol. Sci. 2020, 21, 5311. [Google Scholar] [CrossRef] [PubMed]
- Probert, C.S.J.; Khalid, T.; Ahmed, I.; Johnson, E.; Smith, S.; Ratcliffe, N.M. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases. J. Gastrointest. Liver Dis. 2009, 18, 337–343. [Google Scholar]
- Vernia, F.; Valvano, M.; Fabiani, S.; Stefanelli, G.; Longo, S.; Viscido, A.; Latella, G. Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers 2021, 13, 2361. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Akter, S.; Han, S.; Shin, Y.; Choi, T.G.; Kang, I.; Kim, S.S. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int. J. Mol. Sci. 2022, 24, 129. [Google Scholar] [CrossRef]
- De Vietro, N.; Aresta, A.; Rotelli, M.T.; Zambonin, C.; Lippolis, C.; Picciariello, A.; Altomare, D.F. Relationship between Cancer Tissue Derived and Exhaled Volatile Organic Compound from Colorectal Cancer Patients. Preliminary Results. J. Pharm. Biomed. Anal. 2020, 180, 113055. [Google Scholar] [CrossRef]
- Dima, A.C.; Balaban, D.V.; Dima, A. Diagnostic Application of Volatile Organic Compounds as Potential Biomarkers for Detecting Digestive Neoplasia: A Systematic Review. Diagnostics 2021, 11, 2317. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, S.; Hua, Q.; Bao, C.; Liu, H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 606915. [Google Scholar] [CrossRef]
- Hanna, G.B.; Boshier, P.R.; Markar, S.R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Meta-Analysis. JAMA Oncol. 2019, 5, e182815. [Google Scholar] [CrossRef]
- Zhou, W.; Tao, J.; Li, J.; Tao, S. Volatile Organic Compounds Analysis as a Potential Novel Screening Tool for Colorectal Cancer: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e20937. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Xiong, X.; Hao, T.; Zhang, C.; Gao, Z.; Zhong, L.; Zhao, Y. Volatile Organic Compounds as a Potential Screening Tool for Neoplasm of the Digestive System: A Meta-Analysis. Sci. Rep. 2021, 11, 23716. [Google Scholar] [CrossRef] [PubMed]
- Poļaka, I.; Mežmale, L.; Anarkulova, L.; Kononova, E.; Vilkoite, I.; Veliks, V.; Ļeščinska, A.M.; Stonāns, I.; Pčolkins, A.; Tolmanis, I.; et al. The Detection of Colorectal Cancer through Machine Learning-Based Breath Sensor Analysis. Diagnostics 2023, 13, 3355. [Google Scholar] [CrossRef]
- Altomare, D.F.; Porcelli, F.; Picciariello, A.; Pinto, M.; Di Lena, M.; Caputi Iambrenghi, O.; Ugenti, I.; Guglielmi, A.; Vincenti, L.; De Gennaro, G. The Use of the PEN3 E-Nose in the Screening of Colorectal Cancer and Polyps. Tech. Coloproctol. 2016, 20, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Osuna, R.; Nagle, H.T. A Method for Evaluating Data-Preprocessing Techniques for Odour Classification with an Array of Gas Sensors. IEEE Trans. Syst. Man Cybern. (Cybern.) 1999, 29, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Sola, J.; Sevilla, J. Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Carmel, L.; Levy, S.; Lancet, D.; Harel, D. A Feature Extraction Method for Chemical Sensors in Electronic Noses. Sens. Actuators B Chem. 2003, 93, 67–76. [Google Scholar] [CrossRef]
- Agustika, D.K.; Triyana, K. Application of Principal Component Analysis and Discrete Wavelet Transform in Electronic Nose for Herbal Drinks Classification. In Proceedings of the AIP Conference Proceedings, Yogyakarta, Indonesia, 11–13 November 2015; AIP Publishing: New York, NY, USA, 2016; Volume 1755, p. 170012. [Google Scholar]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Ranstam, J.; Cook, J.A. LASSO Regression. J. Br. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Jollife, I.T. Principal Component Analysis, 2nd ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Florensa, D.; Mateo-Fornés, J.; Solsona, F.; Pedrol Aige, T.; Mesas Julió, M.; Piñol, R.; Godoy, P. Use of Multiple Correspondence Analysis and K-Means to Explore Associations between Risk Factors and Likelihood of Colorectal Cancer: Cross-Sectional Study. J. Med. Internet Res. 2022, 24, e29056. [Google Scholar] [CrossRef]
- Dubey, A.K.; Gupta, U.; Jain, S. Analysis of K-Means Clustering Approach on the Breast Cancer Wisconsin Dataset. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 2033–2047. [Google Scholar] [CrossRef]
- Ouyang, F.; Guo, B.; Ouyang, L.; Liu, Z.; Lin, S.; Meng, W.; Huang, X.; Chen, H.; Qiu-Gen, H.; Yang, S. Comparison between Linear and Nonlinear Machine-Learning Algorithms for the Classification of Thyroid Nodules. Eur. J. Radiol. 2019, 113, 251–257. [Google Scholar] [CrossRef]
- Ebrahim, M.; Sedky, A.A.H.; Mesbah, S. Accuracy Assessment of Machine Learning Algorithms Used to Predict Breast Cancer. Data 2023, 8, 35. [Google Scholar] [CrossRef]
- Zhang, Y.; Weng, Y.; Lund, J. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics 2022, 12, 237. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing Different Supervised Machine Learning Algorithms for Disease Prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef]
- Diaz-Uriarte, R.; de Lope, E.; Giugno, R.; Fröhlich, H.; Nazarov, P.V.; Nepomuceno-Chamorro, I.A.; Rauschenberger, A.; Glaab, E. Ten Quick Tips for Biomarker Discovery and Validation Analyses Using Machine Learning. PLoS Comput. Biol. 2022, 18, e1010357. [Google Scholar] [CrossRef] [PubMed]
- Rafało, M. Cross Validation Methods: Analysis Based on Diagnostics of Thyroid Cancer Metastasis. ICT Express 2022, 8, 183–188. [Google Scholar] [CrossRef]
- Gallos, I.K.; Gkiatis, K.; Matsopoulos, G.K.; Siettos, C. ISOMAP and Machine Learning Algorithms for the Construction of Embedded Functional Connectivity Networks of Anatomically Separated Brain Regions from Resting State FMRI Data of Patients with Schizophrenia. AIMS Neurosci. 2021, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Zapien, G.J.; Mata-Miranda, M.M.; Garibay-Gonzalez, F.; Sanchez-Brito, M. Artificial Intelligence Model Validation before Its Application in Clinical Diagnosis Assistance. World J. Gastroenterol. 2022, 28, 602. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, J.B.; De Silva, V.; Langford, J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef] [PubMed]
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Schölkopf, B.; Smola, A.; Müller, K.-R. Kernel Principal Component Analysis. In Proceedings of the Artificial Neural Networks—ICANN’97: 7th International Conference, Lausanne, Switzerland, 8–10 October 1997; Springer: Berlin/Heidelberg, Germany, 2005; pp. 583–588. [Google Scholar]
- Coifman, R.R.; Lafon, S. Diffusion Maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [Google Scholar] [CrossRef]
- Gallos, I.K.; Galaris, E.; Siettos, C.I. Construction of Embedded FMRI Resting-State Functional Connectivity Networks Using Manifold Learning. Cogn. Neurodyn 2021, 15, 585–608. [Google Scholar] [CrossRef] [PubMed]
- Gallos, I.K.; Lehmberg, D.; Dietrich, F.; Siettos, C. Data-Driven Modelling of Brain Activity Using Neural Networks, Diffusion Maps, and the Koopman Operator. arXiv 2023, arXiv:2304.11925. [Google Scholar]
- Papaioannou, P.G.; Talmon, R.; Kevrekidis, I.G.; Siettos, C. Time-Series Forecasting Using Manifold Learning, Radial Basis Function Interpolation, and Geometric Harmonics. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 83113. [Google Scholar] [CrossRef]
- Galaris, E.; Fabiani, G.; Gallos, I.; Kevrekidis, I.; Siettos, C. Numerical Bifurcation Analysis of Pdes from Lattice Boltzmann Model Simulations: A Parsimonious Machine Learning Approach. J. Sci. Comput. 2022, 92, 34. [Google Scholar] [CrossRef]
- Razzak, M.I.; Naz, S.; Zaib, A. Deep Learning for Medical Image Processing: Overview, Challenges and the Future. Classif. BioApps Autom. Decis. Mak. 2018, 26, 323–350. [Google Scholar]
- Litjens, G.; Sánchez, C.I.; Timofeeva, N.; Hermsen, M.; Nagtegaal, I.; Kovacs, I.; Hulsbergen-Van De Kaa, C.; Bult, P.; Van Ginneken, B.; Van Der Laak, J. Deep Learning as a Tool for Increased Accuracy and Efficiency of Histopathological Diagnosis. Sci. Rep. 2016, 6, 26286. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y.; Li, Q. Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods. Sensors 2021, 21, 7620. [Google Scholar] [CrossRef]
- Aslam, M.A.; Xue, C.; Chen, Y.; Zhang, A.; Liu, M.; Wang, K.; Cui, D. Breath Analysis Based Early Gastric Cancer Classification from Deep Stacked Sparse Autoencoder Neural Network. Sci. Rep. 2021, 11, 4014. [Google Scholar] [CrossRef]
- Längkvist, M.; Karlsson, L.; Loutfi, A. A Review of Unsupervised Feature Learning and Deep Learning for Time-Series Modeling. Pattern Recognit. Lett. 2014, 42, 11–24. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, F.; Tian, X.; Sun, L.; Huang, X.; Zhao, F.; Zhou, N.; Chen, Z.; Zhang, Q.; Yang, M.; et al. Diagnostic Evaluation of a Deep Learning Model for Optical Diagnosis of Colorectal Cancer. Nat. Commun. 2020, 11, 2961. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-C.; Kim, Y.-J.; Lee, S.-W. Adenocarcinoma Recognition in Endoscopy Images Using Optimized Convolutional Neural Networks. Appl. Sci. 2020, 10, 1650. [Google Scholar] [CrossRef]
- Zhou, P.; Cao, Y.; Li, M.; Ma, Y.; Chen, C.; Gan, X.; Wu, J.; Lv, X.; Chen, C. HCCANet: Histopathological Image Grading of Colorectal Cancer Using CNN Based on Multichannel Fusion Attention Mechanism. Sci. Rep. 2022, 12, 15103. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Lv, J. Using Recurrent Neural Network to Optimize Electronic Nose System with Dimensionality Reduction. Electronics 2020, 9, 2205. [Google Scholar] [CrossRef]
- Fukuyama, K.; Matsui, K.; Omatsu, S.; Rivas, A.; Corchado, J.M. Feature Extraction and Classification of Odor Using Attention Based Neural Network. In Distributed Computing and Artificial Intelligence, 16th International Conference; Springer: Cham, Switzerland, 2020; pp. 142–149. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Rynazal, R.; Fujisawa, K.; Shiroma, H.; Salim, F.; Mizutani, S.; Shiba, S.; Yachida, S.; Yamada, T. Leveraging Explainable AI for Gut Microbiome-Based Colorectal Cancer Classification. Genome Biol. 2023, 24, 21. [Google Scholar] [CrossRef]
- Massafra, R.; Fanizzi, A.; Amoroso, N.; Bove, S.; Comes, M.C.; Pomarico, D.; Didonna, V.; Diotaiuti, S.; Galati, L.; Giotta, F.; et al. Analyzing Breast Cancer Invasive Disease Event Classification through Explainable Artificial Intelligence. Front. Med. 2023, 10, 1116354. [Google Scholar] [CrossRef]
- Sabol, P.; Sinčák, P.; Hartono, P.; Kočan, P.; Benetinová, Z.; Blichárová, A.; Verbóová, L.; Štammová, E.; Sabolová-Fabianová, A.; Jašková, A. Explainable Classifier for Improving the Accountability in Decision-Making for Colorectal Cancer Diagnosis from Histopathological Images. J. Biomed. Inform. 2020, 109, 103523. [Google Scholar] [CrossRef]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI—Explainable Artificial Intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, R.; Bajorath, J. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. J. Med. Chem. 2019, 63, 8761–8777. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should i Trust You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Garg, P.; Davenport, E.; Murugesan, G.; Wagner, B.; Whitlow, C.; Maldjian, J.; Montillo, A. Automatic 1D Convolutional Neural Network-Based Detection of Artifacts in MEG Acquired without Electrooculography or Electrocardiography. In Proceedings of the 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Toronto, ON, Canada, 21–23 June 2017; pp. 1–4. [Google Scholar]
- Zhao, X.; Wen, Z.; Pan, X.; Ye, W.; Bermak, A. Mixture Gases Classification Based on Multi-Label One-Dimensional Deep Convolutional Neural Network. IEEE Access 2019, 7, 12630–12637. [Google Scholar] [CrossRef]
- Yang, C.-L.; Chen, Z.-X.; Yang, C.-Y. Sensor Classification Using Convolutional Neural Network by Encoding Multivariate Time Series as Two-Dimensional Colored Images. Sensors 2019, 20, 168. [Google Scholar] [CrossRef]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-Validation Pitfalls When Selecting and Assessing Regression and Classification Models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef]
- Varma, S.; Simon, R. Bias in Error Estimation When Using Cross-Validation for Model Selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
Technique | Sample Size | VOC | Reference |
---|---|---|---|
GC-MS | CRC (15); Controls (20) | Acetone; heptanoic acid; 2,6,10-trimethyldodecane; | Śmiełowska et al., 2023 [34] |
GC-MS | CRC (30); Controls (84) | 2-propenoic acid ethenyl ester; lactic acid; 2,4-dimethyl-pyrrole; p-menth-3-ene; 6-methyl heptane; 2,2,4,4-tetramethylpentane; 2-methylfuran; propyl pyruvate; and 2 unknown identified VOCs | Cheng et al., 2022 [35] |
GC-MS | CRC (162); Controls (1270) | propyl propionate; dimethyl sulfide; 1-penten-3-ol; 3,4-dimethyl-1,5-cyclooctadiene; 2-propenyl ester of acetic acid; branched tetradecane; 2-methyl-2-propanol; 4-ethyl-1-octyn-3-ol;2,2,4-trimethyl-3-pentanol; cyclopropane; 2-ethoxypropane; 2-phenoxy-ethanol; heptane; branched tridecane; | Woodfield et al., 2022 [36] |
IMR-MS | CRC (52); Controls (45) | Dinitrogen Oxide; Nitrous Acid; 1,3-Butadiene; Acetic Acid; Unknown identified VOCs (9) | Politi et al., 2021 [37] |
GC-MS | CRC (83); Controls (90) | Tetradecane; ethylbenzene; 5,9-undecadien-2-one, 6,10-dimethyl (E); decane; benzoic acid; 1,3-bis(1-methylethenyl) benzene; decanal; unidentified compound; ethyl-1-hexanol; dodecane; ethanone; 1{[}4-(1-methylethenyl)phenyl{]}; acetic acid | Altomare et al., 2020 [66] |
SIFT-MS | CRLM(51); Controls (54) | (E)-2-Nonene; acetaldehyde; triethyl amine | Miller-Atkins 2020 [39] |
SIFT-MS | CRC (50); Controls (100) * | Propanal | Markar et al., 2019 [40] |
GC-MS | CRC (71); Controls (89) | 2-ethylhexanol; 3-methylhexane; 5-ethyl-3-methyloctane; acetone; ethanol; ethyl acetate; ethylbenzene; isononane; isoprene; nonanal; styrene; toluene; undecane | Nakhleh et al., 2017 [14] |
GC-MS | CRC(65); Controls (122) | Acetone, 6 ethyl acate, ethanol, 4-methyl octane | Amal et al., 2016 [8] |
GC-MS | CRC (48); Controls (32) ** | 1,2-pentadiene; beta-pinene; 2-methylbutane; 1-methyl-3- (1-methylethyl)benzene; 2-methylpentane; 1-(1-methylethenyl)-2-(1-methylethyl)benzene; 5-butylnonane; methylcyclopentane; undecane; cyclohexane; heptane; nonanal; methylcyclohexane; dodecane; 4-methyl-2-pentanone; decanal; 1-methylnaphthalene; 1-ethyl-1,2,4-trimethylbenzene; 1-octene 1-ethyl-2,4,5-trimethylbenzene; octane; 2,3-dihydro-1,6-dimethyl-1H-indene; 1,2,3-trimethylbenzene; 2,3-dihydro-4,7-dimethyl-1H- indene; 1,3-dimethylbenzene; 1,3-dimethyl-5-(1-methylethyl)benzene; 1,4-dimethylbenzene; 2-methylnaphthalene; propylbenzene; | Altomare et al., 2015 [41] |
GC-MS | CRC (20); Controls (20) | Cyclohexanone, 2,2-dimethyldecane; dodecane; 4-ethyl-1-octyn3-ol; ethylailine; cydoctyimethanol; trans-2-dodecen-1-ol; 3- hydroxy-2,4,4-timethylpentyl2-methyipropanoate; 6-t-buty4- 2,29,9-tetramethyl-3,5-decadien-7-yne | Wang et al., 2014 [42] |
GC-MS | CRC (37); Controls (41) | Nonanal; 4-methy1-2-pentanone; decanal; 2-methylbutane; 1.2-pentadiene, 2-metyipentane,3-methylpentane; methylcyclopentane; cyclohexane; methylcyclohexane; 1,3-dimethylbenzene; 4 methyloctane; 1,4-dimethylbenzene; a(4- methylundecane, rt = 11-3); b(timethyldecane, RT = 13-2) | Altomare et al., 2013 [43] |
GC-MS | CRC (26); Controls (22) | 1,10-(1-butenylidene)bisbenzene; 1,3-dmethy benzene; 1- iodononane; {[}(1,1-dimethyiethyl)thio{]}acetic acid; 4-(4-propylcyclohexyl)-40 cyano{[}1,10-biphenyl{]}-4-yl ester benzoic acid; 2-amino-5isopropyl-8-methyl-1-azulenecarbonitrile | Peng et al., 2010 [44] |
Technique | Sample Size | Sensitivity | Specificity | Reference |
---|---|---|---|---|
Sensors | CRC (105); Controls (186) | 0.79 | 0.53 | Poļaka et al., 2023 [72] |
GC-MS | CRC (15); Controls (20) | 0.94 | 1 | Śmiełowska et al., 2023 [34] |
GC-MS | CRC (30); Controls (84) | 0.8 | 0.7 | Cheng et al., 2022 [35] |
GC-MS | CRC (162); Controls (1270) | 0.79 | 0.86 | Woodfield et al., 2022 [36] |
IMR-MS | CRC (52); Controls (45) | 0.96 | 0.73 | Politi et al., 2021 [37] |
GC-MS + sensors | CRC (82); Controls (87) | 0.9 | 0.93 | Altomare et al., 2020 [38] |
SIFT-MS | CRLM (51); Controls (54) | 0.28 | 0.89 | Miller Atkins et al., 2020 [39] |
e-nose | CRC (62) * | 0.88 | 0.75 | Steenhuis et al., 2020 [26] |
e-nose | CRC (70); Controls (125) | 0.95 | 0.64 | Keulen et al., 2020 [27] |
SIFT-MS | CRC (50); Controls (50) CRC (50); Controls (50) ** | 0.96 0.90 | 0.76 0.66 | Markar et al., 2019 [40] |
e-nose | CRC (15); Controls (15) | 0.93 | 0.1 | Altomare et al., 2016 [73] |
GC-MS + sensors | CRC (65); Controls (122) | 0.85 | 0.94 | Amal et al., 2016 [8] |
GC-MS | CRC (48); Controls (32) *** | 1 | 0.98 | Altomare et al., 2015 [41] |
GC-MS | CRC (37); Controls (41) | 0.86 | 0.83 | Altomare et al., 2013 [43] |
Technique | Sample Size | Preprocessing Pipeline/Feature Extraction | Feature Selection | # of Features | Classifier | Validation | Validation Type | Reference |
---|---|---|---|---|---|---|---|---|
Sensors | CRC (105); Controls (186) | Data normalization; removal of erroneous sensor signals; extraction of statistical measures | Greedy stepwise selection; evolutionary search | 75 (model with best results based on accuracy reported) | Random Forest, C4.5 (decision tree classifier); Artificial Neural Network; Naïve Bayes | 70–30% split training and validation set | Internal | Poļaka et al., 2023 [72] |
GC-MS | CRC (15); Controls (20) | Removal of artifacts; imputation using median; Shapiro–Wilk test; | Mann–Whitney U test; DFA; forward stepwise method; filtering based on certain metabolic reactions; | 3 | Artificial Neural Networks | 10-fold Cross validation | Internal | Śmiełowska et al., 2023 [34] |
GC-MS | CRC (30); Controls (84) | Noise removal; baseline correction; alignment; normalization; peak picking; scaling | Features detected in at least 20% of all classes considered | 10 | Isolation Forest | LOOCV | Internal | Cheng et al., 2022 [35] |
GC-MS | CRC (162); Controls (1270) | Log-transformation; variance stabilization; normalization | ANOVA; Random forest | - | Random Forest, alphanet, SVM, LASSO; elastic net regression; | Repeated 5-fold Cross validation | Internal | Woodfield et al., 2022 [36] |
IMR-MS | CRC (52); Controls (45) | Exclusion of specific chemicals (via t-test with reference sample); Standardization prior to modelling; | LASSO | 15 (13 VOCs, Age, Sex) | Logistic Regression | 50-fold Cross validation | Internal | Politi et al., 2021 [37] |
GC-MS + sensors | CRC (82); Controls (87) | - | Mann–Whitney U test; univariate analysis and ranking of features; multivariate Stepwise Logistic Regression; | 15 (14 VOCs, Age) | Logistic Regression | LOOCV | Internal | Altomare et al., 2020 [38] |
SIFT-MS | CRLM (51); Controls (54) | Log-transformation; PCA noise removal; imputation of missing values (mean) | - | 24 (22 VOCs, Sex, Age) | Random Forest | LOOCV on 95% of the dataset. 5% as a Test set | Internal | Miller Atkins et al., 2020 [39] |
e-nose | CRC (62) * | TUCKER3 | - | - | Artificial Neural Networks | 10-fold cross validation | Internal | Steenhuis et al., 2020 [26] |
e-nose | CRC (70); Controls (125) | Standardization; TUCKER3 | - | 11 (components derived from TUCKER3) | Artificial Neural Networks | 10-fold cross validation | Internal | Keulen et al., 2020 [27] |
SIFT-MS | CRC (50); Controls (50) CRC (50); Controls (50) ** | - | Univariate statistics; Multivariate Logistic Regression | 1 | Logistic regression | 100% of data as training set | Internal | Markar et al., 2019 [40] |
e-nose | CRC (15);Controls (15) | Calculation of mean response of the signal | PCA based on variance explained | 2 (1st and 2nd principal component) | Probabilistic Neural Networks | LOOCV | Internal | Altomare et al., 2016 [73] |
GC-MS + sensors | CRC (65); Controls (122) | - | - | 1 (Canonical variable from DFA applied to all sensing features) | DFA | 70–30% split training and validation set | Internal | Amal et al., 2016 [8] |
GC-MS | CRC (48); Controls (32) *** | - | Mann–Whitney U test | 11 | Probabilistic Neural Networks | LOOCV | Internal | Altomare et al., 2015 [41] |
GC-MS | CRC (37); Controls (41) | - | Mann–Whitney U test | 15 | Probabilistic Neural Networks | LOOCV | Internal | Altomare et al., 2013 [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallos, I.K.; Tryfonopoulos, D.; Shani, G.; Amditis, A.; Haick, H.; Dionysiou, D.D. Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions. Diagnostics 2023, 13, 3673. https://doi.org/10.3390/diagnostics13243673
Gallos IK, Tryfonopoulos D, Shani G, Amditis A, Haick H, Dionysiou DD. Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions. Diagnostics. 2023; 13(24):3673. https://doi.org/10.3390/diagnostics13243673
Chicago/Turabian StyleGallos, Ioannis K., Dimitrios Tryfonopoulos, Gidi Shani, Angelos Amditis, Hossam Haick, and Dimitra D. Dionysiou. 2023. "Advancing Colorectal Cancer Diagnosis with AI-Powered Breathomics: Navigating Challenges and Future Directions" Diagnostics 13, no. 24: 3673. https://doi.org/10.3390/diagnostics13243673