Non-Invasive Diagnostics of Male Spermatogenesis from Seminal Plasma: Seminal Proteins
Abstract
:1. Introduction
- (a)
- Pre-testicular azoospermia includes cases of congenital, acquired and idiopathic hypogonadotropic hypogonadism or secondary testicular failure. This is a state when only a small or zero amount of sex hormones is produced due to a disruption of the hypothalamic–pituitary axis. It is associated with poor nutrition, the use of medications (narcotics, chemotherapies), pituitary tumors, trauma or low testosterone (hypogonadism). Therapy of such conditions is possible using hormonal substitution.
- (b)
- Testicular azoospermia is caused by disorders in the development of testicular tissue. The disorders can be congenital (undescended testicles, Klinefelter’s syndrome, Sertoli cell-only syndrome), caused by two genetic errors: chromosomal abnormalities or deletions in the Y chromosome. Acquired causes are mainly infections, gonadotoxic chemicals, cancer, testicular trauma or gonadotoxic therapy. It can also be associated with varicocele or a low level of testosterone.
- (c)
- Post-testicular azoospermia caused by post-testicular abnormalities is usually commonly treatable. The most frequent cause of post-testicular azoospermia is an obstruction in the genital tract (obstructive azoospermia—OA). In patients with cystic fibrosis, CBAVD (congenital bilateral absence of vas deference) is present. The most frequent OA is epididymal obstruction (EO) caused by infection (chlamydia, trichomonas, mycoplasma, ureoplasma, adenovirus, etc.), iatrogenic, traumatic or idiopathic causes. This form of azoospermia can be caused by retrograde ejaculation brought on by surgical procedures or antipsychotic or antidepressants drugs.
2. Obstructive and Non-Obstructive Azoospermia
- Hypospermatogenesis is defined as a condition in which all developmental stages of germinal cells are present in testes up to late spermatids, but their production is decreased [8].
- Sertoli cell-only syndrome describes a state when germinal cells are totally absent. Only Sertoli cells are present in the testicular tissue, filling the seminiferous tubules [11].
3. Seminal Plasma
4. Proteins of Seminal Plasma
4.1. Proteins of Testicular Origin
- LDHC belongs to the family of lactate dehydrogenases which catalyze the conversion of pyruvate to lactate when reduced NAD+ is produced by the oxidation of NADH during anaerobic glycolysis. The presence of LDHC in testicular tissue was demonstrated in experiments on mice [34]. LDHC is expressed in both spermatocytes and spermatids. Immunohistochemical methods confirmed the presence of LDHC in the cytosol of spermatocytes and spermatids, while in spermatozoa it is located in the flagellum [35]. It is a testis-specific enzyme working as a catalysator of glycolysis with a significant effect on sperm motility and capacitation [36]. The lack of LDHC leads to the inhibition of glycolysis and results in a lower level of ATP which is necessary for the movement of the sperm flagellum. It is coded by a germ-cell-specific gene [37].
- PGK2 is one of the key enzymes for the process of glycolysis, as it catalyzes the first step in the production of ATP. It is also a protein associated with fertility disorders, significantly affecting sperm motility and participating in the activation of phosphoglycerate kinase that is necessary for sperm development. Its expression takes place mainly in elongated spermatids [37,38]. PGK2 is localized mainly in the region of sperm flagellum, where ATP is produced [39].
- TKTL1 is a protein that serves as a catalyst for the conversion of seduheptulose-7-phosphate and D-glyceraldehyde-3-phosphate to D ribose-5-phosphate and D-xylulose-5-phosphate. This reaction connects the pentose cycle with the glycolytic pathway. Unlike for LDHC and PGK2 that have the highest expression in spermatocyte and spermatid stages, the expression of TKTL1 starts in spermatogonia. This fact could be used for distinguishing the subtypes of NOA. Men with good spermatogenesis have all three proteins, patients with maturation arrest have TKTL1; eventually, TKTL1 and LDHC present in their seminal plasma. Men with Sertoli cell-only syndrome have none of these proteins present in their seminal plasma samples. In addition, PGK2 and LDHC are important for sperm motility (Figure 1). These proteins could be used as biomarkers for prediction of a successful sperm retrieval [32].
4.2. Proteins of Epididymides and Accessory Glands
5. Proteins of Seminal Plasma as Biomarkers for Azoospermia-Type Diagnostics
- DPEP3 (dipeptidase 3)—this glycoprotein belongs to the family of membrane-bound dipeptidases [62]. It is a protein specific for the testicular tissue, expressed in all cells of the germinal epithelium (spermatogonia, spermatocytes, spermatids, sperm cells). It creates a complex with the TEX101 protein [63].
- ADAM7 (A Disintegrin and Metalloprotease 7) is an enzyme produced in epididymis and located on the surface of sperm cells. It probably plays a key role during sperm maturation in epididymis [64].
- PGK2 (phosphoglycerate kinase 2) activates the phosphoglycerate kinase which is important for sperm development. It is a germ-cell specific protein [37].
- HIST1H2BA is a testis-specific nuclear histone that participates in chromatin condensation. Abnormal retention of chromatin in spermatozoa is a sign of immaturity. Therefore, this histone is sometimes referred to as a biomolecular marker of sperm quality. It has been documented that the expression of HIST1H2BA changed when the sperm cells were exposed to a higher oxidative stress or in the case of varicocele [65].
- HSPA4L (heat shock protein family a member 4Like) is expressed in testes in spermatogenic cells, mainly in the spermatocyte and spermatid stages [66].
- SPACA3 (sperm acrosome membrane-associated protein 3) is a lysosomal protein expressed in spermatids, located on the acrosome of spermatozoa with a probable role of receptor for oocyte membrane saccharide N-acetyl glucosamine. Most likely, it is also involved in the sperm–oocyte interaction during fertilization [67].
6. Enzymatic Activity of Seminal Plasma
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramasamy, R.; Yagan, N.; Schlegel, P.N. Structural and functional changes to the testis after conventional versus microdissection testicular sperm extraction. Urology 2005, 65, 1190–1194. [Google Scholar] [CrossRef]
- Chen, C.S.; Chu, S.H.; Lai, Y.M.; Wang, M.L.; Chan, P.R. Reconsideration of testicular biopsy and follicle-stimulating hormone measurement in the era of intracytoplasmic sperm injection for non-obstructive azoospermia? Hum. Reprod. 1996, 11, 2176–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Gu, X.; Shang, X.; Li, H.; Xiong, C. Discrimination and characterization of Sertoli cell-only syndrome in non-obstructive azoospermia using cell-free seminal DDX4. Reprod. Biomed. Online 2016, 33, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wosnitzer, M.; Goldstein, M.; Hardy, M.P. Review of azoospermia. Spermatogenesis 2014, 4, e28218. [Google Scholar] [CrossRef] [Green Version]
- Daudin, M.; Bieth, E.; Bujan, L.; Massat, G.; Pontonnier, F.; Mieusset, R. Congenital bilateral absence of the vas deferens: Clinical characteristics, biological parameters, cystic fibrosis transmembrane conductance regulator gene mutations, and implications for genetic counseling. Fert Steril. 2000, 74, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, D.A.; Carré-Pigeon, F.; Lallemand, A. Normal vas deferens in fetuses with cystic fibrosis. J. Urol. 1997, 158, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.N. Causes of azoospermia and their management. Reprod. Fert. Dev. 2004, 16, 561–572. [Google Scholar] [CrossRef]
- Hessel, M.; de Vries, M.; D’Hauwers, K.W.M.; Fleischer, K.; Hulsbergen-Van de Kaa, C.A.; Braat, D.D.M.; Ramos, L. Cytological evaluation of spermatogenesis: A novel and simple diagnostic method to assess spermatogenesis in non-obstructive azoospermia using testicular sperm extraction specimens. Andrology 2015, 3, 481–490. [Google Scholar] [CrossRef]
- De Gendt, K.; Swinnen, J.V.; Saunders, P.T.K.; Schoonjans, L.; Dewerchin, M.; Devos, A.; Tan, K.; Atanassova, N.; Claessens, F.; Lécureuil, C.; et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl. Acad. Sci. USA 2004, 101, 1327–1332. [Google Scholar] [CrossRef]
- Gat, Y.; Gornish, M.; Chakraborty, J.; Perlow, A.; Levinger, U.; Pasqualotto, F. Azoospermia and maturation arrest: Malfunction of valves in erect poster of humans leads to hypoxia in sperm production site. Andrologia 2010, 42, 389–394. [Google Scholar] [CrossRef]
- Del Castillo, E.B.; Trabucco, A.; De la Balze, F.A. Syndrome produced by absence of the germinal epithelium without impairment of the Sertoli or Leydig cells. J. Clin. Endocrinol. Metab. 1947, 7, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Saebnia, N.; Neshati, Z.; Bahrami, A.R. Role of microRNAs in etiology of azoospermia and their application as non-invasive biomarkers in diagnosis of azoospermic patients. J. Gyn. Obstet. Hum. Reprod. 2021, 50, 102207. [Google Scholar] [CrossRef] [PubMed]
- Arafat, M.; Har-Vardi, I.; Harlev, A.; Levitas, E.; Zeadna, A.; Abofoul-Azab, M.; Dyomin, V.; Sheffield, V.C.; Lunenfeld, E.; Huleihel, M. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J. Med. Genet. 2017, 54, 633–639. [Google Scholar] [CrossRef]
- Crha, K.; Ješeta, M.; Pilka, R.; Kašík, M.; Mekiňová, L.; Vodička, J.; Crha, T. Assisted reproduction in patients with Klinefelter syndrome. Ceska Gynekol. 2022, 87, 133–136. [Google Scholar] [CrossRef]
- Peña, V.N.; Kohn, T.P.; Herati, A.S. Genetic mutations contributing to non-obstructive azoospermia. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101479. [Google Scholar] [CrossRef]
- Barbieri, E.R.; Hidalgo, M.E.; Venegas, A.; Smith, R.; Lissi, E.A. Varicocele-associated decrease in antioxidant defenses. J. Androl. 1999, 20, 713–717. [Google Scholar]
- Razavi, S.M.; Sabbaghian, M.; Jalili, M.; Divsalar, A.; Wolkenhauer, O.; Salehzadeh-Yazdi, A. Comprehensive functional enrichment analysis of male infertility. Sci. Rep. 2017, 7, 15778. [Google Scholar] [CrossRef] [Green Version]
- Akhigbe, R.E.; Dutta, S.; Hamed, M.A.; Ajayi, A.F.; Sengupta, P.; Ahmad, G. Viral Infections and Male Infertility: A comprehensive review of the role of oxidative stress. Front. Reprod. Health 2022, 4, 782915. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.; Intasqui, P.; Bertolla, R.P. Understanding the seminal plasma proteome and its role in male fertility. Basic Clin. Androl. 2018, 28, 6. [Google Scholar] [CrossRef] [Green Version]
- Samanta, L.; Parida, R.; Dias, T.R.; Agarwal, A. The enigmatic seminal plasma: Proteomics insight from ejaculation to fertilization. Reprod. Biol. Endocrinol. 2018, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Verze, P.; Cai, T.; Lorenzetti, S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol. 2016, 13, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Chen, L.; Li, J.; Li, H.; Hong, Z.; Xie, M.; Chen, S.; Yao, B. The semen pH affects sperm motility and capacitation. PLoS ONE 2015, 10, e0132974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolters-Everhardt, E.; Dony, J.M.J.; Lemmens, W.A.J.G.; Doesburg, W.H.; De Pont, J.J.H.H.M. Buffering capacity of human semen. Fert. Ster. 1986, 46, 114–119. [Google Scholar] [CrossRef]
- Yamakawa, K.; Yoshida, K.; Nishikawa, H.; Kato, T.; Iwamoto, T. Comparative analysis of interindividual variations in the seminal plasma proteome of fertile men with identification of potential markers for azoospermia in infertile patients. J. Androl. 2007, 28, 858–865. [Google Scholar] [CrossRef]
- Drabovich, A.P.; Saraon, P.; Jarvi, K.; Diamandis, E.P. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat. Rev. Urol. 2014, 11, 278–288. [Google Scholar] [CrossRef]
- Batruch, I.; Lecker, I.; Kagedan, D.; Smith, C.R.; Mullen, B.J.; Grober, E.; Lo, K.C.; Diamandis, E.P.; Jarvi, K.A. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J. Proteome. Res. 2011, 10, 941–953. [Google Scholar] [CrossRef]
- Drabovich, A.P.; Jarvi, K.; Diamandis, E.P. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol. Cel. Proteom. 2011, 10, M110.004127. [Google Scholar] [CrossRef] [Green Version]
- Drabovich, A.P.; Dimitromanolakis, A.; Saraon, P.; Soosaipillai, A.; Batruch, I.; Mullen, B.; Jarvi, K.; Diamandis, E.P. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci. Transl. Med. 2013, 5, 160–212. [Google Scholar] [CrossRef]
- Korbakis, D.; Brinc, D.; Schiza, C.; Soosaipillai, A.; Jarvi, K.; Drabovich, A.P.; Diamandis, E.P. Immunocapture-selected reaction monitoring screening facilitates the development of ELISA for the measurement of native TEX101 in biological fluids. Mol. Cel. Proteom. 2015, 14, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Deepthi, K.N.; Padugupati, S.; Ghose, S.; Narang, R. Seminal plasma testis expressed sequence (TEX)-101 as a biomarker for the qualitative assessment of male factor infertility: A case-control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 25, 221–226. [Google Scholar] [CrossRef]
- Aznavour, Y.; Navarrete, F.; Badreddine, J.; Simon, P.H.G.; Gowda, V.; Rhodes, S.; Abou Ghayda, R. Semen parameter variability among users of at-home sperm testing kits. BMC Urol. 2022, 15, 184. [Google Scholar] [CrossRef]
- Rolland, A.D.; Lavigne, R.; Dauly, C.; Calvel, P.; Kervarrec, C.; Freour, T.; Evrard, B.; Rioux-Leclercq, N.; Auger, J.; Pineau, C. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum. Reprod. 2013, 28, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Pilch, B.; Mann, M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Gen. Biol. 2006, 7, R40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, E.; Hawtrey, C. The ontogeny of sperm specific lactate dehydrogenase in mice. J. Exp. Zool. 1967, 164, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Burgos, C.; Maldonado, C.; Gerez de Burgos, N.M.; Aoki, A.; Blanco, A. Intracellular localization of the testicular and sperm-specific lactate dehydrogenase isozyme C4 in mice. Biol. Reprod. 1995, 53, 84–92. [Google Scholar] [CrossRef]
- Leahy, T.; Rickard, J.P.; Bernecic, N.C.; Druart, X.; de Graaf, S.P. Ram seminal plasma and its functional proteomic assessment. Reproduction 2019, 157, R243–R256. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, H.; Geyer, C.B.; Hornecker, J.L.; Patel, K.T.; McCarrey, J.R. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis. Mol. Cell. Biol. 2007, 27, 7871–7885. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Zhang, H.; Shen, X.F.; Liu, F.J.; Liu, J.; Wang, W.J. Characteristics of testis-specific phosphoglycerate kinase 2 and its association with human sperm quality. Hum. Reprod. 2016, 31, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, Q.; Wang, W.; Liu, F. Aberrant expression of sperm-specific glycolytic enzymes are associated with poor sperm quality. Mol. Med. Rep. 2019, 19, 2471–2478. [Google Scholar] [CrossRef] [Green Version]
- Kurita, A.; Takizawa, T.; Takayama, T.; Totsukawa, K.; Matsubara, S.; Shibahara, H.; Orgebin-Crist, M.C.; Sendo, F.; Shinkai, Y.; Araki, Y. Identification, cloning, and initial characterization of a novel mouse testicular germ cell-specific antigen1. Biol. Reprod. 2001, 64, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Chung, C.M.; Huo, R.; Liu, H.; Zhou, C.; Xu, W.; Zhu, H.; Zhang, J.; Shi, Q.; Wong, H.Y.C.; et al. A sperm GPI-anchored protein elicits sperm-cumulus cross-talk leading to the acrosome reaction. Cell. Mol. Life Sci. 2009, 66, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Korbakis, D.; Schiza, C.; Brinc, D.; Soosaipillai, A.; Karakosta, T.D.; Légaré, C.; Sullivan, R.; Mullen, B.; Jarvi, K.; Diamandis, E.P.; et al. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility. BMC Med. 2017, 15, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heshmat, S.M.; Mullen, J.B.; Jarvi, K.A.; Soosaipillai, A.; Diamandis, E.P.; Hamilton, R.J.; Lo, K.C. Seminal plasma lipocalin-type prostaglandin D synthase: A potential new marker for the diagnosis of obstructive azoospermia. J. Urol. 2008, 179, 1077–1080. [Google Scholar] [CrossRef]
- Sonesson, A.; Malm, J.; Rylander, L.; Giwercman, A.; Hillarp, A. Serum amyloid P component: A new biomarker for low sperm concentration? Asian J. Androl. 2021, 23, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Ghanami Gashti, N.; Sadighi Gilani, M.A.; Jabari, A.; Qasemi, M.; Feizollahi, N.; Abbasi, M. The germ cell–specific markers ZPBP2 and PGK2 in testicular biopsies can predict the presence as well as the quality of sperm in non-obstructive azoospermia patients. Reprod. Sci. 2021, 28, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Yan, Q.; Sun, L.; Diao, R.; Yu, Z.; Zhang, Z.; Gui, Y.; Cai, Z. Developmental expression of ACRV1 in humans and mice: Developmental expression of ACVR1. Andrologia 2012, 44, 16–22. [Google Scholar] [CrossRef]
- Coppola, M.A.; Klotz, K.L.; Kim, K.A.; Cho, H.Y.; Kang, J.; Shetty, J.; Howards, S.S.; Flickinger, C.J.; Herr, J.C. SpermCheck® Fertility, an immunodiagnostic home test that detects normozoospermia and severe oligozoospermia. Hum. Reprod. 2010, 25, 853–861. [Google Scholar] [CrossRef]
- Légaré, C.; Cloutier, F.; Makosso-Kallyth, S.; Laflamme, N.; Jarvi, K.; Tremblay, R.R.; Sullivan, R. Cysteine-rich secretory protein 1 in seminal plasma: Potential biomarker for the distinction between obstructive and non-obstructive azoospermia. Fert. Steril. 2013, 100, 1253–1260. [Google Scholar] [CrossRef]
- Légaré, C. HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: Consequence of vasectomy. Mol. Hum. Reprod. 2006, 12, 461–468. [Google Scholar] [CrossRef]
- Ikeda, Y.; Taniguchi, N. Gene expression of γ-glutamyltranspeptidase. Method Enzymol. 2005, 401, 408–425. [Google Scholar]
- Batruch, I.; Smith, C.R.; Mullen, B.J.; Grober, E.; Lo, K.C.; Diamandis, E.P.; Jarvi, K.A. Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility. J. Prot. Res. 2012, 11, 1503–1511. [Google Scholar] [CrossRef]
- Hagen, T.M.; Aw, T.Y.; Jones, D.P. Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int. 1988, 34, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Aghajanian, H.K.; Haig-Ladewig, L.A.; Gerton, G.L. Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase. Biol. Reprod. 2009, 80, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Shaw, N.; Li, Y.; Zhao, Y.; Zhang, R.; Liu, Z.J. Structure-function analysis of human l-prostaglandin D synthase bound with fatty acid molecules. FASEB J. 2010, 24, 4668–4677. [Google Scholar]
- Diamandis, E.P.; Arnett, W.P.; Foussias, G.; Pappas, H.; Ghandi, S.; Melegos, D.N.; Mullen, B.; Yu, H.; Srigley, J.; Jarvi, K. Seminal plasma biochemical markers and their association with semen analysis findings. Urology 1999, 53, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Osterhoff, C.; Kirchhoff, C.; Krull, N.; Ivell, R. Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis 1. Biol. Reprod. 1994, 50, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Hamil, K.G.; Sivashanmugam, P.; Richardson, R.T.; Grossman, G.; Ruben, S.M.; Mohler, J.L.; Petrusz, P.; O’Rand, M.G.; French, F.S.; Hall, S.H. HE2beta and HE2gamma, new members of an epididymis-specific family of androgen-regulated proteins in the human. Endocrinology 2000, 141, 1245–1253. [Google Scholar] [CrossRef]
- Ješeta, M.; Žáková, J.; Ventruba, P.; Crha, I.; Chalupová, L.; Hložánková, M.; Lousová, E. Human prolactin inducible protein in seminal plasma as a marker of azoospermia. In Proceedings of the 32nd Annual Meeting of ESHRE, Helsinki, Finland, 3–6 July 2016. [Google Scholar]
- Hernández-Silva, G.; Fabián López-Araiza, J.E.; López-Torres, A.S.; Larrea, F.; Torres-Flores, V.; Chirinos, M. Proteomic characterization of human sperm plasma membrane-associated proteins and their role in capacitation. Andrology 2020, 8, 171–180. [Google Scholar] [CrossRef]
- Jodar, M.; Soler-Ventura, A.; Oliva, R. Semen proteomics and male infertility. J. Proteom. 2017, 162, 125–134. [Google Scholar] [CrossRef]
- Gonzales, G.F. Function of seminal vesicles and their role on male fertility. Asian J. Androl. 2001, 3, 251–258. [Google Scholar]
- Habib, G.M.; Shi, Z.Z.; Cuevas, A.A.; Lieberman, M.W. Identification of two additional members of the membrane-bound dipeptidase family. FASEB J. 2003, 17, 1313–1315. [Google Scholar] [CrossRef] [Green Version]
- Yoshitake, H.; Yanagida, M.; Maruyama, M.; Takamori, K.; Hasegawa, A.; Araki, Y. Molecular characterization and expression of dipeptidase 3, a testis-specific membrane-bound dipeptidase: Complex formation with TEX101, a germ-cell-specific antigen in the mouse testis. J. Reprod. Immunol. 2011, 90, 202–213. [Google Scholar] [CrossRef]
- Oh, J.; Woo, J.M.; Choi, E.; Kim, T.; Cho, B.N.; Park, Z.Y.; Kim, Y.C.; Kim, D.H.; Cho, C. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem. Biophys. Res. Commun. 2005, 331, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Agarwal, A.; Mohanty, G.; Hamada, A.J.; Gopalan, B.; Willard, B.; Yadav, S.; du Plessis, S. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod. Biol. Endocrinol. 2013, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonoguchi, K.; Tokuchi, H.; Okuno, H.; Watanabe, H.; Egawa, H.; Saito, K.; Ogawa, O.; Fujita, J. Expression of Apg-1, a member of the Hsp110 family, in the human testis and sperm. Int. J. Urol. 2001, 8, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, A.; Klotz, K.L.; Shetty, J.; Jayes, F.L.; Wolkowicz, M.J.; Bolling, L.C.; Coonrod, S.A.; Black, M.B.; Diekman, A.B.; Haystead, T.A.; et al. SLLP1, a unique, intraacrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol. Reprod. 2003, 68, 1525–1537. [Google Scholar] [CrossRef] [Green Version]
- Krisfalusi, M.; Miki, K.; Magyar, P.L.; O’Brien, D.A. Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biol. Reprod. 2006, 75, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Herriot, R.; Walker, F. Age-related deposition of amyloid P component in normal human testis. J. Pathol. 1989, 157, 11–14. [Google Scholar] [CrossRef]
- Starita-Geribaldi, M.; Roux, F.; Garin, J.; Chevallier, D.; Fénichel, P.; Pointis, G. Development of narrow immobilized pH gradients covering one pH unit for human seminal plasma proteomic analysis. Proteomics 2003, 3, 1611–1619. [Google Scholar] [CrossRef]
- LaFlamme, B.A.; Wolfner, M.F. Identification and function of proteolysis regulators in seminal fluid. Mol. Reprod. Dev. 2013, 80, 80–101. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, M.A.; Veisaga, M.L.; Paolicchi, F.; Fornes, M.W.; Sosa, M.A.; Mayorga, L.S.; Bustos-Obregón, E.; Bertini, F. Affinity sites for β-glucuronidase on the surface of human spermatozoa. Andrologia 2009, 28, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Noh, E.H.; Noh, E.J.; Park, M.J.; Park, H.Y.; Lee, D.S.; Riu, K.Z.; Park, S.P. Effect of glycosaminoglycans on in vitro fertilizing ability and in vitro developmental potential of bovine embryos. Asian Austral. J. Anim. Sci. 2013, 26, 178–188. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ješeta, M.; Pospíšilová, A.; Mekiňová, L.; Franzová, K.; Ventruba, P.; Lousová, E.; Kempisty, B.; Oždian, T.; Žáková, J.; Crha, I. Non-Invasive Diagnostics of Male Spermatogenesis from Seminal Plasma: Seminal Proteins. Diagnostics 2023, 13, 2468. https://doi.org/10.3390/diagnostics13152468
Ješeta M, Pospíšilová A, Mekiňová L, Franzová K, Ventruba P, Lousová E, Kempisty B, Oždian T, Žáková J, Crha I. Non-Invasive Diagnostics of Male Spermatogenesis from Seminal Plasma: Seminal Proteins. Diagnostics. 2023; 13(15):2468. https://doi.org/10.3390/diagnostics13152468
Chicago/Turabian StyleJešeta, Michal, Anna Pospíšilová, Lenka Mekiňová, Kateřina Franzová, Pavel Ventruba, Eva Lousová, Bartosz Kempisty, Tomáš Oždian, Jana Žáková, and Igor Crha. 2023. "Non-Invasive Diagnostics of Male Spermatogenesis from Seminal Plasma: Seminal Proteins" Diagnostics 13, no. 15: 2468. https://doi.org/10.3390/diagnostics13152468
APA StyleJešeta, M., Pospíšilová, A., Mekiňová, L., Franzová, K., Ventruba, P., Lousová, E., Kempisty, B., Oždian, T., Žáková, J., & Crha, I. (2023). Non-Invasive Diagnostics of Male Spermatogenesis from Seminal Plasma: Seminal Proteins. Diagnostics, 13(15), 2468. https://doi.org/10.3390/diagnostics13152468