Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Acquisition
2.3. ADC Analysis
2.4. Data Handling and ML
2.5. Simulation to Estimate the Time Limit for MT
2.6. Statistical Analysis
3. Results
3.1. Participants and ADC Value Analysis
3.2. Comparison of the Performance of ML Models to Estimate Patient Outcomes
3.3. Simulation to Estimate the Time Limit for MT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S. Heart Disease and Stroke statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Feske, S.K. Ischemic Stroke. Am. J. Med. 2021, 134, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Candelario-Jalil, E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp. Neurol. 2021, 335, 113518. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Chen, X.; Wei, Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int. J. Mol. Med. 2022, 49, 15. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Hoshino, T. Etiologic Classification of Ischemic Stroke and Transient Ischemic Attack. Nihon Kessen Shiketsu Gakkai Shi 2017, 28, 267–277. [Google Scholar] [CrossRef]
- National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue Plasminogen Activator for Acute Ischemic Stroke. N. Engl. J. Med. 1995, 333, 1581–1588. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; De Miquel, M.A.; Molina, C.A.; Rovira, A.; Román, L.S.; Serena, J.; Abilleira, S.; Ribo, M.; et al. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheth, S.A.; Jahan, R.; Gralla, J.; Pereira, V.M.; Nogueira, R.G.; Levy, E.I.; Zaidat, O.O.; Saver, J.L.; Trialists, F.T.S.-S. Time to endovascular reperfusion and degree of disability in acute stroke. Ann. Neurol. 2015, 78, 584–593. [Google Scholar] [CrossRef]
- Fransen, P.S.S.; Beumer, D.; Berkhemer, O.A.; van den Berg, L.A.; Lingsma, H.; van der Lugt, A.; van Zwam, W.H.; van Oostenbrugge, R.J.; Roos, Y.B.W.E.M.; Majoie, C.B.; et al. MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: Study protocol for a randomized controlled trial. Trials 2014, 15, 343. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Desai, S.M.; Haussen, D.C.; Aghaebrahim, A.; Al-Bayati, A.R.; Santos, R.; Nogueira, R.G.; Jovin, T.G.; Jadhav, A.P. Thrombectomy 24 hours after stroke: Beyond DAWN. J. NeuroInterv. Surg. 2018, 10, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Liang, H.-M. Systematic review with network meta-analysis: Diagnostic Values of Ultrasonography, Computed Tomography, and Magnetic Resonance Imaging in Patients with Ischemic Stroke. Medicine 2019, 98, e16360. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Dmytriw, A.A.; Sawlani, V.; Shankar, J. Diffusion-Weighted Imaging of the Brain: Beyond Stroke. Can. Assoc. Radiol. J. 2017, 68, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Shlobin, N.A.; Baig, A.A.; Waqas, M.; Patel, T.R.; Dossani, R.H.; Wilson, M.; Cappuzzo, J.M.; Siddiqui, A.H.; Tutino, V.M.; Levy, E.I. Artificial Intelligence for Large-Vessel Occlusion Stroke: A Systematic Review. World Neurosurg. 2022, 159, 207–220.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, F. Machine Learning for Predicting Rare Clinical Outcomes—Finding Needles in a Haystack. JAMA Netw. Open 2021, 4, e2110738. Available online: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2780278 (accessed on 6 May 2023). [CrossRef] [PubMed]
- Shamout, F.; Zhu, T.; Clifton, D.A. Machine Learning for Clinical Outcome Prediction. IEEE Rev. Biomed. Eng. 2020, 14, 116–126. [Google Scholar] [CrossRef]
- Evrimler, S.; Gedik, M.A.; Serel, T.A.; Ertunc, O.; Ozturk, S.A.; Soyupek, S. Bladder Urothelial Carcinoma: Machine Learning-based Computed Tomography Radiomics for Prediction of Histological Variant. Acad. Radiol. 2022, 29, 1682–1689. [Google Scholar] [CrossRef]
- Saver, J.L. Time Is Brain—Quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Ospel, J.M.; Kappelhof, M.; Kashani, N.; Menon, B.K.; Campbell, B.C.V.; Roman, L.S.; Demchuk, A.M.; Dippel, D.W.J.; Saver, J.L.; Jovin, T.G.; et al. Effect of age and baseline ASPECTS on outcomes in large-vessel occlusion stroke: Results from the HERMES collaboration. J. NeuroInterv. Surg. 2021, 13, 790–793. [Google Scholar] [CrossRef]
- Tiainen, M.; Martinez-Majander, N.; Virtanen, P.; Räty, S.; Strbian, D. Clinical frailty and outcome after mechanical thrombectomy for stroke in patients aged ≥80 years. J. Stroke Cerebrovasc. Dis. 2022, 31, 106816. [Google Scholar] [CrossRef]
- Rimmele, D.L.; Thomalla, G. Wake-Up Stroke: Clinical Characteristics, Imaging Findings, and Treatment Option—An Update. Front. Neurol. 2014, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Thomalla, G.; Rossbach, P.; Rosenkranz, M.; Siemonsen, S.; Krützelmann, A.; Fiehler, J.; Gerloff, C. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann. Neurol. 2009, 65, 724–732. [Google Scholar] [CrossRef]
- Purushotham, A.; Campbell, B.C.V.; Straka, M.; Mlynash, M.; Olivot, J.-M.; Bammer, R.; Kemp, S.M.; Albers, G.W.; Lansberg, M.G. Apparent Diffusion Coefficient Threshold for Delineation of Ischemic Core. Int. J. Stroke 2013, 10, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Gwak, D.S.; Choi, W.; Shim, D.H.; Kim, Y.W.; Kang, D.H.; Son, W.; Hwang, Y.H. Role of Apparent Diffusion Coefficient Gradient within Diffusion Lesions in Outcomes of Large Stroke after Thrombectomy. Stroke 2021, 53, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yang, J.; Liu, L.; Song, W.; Zhang, Z.; Xu, M.; Cao, Z. The value of diffusion weighted imaging in predicting the clinical progression of perforator artery cerebral infarction. NeuroImage Clin. 2022, 35, 103117. [Google Scholar] [CrossRef]
- Umemura, T.; Hatano, T.; Ogura, T.; Miyata, T.; Agawa, Y.; Nakajima, H.; Tomoyose, R.; Sakamoto, H.; Tsujimoto, Y.; Nakazawa, Y.; et al. ADC Level is Related to DWI Reversal in Patients Undergoing Mechanical Thrombectomy: A Retrospective Cohort Study. Am. J. Neuroradiol. 2022, 43, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Chan, N.; Sibtain, N.; Booth, T.; de Souza, P.; Bibby, S.; Mah, Y.-H.; Teo, J.; U-King-Im, J. Machine-learning algorithm in acute stroke: Real-world experience. Clin. Radiol. 2023, 78, e45–e51. [Google Scholar] [CrossRef]
- Chandrabhatla, A.S.; Kuo, E.A.; Sokolowski, J.D.; Kellogg, R.T.; Park, M.; Mastorakos, P. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies. J. Clin. Med. 2023, 12, 3755. [Google Scholar] [CrossRef]
- Soun, J.E.; Zolyan, A.; McLouth, J.; Elstrott, S.; Nagamine, M.; Liang, C.; Dehkordi-Vakil, F.H.; Chu, E.; Floriolli, D.; Kuoy, E.; et al. Impact of an automated large vessel occlusion detection tool on clinical workflow and patient outcomes. Front. Neurol. 2023, 14, 1179250. [Google Scholar] [CrossRef]
- Tanaka, K.; Goyal, M.; Menon, B.K.; Campbell, B.C.; Mitchell, P.J.; Jovin, T.G.; Dávalos, A.; Jansen, O.; Muir, K.W.; White, P.M.; et al. Significance of Baseline Ischemic Core Volume on Stroke Outcome After Endovascular Therapy in Patients Age ≥75 Years: A Pooled Analysis of Individual Patient Data From 7 Trials. Stroke 2022, 53, 3564–3571. [Google Scholar] [CrossRef]
n | 75 (M: 33, F:42) | |||
---|---|---|---|---|
Mean ± SD | Max–Min | Median | IQR | |
Age | 79.9 ± 8.8 | 46–96 | 80 | [76–86.5] |
Image to re-perfusion (min) | 121.6 ± 43.9 | 53–272 | 117 | [87–148] |
Pass | 1.8 ± 1.1 | 1–6 | 1 | [1–2] |
TICI | 3 ± 0 | 3–3 | 3 | [3–3] |
Pre mRS | 0.8 ± 1.2 | 0–4 | 0 | [0–1] |
Post mRS | 3.5 ± 1.5 | 0–6 | 4 | [2–5] |
NIHSS | 17.6 ± 6.7 | 3–35 | 18 | [13.5–23] |
ASPECTS | 8.1 ± 2.4 | 2–11 | 9 | [7–10] |
Thresh Hold | Mean | ICC (1, 2) | |
---|---|---|---|
Mean of ADC value | 620 × 10−6 mm2/s | 566.148 | 0.99854 |
600 × 10−6 mm2/s | 550.277 | 0.99817 | |
580 × 10−6 mm2/s | 525.785 | 0.99924 | |
560 × 10−6 mm2/s | 505.935 | 0.99842 | |
540 × 10−6 mm2/s | 487.790 | 0.99577 | |
520 × 10−6 mm2/s | 469.877 | 0.98503 | |
500 × 10−6 mm2/s | 457.271 | 0.98959 | |
480 × 10−6 mm2/s | 440.193 | 0.99678 | |
SD of ADC value | 620 × 10−6 mm2/s | 149.549 | 0.99496 |
600 × 10−6 mm2/s | 149.758 | 0.99331 | |
580 × 10−6 mm2/s | 143.564 | 0.99323 | |
560 × 10−6 mm2/s | 138.367 | 0.99242 | |
540 × 10−6 mm2/s | 140.507 | 0.99357 | |
520 × 10−6 mm2/s | 137.920 | 0.99159 | |
500 × 10−6 mm2/s | 133.415 | 0.99553 | |
480 × 10−6 mm2/s | 130.750 | 0.95665 | |
Voxel number | 620 × 10−6 mm2/s | 7290.500 | 0.99982 |
600 × 10−6 mm2/s | 5206.500 | 0.99985 | |
580 × 10−6 mm2/s | 3283.500 | 0.99984 | |
560 × 10−6 mm2/s | 2431.500 | 0.99986 | |
540 × 10−6 mm2/s | 1991.500 | 0.99988 | |
520 × 10−6 mm2/s | 1278.000 | 0.99989 | |
500 × 10−6 mm2/s | 1132.000 | 0.9999 | |
480 × 10−6 mm2/s | 897.000 | 0.99991 |
Model | AUC | Accuracy | Recall | Prec. | F1 |
---|---|---|---|---|---|
Extra Trees Classifier | 0.8983 | 0.8267 | 0.9402 | 0.8383 | 0.8844 |
Random Forest Classifier | 0.8952 | 0.8447 | 0.9054 | 0.8809 | 0.8912 |
Light Gradient Boosting Machine | 0.8909 | 0.8330 | 0.9141 | 0.8569 | 0.8836 |
Gradient Boosting Classifier | 0.8857 | 0.8330 | 0.9058 | 0.8638 | 0.8827 |
Ada Boost Classifier | 0.8056 | 0.7907 | 0.8533 | 0.8556 | 0.8503 |
Logistic Regression | 0.7808 | 0.7424 | 0.7743 | 0.8602 | 0.8043 |
Decision Tree Classifier | 0.7720 | 0.7902 | 0.8185 | 0.8744 | 0.8439 |
Linear Discriminant Analysis | 0.7471 | 0.7011 | 0.7062 | 0.8502 | 0.7652 |
Naive Bayes | 0.7450 | 0.6588 | 0.6210 | 0.8567 | 0.7176 |
K Neighbors Classifier | 0.7341 | 0.6472 | 0.6040 | 0.8555 | 0.7032 |
Quadratic Discriminant Analysis | 0.6158 | 0.7604 | 0.9312 | 0.7742 | 0.8434 |
Dummy Classifier | 0.5000 | 0.3053 | 0.0000 | 0.0000 | 0.0000 |
SVM–Linear Kernel | 0.0000 | 0.6535 | 0.6732 | 0.8143 | 0.7270 |
Ridge Classifier | 0.0000 | 0.7189 | 0.7232 | 0.8632 | 0.7794 |
Tuned Model | AUC | Accuracy | Recall | Prec. | F1 | Kappa | MCC |
---|---|---|---|---|---|---|---|
Extra Trees Classifier | 0.9178 ± 0.0918 | 0.8451 ± 0.0675 | 0.9141 ± 0.0542 | 0.8708 ± 0.0557 | 0.8912 ± 0.0486 | 0.6203 ± 0.1638 | 0.6268 ± 0.1600 |
Random Forest Classifier | 0.9146 ± 0.0754 | 0.8449 ± 0.0806 | 0.9225 ± 0.0576 | 0.8678 ± 0.0736 | 0.8927 ± 0.0559 | 0.6086 ± 0.2092 | 0.6202 ± 0.2000 |
Blend model | 0.9076 ± 0.1225 | 0.8500 ± 0.095 | 0.9235 ± 0.0695 | 0.8751 ± 0.0854 | 0.8962 ± 0.0647 | 0.6232 ± 0.2507 | 0.6400 ± 0.2328 |
Model | AUC | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Extra Trees Classifier | 0.833 | 0.933 | 1.000 | 0.667 | 0.800 |
Random Forest Classifier | 0.750 | 0.800 | 0.500 | 0.667 | 0.571 |
Blend model | 0.750 | 0.800 | 0.500 | 0.667 | 0.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oura, D.; Takamiya, S.; Ihara, R.; Niiya, Y.; Sugimori, H. Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning. Diagnostics 2023, 13, 2138. https://doi.org/10.3390/diagnostics13132138
Oura D, Takamiya S, Ihara R, Niiya Y, Sugimori H. Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning. Diagnostics. 2023; 13(13):2138. https://doi.org/10.3390/diagnostics13132138
Chicago/Turabian StyleOura, Daisuke, Soichiro Takamiya, Riku Ihara, Yoshimasa Niiya, and Hiroyuki Sugimori. 2023. "Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning" Diagnostics 13, no. 13: 2138. https://doi.org/10.3390/diagnostics13132138
APA StyleOura, D., Takamiya, S., Ihara, R., Niiya, Y., & Sugimori, H. (2023). Predicting Mechanical Thrombectomy Outcome and Time Limit through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning. Diagnostics, 13(13), 2138. https://doi.org/10.3390/diagnostics13132138