Severe Immune-Related Adverse Events: A Case Series of Patients Needing Hospital Admission in a Spanish Oncology Referral Center and Review of the Literature
Abstract
:1. Introduction
2. Hospitalization Due to Immune-Related Adverse Events
3. General Aspects of Immune-Related Adverse Events
3.1. Pathophysiology
3.2. Risk Factors and Predictive Biomarkers
3.3. Incidence and Distribution
3.4. Chronological Patterns
3.5. Overall Management Approach to irAEs
3.6. Impact of irAEs and Immunosuppression on Immune-Checkpoint Blockade Efficacy
3.7. Subsequent Treatments after an irAE: Rechallenging the Immune System
4. Update of Clinical Management of Severe Specific-Organ-Based Toxicity
4.1. Gastrointestinal (GI)
4.2. Pneumonitis
4.3. Muscular and Cardiac Toxicity
4.4. Nephritis
4.5. Endocrine Disorders
4.6. Hepatitis
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Ricci, A.D.; Gadaleta-Caldarola, G.; Brandi, G. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: Current management and future challenges. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Mollica, V.; Cimadamore, A.; Santoni, M.; Scarpelli, M.; Giunchi, F.; Cheng, L.; Lopez-Beltran, A.; Fiorentino, M.; Montironi, R.; et al. Is There a Role for Immunotherapy in Prostate Cancer? Cells 2020, 9, E2051. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Pastorello, R.G.; Vallius, T.; Davis, J.; Cui, Y.X.; Agudo, J.; Waks, A.G.; Keenan, T.; McAllister, S.S.; Tolaney, S.M.; et al. The Immunology of Hormone Receptor Positive Breast Cancer. Front. Immunol. 2021, 12, 674192. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Krummel, M.F.; Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 1996, 183, 2533–2540. [Google Scholar] [CrossRef]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef]
- Boussiotis, V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 2016, 375, 1767–1778. [Google Scholar] [CrossRef]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef]
- Osorio, J.C.; Ni, A.; Chaft, J.E.; Pollina, R.; Kasler, M.K.; Stephens, D.; Rodriguez, C.; Cambridge, L.; Rizvi, H.; Wolchok, J.D.; et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 2017, 28, 583–589. [Google Scholar] [CrossRef]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral damage: Insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef]
- Siegel, J.; Totonchy, M.; Damsky, W.; Berk-Krauss, J.; Castiglione, F., Jr.; Sznol, M.; Petrylak, D.P.; Fischbach, N.; Goldberg, S.B.; Decker, R.H.; et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J. Am. Acad. Dermatol. 2018, 79, 1081–1088. [Google Scholar] [CrossRef]
- Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 2014, 6, 230ra45. [Google Scholar] [CrossRef]
- Callahan, M.K.; Yang, A.; Tandon, S.; Xu, Y.; Subudhi, K.; Roma, I.; Heine, E.; Pogoriler, D.; Kuk, K.; Panageas, J.D.; et al. Evaluation of serum IL-17 levels during ipilimumab theapy: Correlation with colitis. J. Clin. Oncol. 2011, 29, 2505. [Google Scholar] [CrossRef]
- Harbour, S.N.; Maynard, C.L.; Zindl, C.L.; Schoeb, T.R.; Weaver, C.T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl. Acad. Sci. USA 2015, 112, 7061–7066. [Google Scholar] [CrossRef]
- Chennamadhavuni, A.; Abushahin, L.; Jin, N.; Presley, C.J.; Manne, A. Risk Factors and Biomarkers for Immune-Related Adverse Events: A Practical Guide to Identifying High-Risk Patients and Rechallenging Immune Checkpoint Inhibitors. Front. Immunol. 2022, 13, 779691. [Google Scholar]
- Wolchok, J.D.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Schadendorf, D.; de Pril, V.; Heller, K.; Chen, T.; Ibrahim, R.; et al. Ipilimumab efficacy and safety in patients with advanced melanoma: A retrospective analysis of HLA subtype from four trials. Cancer Immun. 2010, 10, 9. [Google Scholar]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti- PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef]
- Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; et al. Baseline gut microbiota predicts clinical response and colitis in metastatic mela- noma patients treated with ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef]
- Dubin, K.; Callahan, M.K.; Ren, B.; Khanin, R.; Viale, A.; Ling, L.; No, D.; Gobourne, A.; Littmann, E.; Huttenhower, C.; et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint- blockade-induced colitis. Nat. Commun. 2016, 7, 10391. [Google Scholar] [CrossRef]
- Pavan, A.; Calvetti, L.; Dal Maso, A.; Attili, I.; Del Bianco, P.; Pasello, G.; Guarneri, V.; Aprile, G.; Conte, P.; Bonanno, L. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated With Immune-Checkpoint Inhibitors. Oncologist 2019, 24, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Casals, M.; Lambotte, O.; Kostine, M.; Calabrese, L.; Suarez-Almazor, M.; Bingham, C.; Radstake, T.R.; Baldini, C.; Schaeverbeke, T.; Gottenberg, J.-E.; et al. Immune-related adverse events induced by cancer immunotherapies. Big data analysis of 13,051 cases (Immunocancer International Registry). Ann. Rheum. Dis. 2019, 78, 607–608. [Google Scholar]
- Song, P.; Zhang, D.; Cui, X.; Zhang, L. Meta-Analysis of Immune-Related Adverse Events of Immune Checkpoint Inhibitor Therapy in Cancer Patients. Thorac. Cancer 2020, 11, 2406–2430. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.; Carbonnel, F.; Robert, C.; Kerr, K.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow- up. Ann. Oncol. 2017, 28, 119–142. [Google Scholar] [CrossRef]
- Khoja, L.; Day, D.; Wei-Wu Chen, T.; Siu, L.L.; Hansen, A.R. Tumour and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385. [Google Scholar] [CrossRef] [PubMed]
- Yoest, J.M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: A short review. Immuno. Targets Ther. 2017, 6, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kanjanapan, Y.; Day, D.; Butlerabc, M.O.; Wangd, L.; Joshuaabc, A.M.; Hoggabc, D.; Leighlabc, N.B.; AbdulRazakabc, A.R.; Hansenabc, A.R.; Boujoset, S.; et al. Delayed immune-related adverse events in assessment for dose-limiting toxicity in early phase immunotherapy trials. Eur. J. Cancer 2019, 107, 1–7. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. Management of immunotherapy-related toxicities, version 1.2019. J. Natl. Compr. Cancer Netw. 2019, 17, 255–289. [Google Scholar] [CrossRef]
- Das, S.; Johnson, D.B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 306. [Google Scholar] [CrossRef]
- Horvat, T.; Adel, N.G.; Dang, T.-O.; Momtaz, P.; Postow, M.A.; Callahan, M.K.; Carvajal, R.D.; Dickson, M.A.; D’Angelo, S.P.; Woo, K.M.; et al. Immune-Related Adverse Events, Need for Systemic Immunosuppression, and Effects on Survival and Time to Treatment Failure in Patients With Melanoma Treated With Ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 2015, 33, 3193–3198. [Google Scholar] [CrossRef]
- Hua, C.; Boussemart, L.; Mateus, C.; Routier, E.; Boutros, C.; Cazenave, H.; Viollet, R.; Thomas, M.; Roy, S.; Benannoune, N.; et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 2016, 152, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schadendorf, D.; Larkin, J.; Sznol, M.; Long, G.; Li, H.; Waxman, I.M.; et al. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 2017, 35, 785–792. [Google Scholar] [CrossRef]
- Del Castillo, M.; Romero, F.A.; Argüello, E.; Kyi, C.; Postow, M.A.; Redelman-Sidi, G. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 2016, 63, 1490–1493. [Google Scholar] [CrossRef]
- Menzies, A.M.; Johnson, D.B.; Ramanujam, S.; Atkinson, V.G.; Wong, A.N.M.; Park, J.J.; McQuade, J.L.; Shoushtari, A.N.; Tsai, K.K.; Eroglu, Z.; et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 2017, 28, 368–376. [Google Scholar] [CrossRef]
- Pollack, M.; Betof, A.; Dearden, H.; Rapazzo, K.; Valentine, I.; Brohl, A.; Ancell, K.; Long, G.; Menzies, A.; Eroglu, Z.; et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann. Oncol. 2018, 29, 250–255. [Google Scholar] [CrossRef]
- Santini, F.C.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Lacouture, M.E.; Gambarin-Gelwan, M.; Wilkins, O.; Panora, E.; Halpenny, D.F.; Long, N.M.; et al. Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol. Res. 2018, 6, 1093–1099. [Google Scholar] [CrossRef]
- Schadendorf, D.; Wolchok, J.D.; Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Chesney, J.; et al. Efficacy and safety outcomes in pa- tients with advanced melanoma who dis- continued treatment with nivolumab and ipilimumab because of adverse events: A pooled analysis of randomized phase II and III trials. J. Clin. Oncol. 2017, 35, 3807–3814. [Google Scholar] [CrossRef]
- Kroschinsky, F.; Stölzel, F.; Von Bonin, S.; Beutel, G.; Kochanek, M.; Kiehl, M.; Schellongowski, P. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit. Care 2017, 21, 89. [Google Scholar] [CrossRef]
- Gutierrez, C.; McEvoy, C.; Munshi, L.; Stephens, R.S.; Detsky, M.E.; Nates, J.L.; Pastores, S.M. Critical Care Management of Toxicities Associated With Targeted Agents and Immunotherapies for Cancer. Crit. Care Med. 2020, 48, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management, and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Londoño, M.C.; Reig, M. RETOINMUNO Multidisciplinary Group. Multidisciplinary Clinical Approach to Cancer Patients with Immune-Related Adverse Events Induced by Checkpoint Inhibitors. Cancers 2020, 12, 3446. [Google Scholar] [CrossRef] [PubMed]
- Lomax, A.J.; McNeil, C. Acute management of autoimmune toxicity in cancer patients on immunotherapy: Common toxicities and the approach for the emergency physician. Emerg. Med. Australas. 2017, 29, 245–251. [Google Scholar] [CrossRef]
- Rajha, E.; Chaftari, P.; Kamal, M.; Maamari, J.; Chaftari, C.; Yeung, S.J. Gastrointestinal adverse events associated with immune checkpoint inhibitor therapy. Gastroenterol. Rep. 2019, 8, 25–30. [Google Scholar] [CrossRef]
- Dougan, M.; Blidner, A.G.; Choi, J.; Cooksley, T.; Glezerman, I.; Ginex, P.; Girotra, M.; Gupta, D.; Johnson, D.; Shannon, V.R.; et al. Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of severe gastrointestinal and hepatic toxicities from checkpoint inhibitors. Support Care Cancer 2020, 28, 6129–6143. [Google Scholar] [CrossRef]
- Esfahani, K.; Hudson, M.; Batist, G. Tofacitinib for refractory immune-related colitis from PD-1 therapy. N. Engl. J. Med. 2020, 382, 2374–2375. [Google Scholar] [CrossRef]
- Thomas, A.S.; Ma, W.; Wang, Y. Ustekinumab for refractory colitis associated with immune checkpoint inhibitors. N. Engl. J. Med. 2021, 384, 581–583. [Google Scholar] [CrossRef]
- Wang, Y.; Wiesnoski, D.H.; Helmink, B.A.; Gopalakrishnan, V.; Choi, K.; DuPont, H.L.; Jiang, Z.D.; Abu-Sbeih, H.; Sanchez, C.A.; Chang, C.C.; et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 2018, 24, 1804–1808. [Google Scholar] [CrossRef]
- Cramer, P.; Bresalier, R.S. Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors. Curr. Gastroenterol. Rep. 2017, 19, 3. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Tang, T.; Lu, Y.; Thirumurthi, S.; Altan, M.; Jazaeri, A.A.; Dadu, R.; Coronel, E.; Wang, Y. Clinical characteristics and outcomes of immune checkpoint inhibitor-induced pancreatic injury. J. Immunother. Cancer 2019, 7, 31. [Google Scholar] [CrossRef]
- Nishino, M.; Giobbie-Hurder, A.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1607–1616. [Google Scholar] [CrossRef]
- Spagnolo, P.; Chaudhuri, N.; Bernardinello, N.; Karampitsakos, T.; Sampsonas, F.; Tzouvelekis, A. Pulmonary adverse events following immune checkpoint inhibitors. Curr. Opin. Pulm. Med. 2022, 10, 391–398. [Google Scholar] [CrossRef]
- Chuzi, S.; Tavora, F.; Cruz, M.; Costa, R.; Chae, Y.K.; Carneiro, B.A.; Giles, F.J. Clinical features, diagnostic challenges, and management strategies in checkpoint inhibitor-related pneumonitis. Cancer Manag. Res. 2017, 9, 207–213. [Google Scholar] [CrossRef]
- Kalisz, K.R.; Ramaiya, N.H.; Laukamp, K.R.; Gupta, A. Immune Checkpoint Inhibitor Therapy-related Pneumonitis: Patterns and Management. Radiographics 2019, 39, 1923–1937. [Google Scholar] [CrossRef]
- Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.; Chaft, J.E.; Segal, N.H.; Callahan, M.K.; Lesokhin, A.M.; et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. 2017, 35, 709–717. [Google Scholar] [CrossRef]
- Beattie, J.; Rizvi, H.; Fuentes, P.; Luo, J.; Schoenfeld, A.; Lin, I.H.; Postow, M.; Callahan, M.; Voss, M.H.; Shah, N.J.; et al. Success and failure of additional immune modulators in steroid-refractory/resistant pneumonitis related to immune checkpoint blockade. J. Immunother. Cancer. 2021, 9, e001884. [Google Scholar] [CrossRef]
- Xu, M.; Nie, Y.; Yang, Y.; Lu, Y.T.; Su, Q. Risk of Neurological Toxicities Following the Use of Different Immune Checkpoint Inhibitor Regimens in Solid Tumors: A Systematic Review and Meta-analysis. Neurologist 2019, 24, 75–83. [Google Scholar] [CrossRef]
- Touat, M.; Maisonobe, T.; Knauss, S.; Salem, O.B.H.; Hervier, B.; Auré, K.; Szwebel, T.-A.; Kramkimel, N.; Lethrosne, C.; Bruch, J.-F.; et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 2018, 91, e985–e994. [Google Scholar] [CrossRef]
- Calabrese, C.; Kirchner, E.; Kontzias, K.; Velcheti, V.; Calabrese, L.H. Rheumatic immune-related adverse events of checkpoint therapy for cancer: Case series of a new nosological entity. RMD Open 2017, 3, e000412. [Google Scholar] [CrossRef]
- Moreira, A.; Loquai, C.; Pföhler, C.; Kähler, K.C.; Knauss, S.; Heppt, M.V.; Gutzmer, R.; Dimitriou, F.; Meier, F.; Mitzel-Rink, H.; et al. Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. Eur. J. Cancer 2019, 106, 12–23. [Google Scholar] [CrossRef]
- Matas-García, A.; Milisenda, J.C.; Selva-O’Callaghan, A.; Prieto-González, S.; Padrosa, J.; Cabrera, C.; Reguart, N.; Castrejón, N.; Solé, M.; Ros, J.; et al. Emerging PD-1 and PD-1L inhibitors-associated myopathy with a characteristic histopathological pattern. Autoimmun. Rev. 2020, 19, 102455. [Google Scholar] [CrossRef]
- Oddis, C.V.; Aggarwal, R. Treatment in myositis. Nat. Rev. Rheumatol. 2018, 14, 279–289. [Google Scholar] [CrossRef]
- Salem, J.-E.; Allenbach, Y.; Vozy, A.; Brechot, N.; Johnson, D.B.; Moslehi, J.J.; Kerneis, M. Abatacept for Severe Immune Checkpoint Inhibitor–Associated Myocarditis. New Engl. J. Med. 2019, 380, 2377–2379. [Google Scholar] [CrossRef]
- Meraz-Muñoz, A.; Amir, E.; Ng, P.; Avila-Casado, C.; Ragobar, C.; Chan, C.; Kim, J.; Wald, R.; Kitchlu, A. Acute kidney injury associated with immune checkpoint inhibitor therapy: Incidence, risk factors and outcomes. J. Immunother. Cancer. 2020, 8, e000467. [Google Scholar] [CrossRef]
- Seethapathy, H.; Herrmann, S.M.; Sise, M.E. Immune Checkpoint Inhibitors and Kidney Toxicity: Advances in Diagnosis and Management. Kidney Med. 2021, 3, 1074–1081. [Google Scholar] [CrossRef]
- Gupta, S.; Short, S.A.P.; Sise, M.E.; Prosek, J.M.; Madhavan, S.M.; Soler, M.J.; Ostermann, M.; Herrmann, S.M.; Abudayyeh, A.; Anand, S.; et al. ICPi-AKI Consortium Investigators. Acute kidney injury in patients treated with immune checkpoint inhibitors. J. Immunother. Cancer. 2021, 9, e003467. [Google Scholar] [CrossRef]
- Reid, P.D.; Cifu, A.S.; Bass, A.R. Management of Immunotherapy-Related Toxicities in Patients Treated With Immune Checkpoint Inhibitor Therapy. JAMA 2021, 325, 482–483. [Google Scholar] [CrossRef]
- Wright, J.J.; Powers, A.C.; Johnson, D.B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399. [Google Scholar] [CrossRef]
- de Filette, J.; Andreescu, C.E.; Cools, F.; Bravenboer, B.; Velkeniers, B. A Systematic Review and Meta-Analysis of Endocrine-Related Adverse Events Associated with Immune Checkpoint Inhibitors. Horm. Metab. Res. 2019, 51, 145–156. [Google Scholar] [CrossRef]
- Hercun, J.; Vincent, C.; Bilodeau, M.; Lapierre, P. Immune-Mediated Hepatitis During Immune Checkpoint Inhibitor cancer Immunotherapy: Lessons From Autoimmune Hepatitis and Liver Immunology. Front. Immunol. 2022, 13, 907591. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef] [PubMed]
- De Martin, E.; Michot, J.-M.; Papouin, B.; Champiat, S.; Mateus, C.; Lambotte, O.; Roche, B.; Antonini, T.M.; Coilly, A.; Laghouati, S.; et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J. Hepatol. 2018, 68, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Zen, Y.; Yeh, M.M. Checkpoint inhibitor-induced liver injury: A novel form of liver disease emerging in the era of cancer immunotherapy. Semin. Diagn. Pathol. 2019, 36, 434–440. [Google Scholar] [CrossRef]
- Cheung, V.; Gupta, T.; Payne, M.; Middleton, M.R.; Collier, J.D.; Simmons, A.; Klenerman, P.; Brain, O.; Cobbold, J.F. Immunotherapy-related hepatitis: Real-world experience from a tertiary centre. Front. Gastroenterol. 2019, 10, 364–371. [Google Scholar] [CrossRef]
Underlying Solid Organ Malignancy | Responsible ICI Drug | ||
---|---|---|---|
Malignant melanoma | 12 (52%) | Pembrolizumab | 10 (43.5%) |
Lung cancer | 6 (26%) | Nivolumab | 5 (21.7%) |
Urothelial cancer | 2 (8.7%) | Ipilimumab + Nivolumab | 5 (21.7% |
Breast cancer | 1 (4.3%) | Atezolizumab | 2 (8.7%) |
Renal carcinoma | 1 (4.3%) | Ipilimumab | 1 (4.3%) |
Colorectal carcinoma | 1 (4.3%) |
Target Organs Affected by irAEs | |
---|---|
Colitis | 5 (22%) |
Pneumonitis | 4 (17.4%) |
Myositis + Myocarditis | 4 (17.4%) |
Nephritis | 3 (13%) |
Hypophysitis | 2 (8.7%) |
Hepatitis | 2 (8.7%) |
Skin toxicity | 1 (4.3%) |
Aseptic meningitis | 1 (4.3%) |
Gastritis | 1 (4.3%) |
Pancreatitis | 1 (4.3%) |
Arthritis | 1 (4.3%) |
Thyroiditis | 1 (4.3%) |
Case | Age | Gender | Cancer Type | ICI | irAE | Initial Steroid Treatment | Add-On Treatment | irAE Outcome | Cancer Status (at Data Revision) | ICI Rechallenge | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 47 | F | Melanoma | Ipilimumab + Nivolumab | Gastritis | Prednisone 60 mg/day (mg/kg/day) | Infliximab | Resolution | Stable disease after ICI discontinuation | No | 15 months |
2 | 62 | F | Melanoma | Nivolumab | Pneumonitis | Prednisone 30 mg/day (0.5 mg/kg/day) | None | Resolution | Progression of disease; best supportive care | No | 14 months |
3 | 49 | M | Melanoma | Pembrolizumab | Pancreatitis | Prednisone 70 mg/day (mg/kg/day) | None | Resolution | Sustained complete response | No | 13 months |
4 | 59 | F | NSCLC | Nivolumab | Nephritis | Prednisone 70 mg/day (mg/kg/day) | None | Resolution | Sustained complete response | No | 17 months |
5 | 85 | F | Bladder | Atezolizumab | Nephritis | 250 mg/day methylprednisolone ×3 days, followed by 30 mg/day (0.5 mg/kg/day) | None | Resolution | Progression disease; best supportive care | No | 15 months |
6 | 61 | M | Melanoma | Ipilimumab + Nivolumab | Pneumonitis | Prednisone 30 mg/day (0.5 mg/kg/day) | None | Resolution | Progression of disease; death | Yes | 12 months |
7 | 55 | F | NSCLC | Pembrolizumab | Pneumonitis | Methylprednisolone 120 mg/day (2 mg/kg/day) | None | Fatal | Death during hospital admission (ICU) | NA | NA |
8 | 60 | F | TNBC | Pembrolizumab | Myositis + Myocarditis | 250 mg/day methylprednisolone ×3 days, followed by prednisone 60 mg/day (mg/kg/day) | IVIG and MMF | Resolution | Progression of disease; death | No | 11 months |
9 | 72 | M | Melanoma | Pembrolizumab | Nephritis | Prednisone 80 mg/day (mg/kg/day) | None | Resolution | Progression of disease; death | No | 1 month |
10 | 77 | F | NSCLC | Pembrolizumab | Skin toxicity | Prednisone 30 mg/day (0.5 mg/kg/day) | None | Resolution | Progression of disease; death | No | 3 months |
11 | 71 | M | RCC | Ipilimumab + Nivolumab | Aseptic meningitis | None * | None * | Resolution | Progression of disease; considering ICI rechallenge | No | 14 months |
12 | 55 | F | Melanoma | Nivolumab | Colitis | Prednisone 50 mg/day (0.5 mg/kg/day) | None | Resolution | Progression of disease; death | No | 8 months |
13 | 66 | F | NSLCL | Pembrolizumab | Myositis + Myocarditis | 250 mg/day methylprednisolone ×3 days, followed by prednisone 60 mg/day (mg/kg/day) | IVIG and AZA | Resolution | Progression of disease; death nonrelated to cancer | No | 6 months |
14 | 79 | F | Melanoma | Pembrolizumab | Colitis | Prednisone 60 mg/day (mg/kg/day) | None | Resolution | Progression of disease; death | No | 6 months |
15 | 58 | F | Melanoma | Ipilimumab | Hepatitis | Prednisone 40 mg/day (0.5 mg/kg/day) | None | Resolution | Progression of disease; alternative treatment | Yes | 9 months |
16 | 68 | F | Colorectal | Pembrolizumab | Colitis + Hypophysitis | Substitutive hormonal treatment; no corticosteroids | None | Resolution | Stable disease; alternative treatment ongoing | Yes ** | 10 months |
17 | 79 | M | Melanoma | Nivolumab | Myositis + Myocarditis | 250 mg/day methylprednisolone ×3 days, 1 g/day methylprednisolone ×3 days, followed by prednisone 70 mg/day (mg/kg/day) | IVIG and TCZ | Fatal | Progression of disease; death related to irAE | No | 6 months |
18 | 72 | M | NSCLC | Pembrolizumab | Arthritis | Prednisone 30 mg/day (0.5 mg/day) | None | Resolution | Progression of disease; death | No | 1 month |
19 | 62 | M | Melanoma | Ipilimumab + Nivolumab | Hepatitis + Hypophysitis + Thyroiditis | Substitutive hormonal treatment: prednisone 60 mg/day mg/kg, needing for 1 g/day methylprednisolone ×3 days followed by 2 mg/kg/day increase during follow-up | MMF, TCZ, PE, and IVIG | Refractory | Stable disease after ICI discontinuation | No | 7 months |
20 | 68 | F | Melanoma | Nivolumab | Myositis + Myocarditis | Methylprednisolone 1 g/day ×3 days followed by 90 mg/day (1 mg/kg/day) | None | Resolution | Partial response after ICI discontinuation | No | 6 months |
21 | 73 | M | NSCLC | Pembrolizumab | Colitis | Prednisone 60 mg/day (mg/kg/day) | Infliximab | Relapsing | Progression of disease; death | No | 9 months |
22 | 67 | F | Melanoma | Ipilimumab + Nivolumab | Colitis | Colectomy due to intestinal perforation; methylprednisolone 60 mg/24 h (1 mg/kg/day) | None | Resolution | Progression of disease; alternative treatment | No | 6 months |
23 | 68 | F | Bladder | Atezolizumab | Pneumonitis | Methylprednisolone 250 mg/day ×3 days followed by methylprednisolone 60 mg/24 h (1 mg/kg/day), needing new increase to methylprednisolone 250 mg/day | Infliximab | Fatal | Death during hospital admission | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seguí, E.; Zamora-Martínez, C.; Barreto, T.D.; Padrosa, J.; Viladot, M.; Marco-Hernández, J. Severe Immune-Related Adverse Events: A Case Series of Patients Needing Hospital Admission in a Spanish Oncology Referral Center and Review of the Literature. Diagnostics 2022, 12, 2116. https://doi.org/10.3390/diagnostics12092116
Seguí E, Zamora-Martínez C, Barreto TD, Padrosa J, Viladot M, Marco-Hernández J. Severe Immune-Related Adverse Events: A Case Series of Patients Needing Hospital Admission in a Spanish Oncology Referral Center and Review of the Literature. Diagnostics. 2022; 12(9):2116. https://doi.org/10.3390/diagnostics12092116
Chicago/Turabian StyleSeguí, Elia, Carles Zamora-Martínez, Tanny Daniela Barreto, Joan Padrosa, Margarita Viladot, and Javier Marco-Hernández. 2022. "Severe Immune-Related Adverse Events: A Case Series of Patients Needing Hospital Admission in a Spanish Oncology Referral Center and Review of the Literature" Diagnostics 12, no. 9: 2116. https://doi.org/10.3390/diagnostics12092116
APA StyleSeguí, E., Zamora-Martínez, C., Barreto, T. D., Padrosa, J., Viladot, M., & Marco-Hernández, J. (2022). Severe Immune-Related Adverse Events: A Case Series of Patients Needing Hospital Admission in a Spanish Oncology Referral Center and Review of the Literature. Diagnostics, 12(9), 2116. https://doi.org/10.3390/diagnostics12092116