Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Follow-Up of Patients
2.3. Imaging Protocols
2.4. Radiomics: Feature Extraction
2.5. Radiomics: Feature Harmonization
2.6. Radiomics: Feature Selection
2.7. Machine Learning Approach for Classification
3. Results
3.1. Patient Characteristics
3.2. Selection of Radiomic Features for Prediction
3.3. Performances of the Five Machine Learning Methods for Patient Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buder-Bakhaya, K.; Hassel, J.C. Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment—a Review from the Melanoma Perspective and Beyond. Front. Immunol. 2018, 9, 1474. [Google Scholar] [CrossRef] [PubMed]
- Textbook of Pharmacoepidemiology; Strom, B.L.; Kimmel, S.E. (Eds.) John Wiley & Sons: Chichester, UK/Hoboken, NJ, USA, 2006; ISBN 978-1-119-41341-7. [Google Scholar]
- Ankarfeldt, M.; Adalsteinsson, E.; Groenwold, R.; Ali, M.S.; Klungel, O. A Systematic Literature Review on the Efficacy-Effectiveness Gap: Comparison of Randomized Controlled Trials and Observational Studies of Glucose-Lowering Drugs. CLEP 2017, 9, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, P.; Boyne, D.; Slater, J.J.; Gupta, A.; Brenner, D.R.; Druzdzel, M.J. Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine. Value Health 2019, 22, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Salaün, P.-Y.; Abgral, R.; Malard, O.; Querellou-Lefranc, S.; Quere, G.; Wartski, M.; Coriat, R.; Hindie, E.; Taieb, D.; Tabarin, A.; et al. Good Clinical Practice Recommendations for the Use of PET/CT in Oncology. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 28–50. [Google Scholar] [CrossRef]
- Sanli, Y.; Leake, J.; Odu, A.; Xi, Y.; Subramaniam, R.M. Tumor Heterogeneity on FDG PET/CT and Immunotherapy: An Imaging Biomarker for Predicting Treatment Response in Patients with Metastatic Melanoma. AJR Am. J. Roentgenol. 2019, 212, 1318–1326. [Google Scholar] [CrossRef]
- Seban, R.-D.; Nemer, J.S.; Marabelle, A.; Yeh, R.; Deutsch, E.; Ammari, S.; Moya-Plana, A.; Mokrane, F.-Z.; Gartrell, R.D.; Finkel, G.; et al. Prognostic and Theranostic 18F-FDG PET Biomarkers for Anti-PD1 Immunotherapy in Metastatic Melanoma: Association with Outcome and Transcriptomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2298–2310. [Google Scholar] [CrossRef]
- Flaus, A.; Habouzit, V.; De Leiris, N.; Vuillez, J.P.; Leccia, M.T.; Perrot, J.L.; Prevot, N.; Cachin, F. FDG PET Biomarkers for Prediction of Survival in Metastatic Melanoma Prior to Anti-PD1 Immunotherapy. Sci. Rep. 2021, 11, 18795. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C. AJCC Cancer Staging Manual; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 325–344. [Google Scholar] [CrossRef]
- Hatt, M.; Majdoub, M.; Vallieres, M.; Tixier, F.; Le Rest, C.C.; Groheux, D.; Hindie, E.; Martineau, A.; Pradier, O.; Hustinx, R.; et al. 18F-FDG PET Uptake Characterization through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi-Cancer Site Patient Cohort. J. Nucl. Med. 2015, 56, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thie, J.A. Understanding the Standardized Uptake Value, Its Methods, and Implications for Usage. J. Nucl. Med. 2004, 45, 1431–1434. [Google Scholar] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Bashir, U.; Azad, G.; Siddique, M.M.; Dhillon, S.; Patel, N.; Bassett, P.; Landau, D.; Goh, V.; Cook, G. The Effects of Segmentation Algorithms on the Measurement of (18)F-FDG PET Texture Parameters in Non-Small Cell Lung Cancer. EJNMMI Res. 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. J. Nucl. Med. 2009, 50, 122S–150S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlhac, F.; Soussan, M.; Chouahnia, K.; Martinod, E.; Buvat, I. 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer. PLoS ONE 2015, 10, e0145063. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, M.; Frouin, F.; Frouin, V.; Buvat, I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J. Nucl. Med. 2018, 59, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine Learning Methods for Quantitative Radiomic Biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef]
- Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.E.; Rest, C.C.L.; Visvikis, D. Characterization of PET/CT Images Using Texture Analysis: The Past, the Present… Any Future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [Google Scholar] [CrossRef]
- Oubel, E.; Beaumont, H.; Iannessi, A. Mutual Information-Based Feature Selection for Radiomics. In Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovations; SPIE Digital Library: Bellingham, WA, USA, 2016; Volume 9789, pp. 109–117. [Google Scholar]
- Xu, Y.; Liu, J.; Hu, Q.; Chen, Z.; Du, X.; Heng, P.A. F-Score Feature Selection Method May Improve Texture-Based Liver Segmentation Strategies. In Proceedings of the 2008 IEEE International Symposium on IT in Medicine and Education, Xiamen, China, 12–14 December 2008; pp. 697–702. [Google Scholar] [CrossRef]
- Ahn, H.K.; Lee, H.; Kim, S.G.; Hyun, S.H. Pre-Treatment 18F-FDG PET-Based Radiomics Predict Survival in Resected Non-Small Cell Lung Cancer. Clin. Radiol. 2019, 74, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Du, R.; Ho, J.W.; Pang, H.H.; Chiu, K.W.; Lee, E.Y.; Vardhanabhuti, V. Effect of Machine Learning Re-Sampling Techniques for Imbalanced Datasets in 18F-FDG PET-Based Radiomics Model on Prognostication Performance in Cohorts of Head and Neck Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2826–2835. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Dittrich, D.; Pyka, T.; Scheidhauer, K.; Lütje, S.; Essler, M.; Bundschuh, R.A. Textural features in FGD-PET/CT can predict outcome in melanoma patients to treatment with Vemurafenib and Ipililumab. Nuklearmedizin 2020, 59, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Decision Tree and Random Forest Models for Outcome Prediction in Antibody Incompatible Kidney Transplantation. Biomed. Signal Process. Control. 2019, 52, 456–462. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Z.; Zhou, L.; Zhang, L.; Hao, X.; Zhai, J. Computed-Tomography-Based Radiomics Model for Predicting the Malignant Potential of Gastrointestinal Stromal Tumors Preoperatively: A Multi-Classifier and Multicenter Study. Front. Oncol. 2021, 11, 582847. [Google Scholar] [CrossRef]
- Hotta, M.; Minamimoto, R.; Miwa, K. 11C-Methionine-PET for Differentiating Recurrent Brain Tumor from Radiation Necrosis: Radiomics Approach with Random Forest Classifier. Sci. Rep. 2019, 9, 15666. [Google Scholar] [CrossRef]
- He, B.; Zhao, W.; Pi, J.-Y.; Han, D.; Jiang, Y.-M.; Zhang, Z.-G.; Zhao, W. A Biomarker Basing on Radiomics for the Prediction of Overall Survival in Non–Small Cell Lung Cancer Patients. Respir. Res. 2018, 19, 199. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. IRECIST: Guidelines for Response Criteria for Use in Trials Testing Immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Mulkey, F.; Theoret, M.R.; Keegan, P.; Pazdur, R.; Sridhara, R. Comparison of IRECIST versus RECIST V.1.1 in Patients Treated with an Anti-PD-1 or PD-L1 Antibody: Pooled FDA Analysis. J. Immunother. Cancer 2020, 8, e000146. [Google Scholar] [CrossRef] [Green Version]
- Galavis, P.E.; Hollensen, C.; Jallow, N.; Paliwal, B.; Jeraj, R. Variability of Textural Features in FDG PET Images Due to Different Acquisition Modes and Reconstruction Parameters. Acta Oncol. 2010, 49, 1012–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissaux, G.; Visvikis, D.; Da-ano, R.; Pradier, O.; Chajon, E.; Barillot, I.; Duverge, L.; Masson, I.; Abgral, R.; Santiago Ribeiro, M.-J.; et al. Pre-Treatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: A Multicentric Study. J. Nucl. Med. 2020, 61, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Nakajo, M.; Jinguji, M.; Tani, A.; Kikuno, H.; Hirahara, D.; Togami, S.; Kobayashi, H.; Yoshiura, T. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer. Mol. Imaging Biol. 2021, 23, 756–765. [Google Scholar] [CrossRef] [PubMed]
Overall Survival | Progression Free Survival | |||
---|---|---|---|---|
Overall Rank | Radiomic Feature | Overall Rank | Radiomic Feature | |
1 | GLZLM_LZE | 1 | GLZLM_LZE | |
2 | GLZLM_LZHGE | 2 | GLZLM_LZLGE | |
3 | GLZLM_ZLNU | 3 | GLZLM_LZHGE | |
4 | GLCM_Homogeneity | 4 | CONVENTIONAL_SUVstd | |
5 | HISTO_Kurtosis | 5 | GLCM_Entropy_log10 | |
6 | GLRLM_GLNU | 6 | NGLDM_Coarseness | |
7 | GLRLM_LRHGE | 7 | HISTO_Skewness | |
8 | NGLDM_Coarseness | 8 | CONVENTIONAL_TLG | |
9 | HISTO_Energy | 9 | HISTO_Entropy_log10 | |
10 | GLRLM_SRE | 10 | GLCM_Energy | |
11 | HISTO_Entropy_log10 | 11 | CONVENTIONAL_SUVmax | |
12 | NGLDM_Contrast | 12 | GLRLM_GLNU | |
13 | GLCM_Correlation | 13 | GLRLM_LRHGE | |
14 | GLRLM_LGRE | |||
15 | GLZLM_SZE | |||
16 | HISTO_Skewness | |||
17 | GLCM_Contrast | |||
18 | CONVENTIONAL_SUVmin |
Overall survival | |||||
---|---|---|---|---|---|
NB | LR | RF | SVM | NN | |
AUC (95% CI) | 0.82 ± 0.15 | 0.84 ± 0.15 | 0.87 ± 0.1 | 0.82 ± 0.15 | 0.84 ± 0.14 |
Sensitivity (95% CI) | 0.78 ± 0.11 | 0.81 ± 0.11 | 0.79 ± 0.11 | 0.77 ± 0.12 | 0.79 ± 0.11 |
Specificity (95% CI) | 0.86 ± 0.1 | 0.87 ± 0.10 | 0.95 ± 0.06 | 0.87 ± 0.09 | 0.89 ± 0.09 |
Progression-free survival | |||||
NB | LR | RF | SVM | NN | |
AUC (95% CI) | 0.69 ± 0.15 | 0.64 ± 0.14 | 0.90 ± 0.07 | 0.63 ± 0.15 | 0.69 ± 0.13 |
Sensitivity (95% CI) | 0.80 ± 0.11 | 0.59 ± 0.14 | 0.88 ± 0.09 | 0.55 ± 0.14 | 0.58 ± 0.14 |
Specificity (95% CI) | 0.57 ± 0.14 | 0.70 ± 0.12 | 0.91 ± 0.08 | 0.72 ± 0.12 | 0.81 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flaus, A.; Habouzit, V.; de Leiris, N.; Vuillez, J.-P.; Leccia, M.-T.; Simonson, M.; Perrot, J.-L.; Cachin, F.; Prevot, N. Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment. Diagnostics 2022, 12, 388. https://doi.org/10.3390/diagnostics12020388
Flaus A, Habouzit V, de Leiris N, Vuillez J-P, Leccia M-T, Simonson M, Perrot J-L, Cachin F, Prevot N. Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment. Diagnostics. 2022; 12(2):388. https://doi.org/10.3390/diagnostics12020388
Chicago/Turabian StyleFlaus, Anthime, Vincent Habouzit, Nicolas de Leiris, Jean-Philippe Vuillez, Marie-Thérèse Leccia, Mathilde Simonson, Jean-Luc Perrot, Florent Cachin, and Nathalie Prevot. 2022. "Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment" Diagnostics 12, no. 2: 388. https://doi.org/10.3390/diagnostics12020388
APA StyleFlaus, A., Habouzit, V., de Leiris, N., Vuillez, J.-P., Leccia, M.-T., Simonson, M., Perrot, J.-L., Cachin, F., & Prevot, N. (2022). Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment. Diagnostics, 12(2), 388. https://doi.org/10.3390/diagnostics12020388