Real-World Patterns and Decision Drivers of Radiotherapy for Lung Cancer Patients in Romania: RADIO-NET Study Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Objectives
2.3. Study Population
2.4. Variables
2.5. Statistical Analysis
3. Results
3.1. Site Characteristics
3.2. Patient Characteristics
3.3. RT Characteristics
Chemoradiotherapy and Other Treatments
3.4. Drivers of RT Decision
3.5. Regression Models
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vrdoljak, E.; Bodoky, G.; Jassem, J.; Popescu, R.A.; Mardiak, J.; Pirker, R.; Čufer, T.; Bešlija, S.; Eniu, A.; Todorović, V.; et al. Cancer control in Central and Eastern Europe: Current situation and recommendations for improvement. Oncologist 2016, 21, 1183–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef] [PubMed]
- The Global Cancer Observatory Home Page. Epidemiology of Cancer in Romania 2020. Available online: https://gco.iarc.fr/today/data/factsheets/populations/642-romania-fact-sheets.pdf (accessed on 11 February 2022).
- Baker, S.; Dahele, M.; Lagerwaard, F.J.; Senan, S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat. Oncol. 2016, 11, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinod, S.K.; Hau, E. Radiotherapy treatment for lung cancer: Current status and future directions. Respirology 2020, 25 (Suppl. 2), 61–71. [Google Scholar] [CrossRef]
- Jones, G.S.; Baldwin, D.R. Recent advances in the management of lung cancer. Clin. Med. 2018, 18, s41. [Google Scholar] [CrossRef]
- Louie, A.V.; Bahig, H.; Moghanaki, D. The current and future landscape of radiotherapy for lung cancer. Transl. Lung Cancer Res. 2019, 8, S122–S123. [Google Scholar] [CrossRef]
- Tovar, I.; Expósito, J.; Jaén, J.; Alonso, E. Underuse of radiotherapy in lung cancer has negative consequences for patients. J. Thorac. Oncol. 2013, 8, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Vinod, S.K. International patterns of radiotherapy practice for non-small cell lung cancer. Semin. Radiat. Oncol. 2015, 25, 143–150. [Google Scholar] [CrossRef]
- Borras, J.M.; Lievens, Y.; Barton, M.; Corral, J.; Ferlay, J.; Bray, F.; Grau, C. How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother. Oncol. 2016, 119, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Kepka, L.; Danilova, V.; Saghatelyan, T.; Bajcsay, A.; Utehina, O.; Stojanovic, S.; Yalman, D.; Demiral, A.; Bondaruk, O.; Kuddu, M.; et al. Resources and management strategies for the use of radiotherapy in the treatment of lung cancer in Central and Eastern European countries: Results of an International Atomic Energy Agency (IAEA) survey. Lung Cancer 2007, 56, 235–245. [Google Scholar] [CrossRef]
- Lievens, Y.; Defourny, N.; Corral, J.; Gasparotto, C.; Grau, C.; Borras, J.M. How public health services pay for radiotherapy in Europe: An ESTRO-HERO analysis of reimbursement. Lancet Oncol. 2020, 21, e42–e54. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.; Coupland, V.H.; Tataru, D.; Peake, M.D.; Mellemgaard, A.; Round, T.; Baldwin, D.R.; Callister, M.E.J.; Jakobsen, E.; Vedsted, P.; et al. Geographical variations in the use of cancer treatments are associated with survival of lung cancer patients. Thorax 2018, 73, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovar, I.; Expósito, J.; Jaén, J.; Alonso, E.; Martínez, M.; Guerrero, R.; Arrebola, J.P.; Del Moral, R. Pattern of use of radiotherapy for lung cancer: A descriptive study. BMC Cancer 2014, 14, 697. [Google Scholar] [CrossRef] [Green Version]
- Zemanova, M.; Jakopovic, M.; Stanic, K.; Łazar-Poniatowska, M.; Vrankar, M.; Rusu, P.; Ciuleanu, T.; Radosavljevic, D.; Bogos, K.; Nawrocki, S. Treatment patterns and real-world evidence for stage III non-small cell lung cancer in Central and Eastern Europe. Radiol. Oncol. 2020, 54, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Abrão, F.C.; Moreira, F.R.; Abreu, I.R.L.B.d.; Marciano, M.G.; Younes, R.N. Real-Life Long-Term Cohort of Patients With Stage IIIA Non–Small-Cell Lung Cancer: Overall Survival Related to Patients’ Characteristics and Multiple Treatment Models. JCO Global Oncol. 2021, 1572–1585. [Google Scholar] [CrossRef]
- de Castro, J.; Tagliaferri, P.; de Lima, V.C.C.; Ng, S.; Thomas, M.; Arunachalam, A.; Cao, X.; Kothari, S.; Burke, T.; Myeong, H.; et al. Systemic therapy treatment patterns in patients with advanced non-small cell lung cancer (NSCLC): PIvOTAL study. Eur. J. Cancer Care 2017, 26, e12734. [Google Scholar] [CrossRef] [Green Version]
- Uhlig, J.; Case, M.D.; Blasberg, J.D.; Boffa, D.J.; Chiang, A.; Gettinger, S.N.; Kim, H.S. Comparison of Survival Rates After a Combination of Local Treatment and Systemic Therapy vs Systemic Therapy Alone for Treatment of Stage IV Non-Small Cell Lung Cancer. JAMA Netw. Open 2019, 2, e199702. [Google Scholar] [CrossRef]
- Ramella, S.; Maranzano, E.; Frata, P.; Mantovani, C.; Lazzari, G.; Menichelli, C.; Navarria, P.; Pergolizzi, S.; Salvi, F. Radiotherapy in Italy for non-small cell lung cancer: Patterns of care survey. Tumori 2012, 98, 66–78. [Google Scholar] [CrossRef]
- van der Linden, N.; Bongers, M.L.; Coupé, V.M.H.; Smit, E.F.; Groen, H.J.M.; Welling, A.; Schramel, F.; Uyl-de Groot, C.A. Treatment Patterns and Differences in Survival of Non-Small Cell Lung Cancer Patients Between Academic and Non-Academic Hospitals in the Netherlands. Clin. Lung Cancer 2015, 18, e341–e347. [Google Scholar] [CrossRef] [Green Version]
- Coza, D.; Suteu, O.; Blaga, L.; Nicula, F.; Coza, O.; Achimas-Cadariu, P.; Irimie, A. Cancer Report in North Eestern Region of Romania; Casa Cartii de Stiinta: Cluj-Napoca, Romania, 2019. [Google Scholar]
- Pop, B.; Fetica, B.; Blaga, M.L.; Trifa, A.P.; Achimas-Cadariu, P.; Vlad, C.I.; Achimas-Cadariu, A. The role of medical registries, potential applications and limitations. Med. Pharm. Rep. 2019, 92, 7–14. [Google Scholar] [CrossRef]
- Glatzer, M.; Panje, C.M.; Sirén, C.; Cihoric, N.; Putora, P.M. Decision Making Criteria in Oncology. Oncology 2020, 98, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Grau, C.; Defourny, N.; Malicki, J.; Dunscombe, P.; Borras, J.M.; Coffey, M.; Slotman, B.; Bogusz, M.; Gasparotto, C.; Lievens, Y.; et al. Radiotherapy equipment and departments in the European countries: Final results from the ESTRO-HERO survey. Radiother. Oncol. 2014, 112, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacsó, G. Reimbursement of Radiotherapy Services in Romania: Qvo Vadis? J. Med. Radiat. Oncol. 2021, 1, 145–151. [Google Scholar] [CrossRef]
- Sekine, I.; Shintani, Y.; Shukuya, T.; Takayama, K.; Inoue, A.; Okamoto, I.; Kiura, K.; Takahashi, K.; Dosaka-Akita, H.; Takiguchi, Y.; et al. A Japanese lung cancer registry study on demographics and treatment modalities in medically treated patients. Cancer Sci. 2020, 111, 1685–1691. [Google Scholar] [CrossRef]
- Tas, F.; Ciftci, R.; Kilic, L.; Karabulut, S. Age is a prognostic factor affecting survival in lung cancer patients. Oncol. Lett. 2013, 6, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- De Felice, F.; Piccioli, A.; Musio, D.; Tombolini, V. The role of radiation therapy in bone metastases management. Oncotarget 2017, 8, 25691–25699. [Google Scholar] [CrossRef] [Green Version]
- Shiarli, A.M.; McDonald, F.; Gomez, D.R. When should we irradiate the primary in metastatic lung cancer? Clin. Oncol. 2019, 31, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhu, H.; Sun, L.; Xu, W.; Wang, X. Prognostic value of site-specific metastases in lung cancer: A population based study. J. Cancer 2019, 10, 3079–3086. [Google Scholar] [CrossRef] [Green Version]
- Campos-Balea, B.; de Castro Carpeño, J.; Massutí, B.; Vicente-Baz, D.; Pérez Parente, D.; Ruiz-Gracia, P.; Crama, L.; Cobo Dols, M. Prognostic factors for survival in patients with metastatic lung adenocarcinoma: An analysis of the SEER database. Thorac. Cancer 2020, 11, 3357–3364. [Google Scholar] [CrossRef]
- Simeone, J.C.; Nordstrom, B.L.; Patel, K.; Klein, A.B. Treatment patterns and overall survival in metastatic non-small-cell lung cancer in a real-world, US setting. Future Oncol. 2019, 15, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- The Lung Ambtion Alliance Home Page. Lung Cancer Screening: The Cost of Inaction [Internet]. 2021. Available online: https://www.lungambitionalliance.com/content/dam/open-digital/lungambitionalliance/en/pdf/Lung-cancer-screening-cost-of-inaction_Report.pdf (accessed on 11 March 2022).
- Racovita, M.; Wheeler, E.; Wait, S.; Bancroft, D.; Eastabrook, R.; Albreht, T.; Baird, A.-M.; Jassem, J.; McNamara, A.E.; Novello, S.; et al. Lung cancer in Europe: The way forward. Tob. Prev. Cessat. 2022, 8, 1–2. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced lung-cancer mortality with volume CT Sscreening in a randomized trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.L.; Wang, S.Y.; Lu, W.C.; Chang, Y.H.; Su, J.; Lu, Y.T. Effects of low-dose computed tomography on lung cancer screening: A systematic review, meta-analysis, and trial sequential analysis. BMC Pulm Med 2019, 19, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin, N.M.; McWilliams, A.; Marshall, H.M. Lung cancer screening implementation: Complexities and priorities. Respirology 2020, 25 (Suppl. 2), 5–23. [Google Scholar] [CrossRef]
- Linehan, V.; Harris, S.; Bhatia, R. An audit of opportunistic lung cancer screening in a Canadian province. J. Prim. Care Community Health 2021, 12, 21501327211051484. [Google Scholar] [CrossRef]
- Ministry of Health from Romania Home Page, Planul National de Combatere a Cancerului. Available online: http://www.ms.ro/wp-content/uploads/2022/01/Plan-National-de-Combatere-a-Cancerului.pdf (accessed on 13 February 2022).
- Bezjak, A.; Temin, S.; Franklin, G.; Giaccone, G.; Govindan, R.; Johnson, M.L.; Rimner, A.; Schneider, B.J.; Strawn, J.; Azzoli, C.G. Definitive and adjuvant radiotherapy in locally advanced non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. J. Clin. Oncol. 2015, 33, 2100–2105. [Google Scholar] [CrossRef]
- Shi, J.G.; Shao, H.J.; Jiang, F.E.; Huang, Y.D. Role of radiation therapy in lung cancer management—A review. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3217–3222. [Google Scholar]
- Eaton, B.R.; Pugh, S.L.; Bradley, J.D.; Masters, G.; Kavadi, V.S.; Narayan, S.; Nedzi, L.; Robinson, C.; Wynn, R.B.; Koprowski, C.; et al. Institutional enrollment and survival among NSCLC patients receiving chemoradiation: NRG Oncology Radiation Therapy Oncology Group (RTOG) 0617. J. Natl. Cancer Inst. 2016, 108, djw034. [Google Scholar] [CrossRef] [Green Version]
- Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 2181–2190. [Google Scholar] [CrossRef] [Green Version]
- De Ruysscher, D.; Faivre-Finn, C.; Moeller, D.; Nestle, U.; Hurkmans, C.W.; Le Péchoux, C.; Belderbos, J.; Guckenberger, M.; Senan, S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother. Oncol. 2017, 124, 1–10. [Google Scholar] [CrossRef]
- Or, M.; Liu, B.; Lam, J.; Vinod, S.; Xuan, W.; Yeghiaian-Alvandi, R.; Hau, E. A systematic review and meta-analysis of treatment-related toxicities of curative and palliative radiation therapy in non-small cell lung cancer. Sci. Rep. 2021, 11, 5939. [Google Scholar] [CrossRef]
- Käsmann, L.; Dietrich, A.; Staab-Weijnitz, C.A.; Manapov, F.; Behr, J.; Rimner, A.; Jeremic, B.; Senan, S.; De Ruysscher, D.; Lauber, K.; et al. Radiation-induced lung toxicity-cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat. Oncol. 2020, 15, 214. [Google Scholar] [CrossRef]
- Benveniste, M.F.; Gomez, D.; Carter, B.W.; Betancourt Cuellar, S.L.; Shroff, G.S.; Benveniste, A.P.A.; Odisio, E.G.; Marom, E.M. Recognizing radiation therapy-related complications in the chest. Radiographics 2019, 39, 344–366. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Tepper, J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin. 2021, 71, 437–454. [Google Scholar] [CrossRef]
- Brescia, F.J. Lung cancer--a philosophical, ethical, and personal perspective. Crit. Rev. Oncol. Hematol. 2001, 40, 139–148. [Google Scholar] [CrossRef]
- Cotarla, I.; Boron, M.L.; Cullen, S.L.; Spinner, D.S.; Faulkner, E.C.; Carroll, M.C.; Shah, S.; Yagui-Beltran, A. Treatment decision drivers in stage III non-small-cell lung cancer: Outcomes of a web-based survey of oncologists in the United States. JCO Oncol. Pract. 2020, 16, e1232–e1242. [Google Scholar] [CrossRef]
- Popat, S.; Navani, N.; Kerr, K.M.; Smit, E.F.; Batchelor, T.J.P.; Van Schil, P.; Senan, S.; McDonald, F. Navigating diagnostic and treatment decisions in non-small cell lung cancer: Expert commentary on the multidisciplinary team approach. Oncologist 2021, 26, e306–e315. [Google Scholar] [CrossRef]
- Banfill, K.; Croxford, W.; Fornacon-Wood, I.; Wicks, K.; Ahmad, S.; Britten, A.; Carson, C.; Dorey, N.; Hatton, M.; Hiley, C.; et al. Changes in the management of patients having radical radiotherapy for lung cancer during the first wave of the COVID-19 pandemic in the UK. Clin. Oncol. 2022, 34, 19–27. [Google Scholar] [CrossRef]
- Schoenmaekers, J.; Hendriks, L.E.L.; van den Beuken-van Everdingen, M.H.J. Palliative care for cancer patients during the COVID-19 pandemic, with special focus on lung cancer. Front. Oncol. 2020, 10, 1405. [Google Scholar] [CrossRef]
- Spencer, K.; Jones, C.M.; Girdler, R.; Roe, C.; Sharpe, M.; Lawton, S.; Miller, L.; Lewis, P.; Evans, M.; Sebag-Montefiore, D.; et al. The impact of the COVID-19 pandemic on radiotherapy services in England, UK: A population-based study. Lancet Oncol. 2021, 22, 309–320. [Google Scholar] [CrossRef] [PubMed]
Characteristic | N = 16 n (%) |
---|---|
Linear accelerator upgrades | |
Intensity modulated radiation therapy | 11 (69) |
Volumetric modulated arc therapy | 10 (63) |
Image-guided radiation therapy | 9 (56) |
Multi-leaf collimator (MLC) | 8 (50) |
Micro-MLC | 8 (50) |
On-board imaging (OBI) | |
kV OBI | 13 (81) |
Cone beam computed tomography | 12 (75) |
Electronic portal imaging device | 8 (50) |
Megavoltage computed tomography | 4 (25) |
Set-up correction protocols | |
Extended no action level (eNAL) | 7 (44) |
No action level | 4 (25) |
Shrinking action level | 4 (25) |
Prescription isodose level | 3 (19) |
Daily imaging | 2 (13) |
On-line correction | 2 (13) |
Characteristic | FAS (N = 422) | Curative RT (N = 152) | Palliative RT (N = 270) |
---|---|---|---|
Age at the time of initial lung cancer diagnosis, median (min–max), years | 63 (27–87) | 64 (27–83) | 64 (31–87) |
Age at the time of receiving RT, median (min–max), years | 64 (27–87) | 64 (27–83) | 64 (33–87) |
Males, n (%) | 322 (76) | 120 (79) | 202 (75) |
Smoking history, n (%) | |||
Active smokers | 140 (33) | 63 (41) | 77 (29) |
Ex-smokers | 102 (24) | 35 (23) | 67 (25) |
Non-smokers | 43 (10) | 14 (9) | 29 (11) |
Unknown | 137 (33) | 40 (26) | 97 (36) |
Comorbidities (reported rate > 5%) | |||
Chronic obstructive pulmonary disease | 142 (34) | 48 (32) | 94 (35) |
Heart failure | 39 (9) | 14 (9) | 25 (9) |
Diabetes mellitus | 39 (9) | 11 (7) | 28 (10) |
Gastro-intestinal disorders | 28 (7) | 6 (4) | 22 (8) |
Cerebrovascular disease | 24 (6) | 6 (4) | 18 (7) |
Other types of cancer 1 | 26 (6) | 15 (10) | 11 (4) |
ECOG performance score at the time of RT, n (%) | |||
0–1 | 211 (50) | 117 (77) | 94 (35) |
≥2 | 204 (48) | 35 (23) | 169 (63) |
Unknown | 7 (2) | - | 7 (3) |
p-value between groups 2 | - | <0.001 | |
Duration of disease at the time of RT, median (min–max), years (since initial diagnosis) | 0.4 (0–12.9) | 0.3 (0.1–2.5) | 0.4 (0–12.9) |
Tumor histology, n (%) | |||
Adenocarcinoma | 205 (49) | 55 (36) | 150 (56) |
Squamous cell carcinoma | 112 (27) | 59 (39) | 53 (20) |
Small cell carcinoma | 77 (18) | 28 (17) | 49 (18) |
Other histological type 3 | 28 (7) | 10 (7) | 18 (7) |
p-value between groups 4 | - | 0.002 | |
Tumor stage at the time of initial lung cancer diagnosis, n (%) | |||
Early stage (IA-IIB) | 23 (6) | 14 (9) | 9 (3) |
Limited stage (IIIA) | 48 (11) | 40 (26) | 8 (3) |
Locally advanced (IIIB-IIIC) | 134 (32) | 84 (55) | 50 (19) |
Metastatic (IV) | 211 (50) | 14 (9) | 197 (73) |
Unknown | 6 (1) | 0 (0) | 6 (2) |
p-value between groups 5 | - | <0.001 | |
Genetic mutational testing performed, n (%) | 180 (43) | 63 (41) | 117 (43) |
Positive EGFR mutation 6 | 34 (19) | 8 (13) | 26 (22) |
Positive PD-L1 expression 6 | 72 (40) | 34 (54) | 38 (33) |
RT Characteristics | FAS (N = 422) | Curative RT (N = 152) | Palliative RT (N = 270) |
---|---|---|---|
Treatment planning and image guidance 1, n (%) | |||
IMRT non-VMAT | 59 (14) | 23 (15) | 36 (13) |
FDG PET-CT fusion | 22 (5) | 21 (7) | 1 (<1) |
VMAT tomotherapy | 30 (7) | 9 (5) | 21 (8) |
VMAT non-tomotherapy | 154 (36) | 94 (62) | 60 (22) |
3D-CRT | 147 (35) | 28 (18) | 119 (44) |
4D-CT | 2 (<1) | 2 (1) | - |
2D | 11 (3) | 2 (1) | 9 (3) |
SRS and SBRT | 9 (2) | 2 (1) | 7 (3) |
Delay characteristics | |||
Patients experiencing delays, n (%) | 54 (13) | 33 (22) | 21 (8) |
Duration of delay, median (min–max), days | 3 (1–12) | 4 (2–12) | 3 (1–10) |
Main causes of RT delay 2, n (%) | |||
Radiation toxicity | 8 (15) | 7 (21) | 1 (5) |
Machine breakdown | 36 (67) | 25 (76) | 11 (52) |
Technical revision | 10 (19) | 9 (27) | 1 (5) |
Patient-related factors | 9 (17) | 6 (18) | 3 (14) |
Other 3 | 10 (20) | 2 (6) | 8 (38) |
Acute toxicities | |||
Patients experiencing acute RT toxicities, n (%) | 110 (26) | 70 (46) | 40 (15) |
Type of acute RT toxicities 4, n (%) | |||
Esophagitis | 78 (71) | 65 (93) | 13 (33) |
Pneumonitis | 16 (15) | 15 (21) | 1 (3) |
Skin toxicity | 20 (18) | 16 (23) | 4 (10) |
Neurotoxicity | 23 (21) | - | 23 (58) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, M.-T.; Zahu, R.; Rusu, P.; Teodorescu, G.; Kacso, G. Real-World Patterns and Decision Drivers of Radiotherapy for Lung Cancer Patients in Romania: RADIO-NET Study Results. Diagnostics 2022, 12, 3089. https://doi.org/10.3390/diagnostics12123089
Georgescu M-T, Zahu R, Rusu P, Teodorescu G, Kacso G. Real-World Patterns and Decision Drivers of Radiotherapy for Lung Cancer Patients in Romania: RADIO-NET Study Results. Diagnostics. 2022; 12(12):3089. https://doi.org/10.3390/diagnostics12123089
Chicago/Turabian StyleGeorgescu, Mihai-Teodor, Renata Zahu, Petronela Rusu, Gabriela Teodorescu, and Gabriel Kacso. 2022. "Real-World Patterns and Decision Drivers of Radiotherapy for Lung Cancer Patients in Romania: RADIO-NET Study Results" Diagnostics 12, no. 12: 3089. https://doi.org/10.3390/diagnostics12123089
APA StyleGeorgescu, M.-T., Zahu, R., Rusu, P., Teodorescu, G., & Kacso, G. (2022). Real-World Patterns and Decision Drivers of Radiotherapy for Lung Cancer Patients in Romania: RADIO-NET Study Results. Diagnostics, 12(12), 3089. https://doi.org/10.3390/diagnostics12123089