Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome–Related Skin Tumors
Abstract
:1. Introduction
2. Methods
3. MEN1 and Skin Tumor Profile
3.1. Angiofibromas
3.2. Collagenomas
3.3. Lipomas
3.4. Genetic Considerations in Skin Tumors Associated with MEN1
3.5. Melanoma: Any Connection with MEN1?
3.6. Other Skin Tumors in MEN1 Patients
4. Discussion
4.1. Identifying MEN1 Patients Starting from Skin Tumors
4.2. Cherry Angiomas: From Acromegaly to MEN1
4.3. Skin Health Surveillance in Patients with MEN1
4.4. Cutaneous Lesions in MEN1: How Deep Should We Look?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
IGF-1 | insulin-like growth factor-1 |
MEN1 | multiple endocrine neoplasia type 1 |
NET | neuroendocrine tumor |
ZES | Zollinger–Ellison syndrome |
References
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L.; et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef] [PubMed]
- Wermer, P. Genetic aspects of adenomatosis of endocrine glands. Am. J. Med. 1954, 16, 363–371. [Google Scholar] [CrossRef]
- Brandi, M.L.; Gagel, R.F.; Angeli, A.; Bilezikian, J.P.; Beck-Peccoz, P.; Bordi, C.; Conte-Devolx, B.; Falchetti, A.; Gheri, R.G.; Libroia, A.; et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 2001, 86, 5658–5671. [Google Scholar] [CrossRef] [PubMed]
- Al-Salameh, A.; Cadiot, G.; Calender, A.; Goudet, P.; Chanson, P. Clinical aspects of multiple endocrine neoplasia type 1. Nat. Rev. Endocrinol. 2021, 17, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.V.; Osamura, R.Y.; Klöppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs, 4th ed.; MDText.com: South Dartmouth, MA, USA, 2017; Volume 10. [Google Scholar]
- Vierimaa, O.; Ebeling, T.M.L.; Kytölä, S.; Bloigu, R.; Eloranta, E.; Salmi, J.; Korpi-Hyövälti, E.; Niskanen, L.; Orvola, A.; Elovaara, E.; et al. Multiple endocrine neoplasia type 1 in Northern Finland; clinical features and genotype phenotype correlation. Eur. J. Endocrinol. 2007, 157, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Kytölä, S.; Villablanca, A.; Ebeling, T.; Nord, B.; Larsson, C.; Höög, A.; Wong, F.K.; Välimäki, M.; Vierimaa, O.; Teh, B.T.; et al. Founder effect in multiple endocrine neoplasia type 1 (MEN 1) in Finland. J. Med. Genet. 2001, 38, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Marx, S.J.; Agarwal, S.K.; Kester, M.B.; Heppner, C.; Kim, Y.S.; Skarulis, M.C.; James, L.A.; Goldsmith, P.K.; Saggar, S.K.; Park, S.Y.; et al. Multiple endocrine neoplasia type 1: Clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog. Horm. Res. 1999, 54, 397–438, discussion 438–439. [Google Scholar]
- Guru, S.C.; Goldsmith, P.K.; Burns, A.L.; Marx, S.J.; Spiegel, A.M.; Collins, F.S.; Chandrasekharappa, S.C. Menin, the product of the MEN1 gene, is a nuclear protein. Proc. Natl. Acad. Sci. USA 1998, 95, 1630–1634. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.; Agarwal, S.K. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J. Mol. Endocrinol. 2018, 61, R13–R24. [Google Scholar] [CrossRef] [Green Version]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1). Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 355–370. [Google Scholar] [CrossRef]
- Agarwal, S.K. The future: Genetics advances in MEN1 therapeutic approaches and management strategies. Endocr. -Relat. Cancer 2017, 24, T119–T134. [Google Scholar] [CrossRef] [PubMed]
- Hendy, G.N.; Kaji, H.; Canaff, L. Cellular functions of menin. Adv. Exp. Med. Biol. 2009, 668, 37–50. [Google Scholar]
- Matkar, S.; Thiel, A.; Hua, X. Menin: A scaffold protein that controls gene expression and cell signaling. Trends Biochem. Sci. 2013, 38, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell. Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef]
- Pieterman, C.R.C.; van Leeuwaarde, R.S.; van den Broek, M.F.M. Multiple Endocrine Neoplasia Type 1; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Papaconstantinou, M.; Maslikowski, B.M.; Pepper, A.N.; Bédard, P.-A. Menin: The protein behind the MEN1 syndrome. Adv. Exp. Med. Biol. 2009, 668, 27–36. [Google Scholar]
- Knudson, A.G. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieterman, C.R.C.; Conemans, E.B.; Dreijerink, K.M.A.; de Laat, J.M.; Timmers, H.T.M.; Vriens, M.R.; Valk, G.D. Thoracic and duodenopancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1: Natural history and function of menin in tumorigenesis. Endocr. -Relat. Cancer 2014, 21, R121–R142. [Google Scholar] [CrossRef]
- Lemos, M.C.; Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 2008, 29, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.; Zori, R. Genetic insights into familial cancers—Update and recent discoveries. Cancer Lett. 2002, 181, 125–164. [Google Scholar] [CrossRef]
- Lubensky, I.A.; Debelenko, L.V.; Zhuang, Z.; Emmert-Buck, M.R.; Dong, Q.; Chandrasekharappa, S.; Guru, S.C.; Manickam, P.; Olufemi, S.E.; Marx, S.J.; et al. Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res. 1996, 56, 5272–5278. [Google Scholar]
- Machens, A.; Schaaf, L.; Karges, W.; Frank-Raue, K.; Bartsch, D.K.; Rothmund, M.; Schneyer, U.; Goretzki, P.; Raue, F.; Dralle, H. Age-related penetrance of endocrine tumours in multiple endocrine neoplasia type 1 (MEN1): A multicentre study of 258 gene carriers. Clin. Endocrinol. 2007, 67, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Suárez, C.; Rodrigo, J.P.; Ferlito, A.; Cabanillas, R.; Shaha, A.R.; Rinaldo, A. Tumours of familial origin in the head and neck. Oral Oncol. 2006, 42, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Newey, P.J.; Newell-Price, J. MEN1 Surveillance Guidelines: Time to (Re)Think? J. Endocr. Soc. 2022, 6, bvac001. [Google Scholar] [CrossRef] [PubMed]
- Kouvaraki, M.A.; Lee, J.E.; Shapiro, S.E.; Gagel, R.F.; Sherman, S.I.; Sellin, R.V.; Cote, G.J.; Evans, D.B. Genotype-phenotype analysis in multiple endocrine neoplasia type 1. Arch. Surg. 2002, 137, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Mele, C.; Mencarelli, M.; Caputo, M.; Mai, S.; Pagano, L.; Aimaretti, G.; Scacchi, M.; Falchetti, A.; Marzullo, P. Phenotypes Associated With MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front. Endocrinol. 2020, 11, 591501. [Google Scholar] [CrossRef]
- Brandi, M.L.; Agarwal, S.K.; Perrier, N.D.; Lines, K.E.; Valk, G.D.; Thakker, R.V. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr. Rev. 2021, 42, 133–170. [Google Scholar] [CrossRef]
- Norton, J.; Krampitz, G.; Jensen, R. Multiple Endocrine Neoplasia: Genetics & Clinical Management. Surg. Oncol. Clin. N. Am. 2015, 24, 795–832. [Google Scholar]
- Falchetti, A. Genetics of multiple endocrine neoplasia type 1 syndrome: What’s new and what’s old. F1000Research 2017, 6, F1000 Faculty Rev-73. [Google Scholar] [CrossRef] [Green Version]
- Febrero, B.; Segura, P.; Ruiz-Manzanera, J.J.; Teruel, E.; Ros, I.; Ríos, A.; Hernández, A.M.; Rodríguez, J.M. Uncommon tumors in multiple endocrine neoplasia (MEN) type 1: Do they have a relationship with the prognosis of these patients? J. Endocrinol. Investig. 2021, 44, 1327–1330. [Google Scholar] [CrossRef]
- Jhawar, S.; Lakhotia, R.; Suzuki, M.; Welch, J.; Agarwal, S.K.; Sharretts, J.; Merino, M.; Ahlman, M.; Blau, J.E.; Simonds, W.F.; et al. Clinical presentation and management of primary ovarian neuroendocrine tumor in multiple endocrine neoplasia type 1. Endocrinol. Diabetes Metab. Case Rep. Endocrinol. 2019, 2019, 190040. [Google Scholar] [CrossRef]
- van Leeuwaarde, R.S.; Dreijerink, K.M.; Ausems, M.G.; Beijers, H.J.; Dekkers, O.M.; de Herder, W.W.; van der Horst-Schrivers, A.N.; Drent, M.L.; Bisschop, P.H.; Havekes, B.; et al. MEN1-Dependent Breast Cancer: Indication for Early Screening? Results from the Dutch MEN1 Study Group. J. Clin. Endocrinol. Metab. 2017, 102, 2083–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreijerink, K.M.A.; Goudet, P.; Burgess, J.R.; Valk, G.D. Breast-Cancer Predisposition in Multiple Endocrine Neoplasia Type 1. N. Engl. J. Med. 2014, 371, 583–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarnegar, R.; Brunaud, L.; Clark, O.H. Multiple endocrine neoplasia type I. Curr. Treat. Options Oncol. 2002, 3, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, C.A. Hereditary Syndromes Predisposing to Endocrine Tumors and their Skin Manifestations. Rev. Endocr. Metab. Disord. 2016, 17, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, C.D.C.; Stratakis, C.A. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front. Endocrinol. 2019, 10, 339. [Google Scholar] [CrossRef]
- Thompson, R.; Landry, C.S. Multiple endocrine neoplasia 1: A broad overview. Ther. Adv. Chronic Dis. 2021, 12, 20406223211035288. [Google Scholar] [CrossRef] [PubMed]
- Baldauf, C.; Vortmeyer, A.O.; Koch, C.A.; Sticherling, M. Combination of multiple skin malignancies with multiple endocrine neoplasia type 1: Coincidental or pathogenetically related? Dermatology 2009, 219, 365–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, D.M.; Toledo, R.A.; Coutinho, F.L.; Margarido, L.C.; Siqueira, S.A.C.; dos Santos, M.A.C.G.; de Menezes Montenegro, F.L.; Machado, M.C.C.; Toledo, S.P.A. The Impact of Clinical And Genetic Screenings On The Management Of The Multiple Endocrine Neoplasia Type 1. Clinics 2007, 62, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramundo, V.; Milone, F.; Severino, R.; Savastano, S.; Di Somma, C.; Vuolo, L.; De Luca, L.; Lombardi, G.; Colao, A.; Faggiano, A. Clinical and prognostic implications of the genetic diagnosis of hereditary NET syndromes in asymptomatic patients. Horm. Metab. Res. 2011, 43, 794–800. [Google Scholar] [CrossRef]
- de Laat, J.M.; van Leeuwaarde, R.S.; Valk, G.D. The Importance of an Early and Accurate MEN1 Diagnosis. Front. Endocrinol. 2018, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Goudet, P.; Murat, A.; Binquet, C.; Cardot-Bauters, C.; Costa, A.; Ruszniewski, P.; Niccoli, P.; Ménégaux, F.; Chabrier, G.; Borson-Chazot, F.; et al. Risk factors and causes of death in MEN1 disease. A GTE (Groupe d’Etude des Tumeurs Endocrines) cohort study among 758 patients. World J. Surg. 2010, 34, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Giusti, F.; Tonelli, F.; Brandi, M.L. Management impact: Effects on quality of life and prognosis in MEN1. Endocr. -Relat. Cancer 2017, 24, T227–T242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, G.; Lidén, A.; Hansson, M.G.; Oberg, K.; Sjöden, P.O.; Nordin, K. Quality of life in patients with multiple endocrine neoplasia type 1 (MEN 1). Fam. Cancer 2003, 2, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Strømsvik, N.; Nordin, K.; Berglund, G.; Engebretsen, L.F.; Hansson, M.G.; Gjengedal, E. Living with Multiple Endocrine Neoplasia Type 1: Decent Care-Insufficient Medical and Genetic Information A Qualitative Study of MEN 1 Patients in a Swedish Hospital. J. Genet. Couns. 2007, 16, 105–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Leeuwaarde, R.S.; van Nesselrooij, B.P.M.; Hermus, A.R.; Dekkers, O.M.; de Herder, W.W.; van der Horst-Schrivers, A.N.; Drent, M.L.; Bisschop, P.H.; Havekes, B.; Vriens, M.R.; et al. Impact of Delay in Diagnosis in Outcomes in MEN1: Results From the Dutch MEN1 Study Group. J. Clin. Endocrinol. Metab. 2016, 101, 1159–1165. [Google Scholar] [CrossRef]
- Darling, T.N.; Skarulis, M.C.; Steinberg, S.M.; Marx, S.J.; Spiegel, A.M.; Turner, M. Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1. Arch. Dermatol. 1997, 133, 853–857. [Google Scholar] [CrossRef]
- Pack, S.; Turner, M.L.; Zhuang, Z.; Vortmeyer, A.O.; Böni, R.; Skarulis, M.; Marx, S.J.; Darling, T.N. Cutaneous tumors in patients with multiple endocrine neoplasia type 1 show allelic deletion of the MEN1 gene. J. Investig. Dermatol. 1998, 110, 438–440. [Google Scholar] [CrossRef] [Green Version]
- Hoang-Xuan, T.; Steger, J.W. Adult-onset angiofibroma and multiple endocrine neoplasia type I. J. Am. Acad. Dermatol. 1999, 41, 890–892. [Google Scholar] [CrossRef]
- Nord, B.; Platz, A.; Smoczynski, K.; Kytölä, S.; Robertson, G.; Calender, A.; Murat, A.; Weintraub, D.; Burgess, J.; Edwards, M.; et al. Malignant melanoma in patients with multiple endocrine neoplasia type 1 and involvement of the MEN1 gene in sporadic melanoma. Int. J. Cancer 2000, 87, 463–467. [Google Scholar] [CrossRef]
- Sakurai, A.; Matsumoto, K.; Ikeo, Y.; Nishio, S.I.; Kakizawa, T.; Arakura, F.; Ishihara, Y.; Saida, T.; Hashizume, K. Frequency of facial angiofibromas in Japanese patients with multiple endocrine neoplasia type 1. Endocr. J. 2000, 47, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Asgharian, B.; Turner, M.L.; Gibril, F.; Entsuah, L.K.; Serrano, J.; Jensen, R.T. Cutaneous tumors in patients with multiple endocrine neoplasm type 1 (MEN1) and gastrinomas: Prospective study of frequency and development of criteria with high sensitivity and specificity for MEN1. J. Clin. Endocrinol. Metab. 2004, 89, 5328–5336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuzzo, V.; Tauchmanová, L.; Falchetti, A.; Faggiano, A.; Marini, F.; Piantadosi, S.; Brandi, M.L.; Leopaldi, L.; Colao, A. MEN1 family with a novel frameshift mutation. J. Endocrinol. Investig. 2006, 29, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Darling, T.N. Rapidly growing collagenomas in multiple endocrine neoplasia type I. J. Am. Acad. Dermatol. 2007, 56, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, A.; Hashizume, K.; Fukushima, Y. Facial angiofibroma as an initial manifestation in multiple endocrine neoplasia type 1. Intern. Med. 2008, 47, 1067–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, A.; Iglesias, M.J.; Fernández, B.; Fonseca, E.; Cordido, F. Cutaneous lesions associated to multiple endocrine neoplasia syndrome type 1. J. Eur. Acad. Dermatol. Venereol. JEADV 2008, 22, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Witchel, S.F.; Ranganathan, S.; Kilpatrick, M.; Carty, S.E. Reverse referral: From pathology to endocrinology. Endocr. Pathol. 2009, 20, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Zeller, S.; Marx, S.J.; Lungu, A.O.; Cowen, E.W.; Turner, M.L. Multiple angiofibromas and collagenomas in a 45-year-old man with recurrent nephrolithiasis, fatigue, and vision loss. J. Am. Acad. Dermatol. 2009, 61, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Rusconi, D.; Valtorta, E.; Rodeschini, O.; Giardino, D.; Lorenzo, I.; Predieri, B.; Losa, M.; Larizza, L.; Finelli, P. Combined characterization of a pituitary adenoma and a subcutaneous lipoma in a MEN1 patient with a whole gene deletion. Cancer Genet. 2011, 204, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Furtado, S.; Ghosal, N.; Furtado, S.V.; Gupta, K.; Hegde, A.S. Neurocutaneous spectrum of multiple endocrine neoplasia-1. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 93–96. [Google Scholar] [CrossRef]
- Simi, S.M.; Narayanan, B.; Nandakumar, G. Not just skin deep: A case report of multiple endocrine neoplasia type 1. Indian J. Dermatol. 2012, 57, 304–307. [Google Scholar] [CrossRef]
- Roman, J.W.; Logemann, N.F.; Adams, E. Incidental angiofibromas prompt a diagnosis of multiple endocrine neoplasia type-1 (MEN-1). Dermatol. Online J. 2014, 20, 5. [Google Scholar] [CrossRef]
- Brown, G.T.; Cowen, E.W.; Lee, C.-C.R. Malignant melanoma masquerading as an angiofibroma in a patient with MEN-1. JAMA Dermatol. 2015, 151, 105–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.D.A.; Yu, S.; North, J.P. Multiple cutaneous collagenomas in the setting of multiple endocrine neoplasia type 1. J. Cutan. Pathol. 2015, 42, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Shimura, T.; Tsukida, S.; Ando, J.; Kofunato, Y.; Momma, T.; Yashima, R.; Koyama, Y.; Suzuki, S.; Takenoshita, S. Concomitant existence of pheochromocytoma in a patient with multiple endocrine neoplasia type 1. Surg. Case Rep. 2016, 2, 84. [Google Scholar] [CrossRef] [Green Version]
- Kaiwar, C.; Macklin, S.K.; Gass, J.M.; Jackson, J.; Klee, E.W.; Hines, S.L.; Stauffer, J.A.; Atwal, P.S. Late onset asymptomatic pancreatic neuroendocrine tumor—A case report on the phenotypic expansion for MEN1. Hered. Cancer Clin. Pract. 2017, 15, 10. [Google Scholar] [CrossRef]
- Yeh, J.E.; Tahan, S.R.; Burgin, S. Folliculin mutation-negative trichodiscomas in a patient with multiple endocine neoplasia type I syndrome. Dermatol. Online J. 2017, 23, 10. [Google Scholar] [CrossRef]
- Marini, F.; Giusti, F.; Brandi, M.L. Multiple endocrine neoplasia type 1: Extensive analysis of a large database of Florentine patients. Orphanet J. Rare Dis. 2018, 13, 205. [Google Scholar] [CrossRef]
- Radman, M.; Milicevic, T. A novel mutation of the MEN1 gene in a patient with multiple endocrine neoplasia type 1 and recurrent fibromyxoid sarcoma—A case report. BMC Med. Genet. 2020, 21, 190. [Google Scholar] [CrossRef]
- Fushimi, Y.; Kamei, S.; Tatsumi, F.; Sanada, J.; Shimoda, M.; Kimura, T.; Obata, A.; Nakanishi, S.; Kaku, K.; Mune, T.; et al. Multiple endocrine neoplasia type 1 with a frameshift mutation in its gene accompanied by a giant cervical lipoma and multiple fatty deposits in the pancreas: Case report. BMC Endocr. Disord. 2021, 21, 164. [Google Scholar] [CrossRef] [PubMed]
- Ranaweerage, R.; Perera, S.; Sathischandra, H. Occult insulinoma with treatment refractory, severe hypoglycaemia in multiple endocrine neoplasia type 1 syndrome; difficulties faced during diagnosis, localization and management; a case report. BMC Endocr. Disord. 2022, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Lause, M.; Kamboj, A.; Fernandez Faith, E. Dermatologic manifestations of endocrine disorders. Transl. Pediatr. 2017, 6, 300–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasimi, M.; Kamyab, K.; Moradi, A.; Dasdar, S.; Kianfar, N. Clinical and histopathological evaluation of cutaneous angiofibromas. J. Cutan. Pathol. 2021, 48, 1262–1265. [Google Scholar] [CrossRef] [PubMed]
- Macri, A.; Kwan, E.; Tanner, L.S. Cutaneous Angiofibroma; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Schussheim, D.H.; Skarulis, M.C.; Agarwal, S.K.; Simonds, W.F.; Burns, A.L.; Spiegel, A.M.; Marx, S.J. Multiple endocrine neoplasia type 1: New clinical and basic findings. Trends Endocrinol. Metab. TEM 2001, 12, 173–178. [Google Scholar] [CrossRef]
- Amorim, B.D.B.; Azulay, D.; Ramos-E-Silva, M. Tuberous Sclerosis. Skinmed 2021, 19, 179–185. [Google Scholar]
- Leventhal, J.S.; Braverman, I.M. Skin manifestations of endocrine and neuroendocrine tumors. Semin. Oncol. 2016, 43, 335–340. [Google Scholar] [CrossRef]
- Elifritz, J.; Krishnan, R.S.; Donnelly, H. Numerous fibrous papules of the face unassociated with any genodermatosis. Dermatol. Online J. 2007, 13, 12. [Google Scholar] [CrossRef]
- Hunter, A.G.W.; Nezarati, M.M.; Velsher, L. Absence of signs of systemic involvement in four patients with bilateral multiple facial angiofibromas. Am. J. Med. Genet. Part A 2010, 152, 657–664. [Google Scholar] [CrossRef]
- Shruti, S.; Siraj, F.; Khuller, G.; Saxena, A. Isolated collagenoma on the face: A rare occurrence. Acta Dermatovenerol. Alp. Pannonica Et Adriat. 2019, 28, 41–43. [Google Scholar]
- Winship, I.M.; Dudding, T.E. Lessons from the skin—Cutaneous features of familial cancer. Lancet. Oncol. 2008, 9, 462–472. [Google Scholar] [CrossRef]
- Saggini, A.; Brandi, M.L. Skin lesions in hereditary endocrine tumor syndromes. Endocr. Pract. 2011, 17 (Suppl. 3), 47–57. [Google Scholar] [CrossRef]
- Sturiale, A.; Giudici, F.; Alemanno, G.; Cavalli, T.; Addasi, R.; Santomaggio, C.; Meoni, G.; Brandi, M.L.; Tonelli, F. Massive intrathoracic lipoma in men1 syndrome. Int. J. Surg. Case Rep. 2014, 6, 247–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Potti, T.A.; Wuertzer, S.D.; Lenchik, L.; Pacholke, D.A. Spectrum of Fat-containing Soft-Tissue Masses at MR Imaging: The Common, the Uncommon, the Characteristic, and the Sometimes Confusing. Radiographics 2016, 36, 753–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, A.; Ngeow, J. The Skin in Cowden Syndrome. Front. Med. 2021, 8, 658842. [Google Scholar] [CrossRef]
- Schulte, K.M.; Simon, D.; Dotzenrath, C.; Scheuring, S.; Köhrer, K.; Röher, H.D. Sequence analysis of the MEN I gene in two patients with multiple cutaneous lipomas and endocrine tumors. Horm. Metab. Res. 2000, 32, 76–79. [Google Scholar] [CrossRef]
- Dong, Q.; Debelenko, L.V.; Chandrasekharappa, S.C.; Emmert-Buck, M.R.; Zhuang, Z.; Guru, S.C.; Manickam, P.; Skarulis, M.; Lubensky, I.A.; Liotta, L.A.; et al. Loss of heterozygosity at 11q13: Analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 1997, 82, 1416–1420. [Google Scholar] [CrossRef]
- Böni, R.; Vortmeyer, A.O.; Pack, S.; Park, W.S.; Burg, G.; Hofbauer, G.; Darling, T.; Liotta, L.; Zhuang, Z. Somatic mutations of the MEN1 tumor suppressor gene detected in sporadic angiofibromas. J. Investig. Dermatol. 1998, 111, 539–540. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, B.M.; Domingues, R.; Bacelar, M.C.; Cardoso, H.; Barros, L.; Gomes, L.; Ruas, M.M.A.; Agapito, A.; Garrão, A.; Pannett, A.A.J.; et al. Mutational analysis of Portuguese families with multiple endocrine neoplasia type 1 reveals large germline deletions. Clin. Endocrinol. 2002, 56, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Morelli, A.; Falchetti, A.; Weinstein, L.; Fabiani, S.; Tomassetti, P.; Enzi, G.; Carraro, R.; Bordi, C.; Tonelli, F.; Brandi, M.L. RFLP analysis of human chromosome 11 region q13 in multiple symmetric lipomatosis and multiple endocrine neoplasia type 1-associated lipomas. Biochem. Biophys. Res. Commun. 1995, 207, 363–368. [Google Scholar] [CrossRef]
- Fang, M.; Xia, F.; Mahalingam, M.; Virbasius, C.-M.; Wajapeyee, N.; Green, M.R. MEN1 is a melanoma tumor suppressor that preserves genomic integrity by stimulating transcription of genes that promote homologous recombination-directed DNA repair. Mol. Cell. Biol. 2013, 33, 2635–2647. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.-B.; Feng, Z.-J.; Xu, B.; Chen, Y.; Zheng, H.-H.; Yin, P.; Hua, X.; Jin, G.-H. Menin represses malignant phenotypes of melanoma through regulating multiple pathways. J. Cell. Mol. Med. 2011, 15, 2353–2363. [Google Scholar] [CrossRef] [Green Version]
- Lazova, R.; Pornputtapong, N.; Halaban, R.; Bosenberg, M.; Bai, Y.; Chai, H.; Krauthammer, M. Spitz nevi and Spitzoid melanomas: Exome sequencing and comparison with conventional melanocytic nevi and melanomas. Mod. Pathol. 2017, 30, 640–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böni, R.; Vortmeyer, A.O.; Huang, S.; Burg, G.; Hofbauer, G.; Zhuang, Z. Mutation analysis of the MEN1 tumour suppressor gene in malignant melanoma. Melanoma Res. 1999, 9, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Heymann, W.R. Cutaneous manifestations of hereditary syndromes. J. Am. Acad. Dermatol. 2006, 54, 505–506. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.S.; Linehan, W.M. FLCN: The causative gene for Birt-Hogg-Dubé syndrome. Gene 2018, 640, 28–42. [Google Scholar] [CrossRef]
- Alkatan, H.M.; Al-Rajhi, A.A. Corneal xanthogranuloma in association with multiple endocrine neoplasia 1: A clinicopathologic case report and review of the literature. Saudi J. Ophthalmol. 2016, 30, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Sparling, J.D.; Hong, C.-H.; Brahim, J.S.; Moss, J.; Darling, T.N. Oral findings in 58 adults with tuberous sclerosis complex. J. Am. Acad. Dermatol. 2007, 56, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Nadershahi, N.A.; Wescott, W.B.; Egbert, B. Birt-Hogg-Dubé syndrome: A review and presentation of the first case with oral lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1997, 83, 496–500. [Google Scholar] [CrossRef]
- Darjani, A.; Rafiei, R.; Shafaei, S.; Rafiei, E.; Eftekhari, H.; Alizade, N.; Rafiee, B.; Najirad, S. Evaluation of Lipid Profile in Patients with Cherry Angioma: A Case-Control Study in Guilan, Iran. Dermatol. Res. Pract. 2018, 2018, 4639248. [Google Scholar] [CrossRef] [Green Version]
- Betz-Stablein, B.; Koh, U.; Edwards, H.A.; McInerney-Leo, A.; Janda, M.; Soyer, H.P. Anatomic Distribution of Cherry Angiomas in the General Population. Dermatology 2022, 238, 18–26. [Google Scholar] [CrossRef]
- Fernandez-Flores, A.; Colmenero, I. Campbell de Morgan Spots (Cherry Angiomas) Show Endothelial Proliferation. Am. J. Dermatopathol. 2018, 40, 894–898. [Google Scholar] [CrossRef]
- Buslach, N.; Foulad, D.P.; Saedi, N.; Mesinkovska, N.A. Treatment Modalities for Cherry Angiomas: A Systematic Review. Dermatol. Surg. 2020, 46, 1691–1697. [Google Scholar] [CrossRef] [PubMed]
- Nazer, R.I.; Bashihab, R.H.; Al-Madani, W.H.; Omair, A.A.; AlJasser, M.I. Cherry angioma: A case–control study. J. Fam. Community Med. 2020, 27, 109–113. [Google Scholar]
- Akoglu, G.; Metin, A.; Emre, S.; Ersoy, R.; Cakir, B. Cutaneous findings in patients with acromegaly. Acta Dermatovenerol. Croat. ADC 2013, 21, 224–229. [Google Scholar] [PubMed]
- Aldahan, A.S.; Mlacker, S.; Shah, V.V.; Chen, L.L.; Nouri, K.; Grichnik, J.M. Utilization of Optical Coherence Tomography in the Evaluation of Cherry Hemangiomas. J. Drugs Dermatol. JDD 2016, 15, 713–714. [Google Scholar]
- Bordera, G.B.; Parada, J.G.; Giménez, M.M.; de Los Llanos Pérez, M.; Morell, J.O.; Mármol, G.V. Use of high-power diode laser at 1060 nm for the treatment of vascular lesions. J. Vasc. Surg. Cases Innov. Tech. 2019, 5, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Coopmans, E.C.; Korbonits, M. Molecular genetic testing in the management of pituitary disease. Clin. Endocrinol. 2022, 97, 424–435. [Google Scholar] [CrossRef]
- Bogusławska, A.; Korbonits, M. Genetics of Acromegaly and Gigantism. J. Clin. Med. 2021, 10, 1377. [Google Scholar] [CrossRef]
- Chang, M.; Yang, C.; Bao, X.; Wang, R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front. Endocrinol 2021, 11, 596554. [Google Scholar] [CrossRef]
- Vasilev, V.; Daly, A.F.; Zacharieva, S.; Beckers, A. Clinical and Molecular Update on Genetic Causes of Pituitary Adenomas. Horm. Metab. Res. 2020, 52, 553–561. [Google Scholar] [CrossRef]
- Pieterman, C.R.C.; Valk, G.D. Update on the clinical management of multiple endocrine neoplasia type 1. Clin. Endocrinol. 2022, 97, 409–423. [Google Scholar] [CrossRef]
- Effraimidis, G.; Knigge, U.; Rossing, M.; Oturai, P.; Rasmussen, Å.K.; Feldt-Rasmussen, U. Multiple endocrine neoplasia type 1 (MEN-1) and neuroendocrine neoplasms (NENs). Semin. Cancer Biol. 2022, 79, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Magaña, M.; Landeta-Sa, A.P.; López-Flores, Y. Cowden Disease: A Review. Am. J. Dermatopathol. 2022, 44, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Stacy, A.; Shinawi, M.; Coughlin, C.C. Tumor predisposition: What’s the skin got to do with it? Curr. Opin. Pediatr. 2022, 34, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Sandru, F.; Valea, A.; Albu, S.E.; Dumitrascu, M.C.; Dumitrache, C.; Stanescu, A.M.A.; Carsote, M. Functioning pituitary tumors: Hints from the skin. Rom. Med. J. 2020, 67, 5–9. [Google Scholar] [CrossRef]
- Ladd, R.; Davis, M.; Dyer, J.A. Genodermatoses with malignant potential. Clin. Dermatol. 2020, 38, 432–454. [Google Scholar] [CrossRef]
- Fernandez-Flores, A. Skin Biopsy in the Context of Systemic Disease. Actas Dermo-Sifiliográficas 2019, 110, 710–727. [Google Scholar] [CrossRef]
- Hill, C.R.; Theos, A. What’s New in Genetic Skin Diseases. Dermatol. Clin. 2019, 37, 229–239. [Google Scholar] [CrossRef]
- Karami Fath, M.; Azargoonjahromi, A.; Soofi, A.; Almasi, F.; Hosseinzadeh, S.; Khalili, S.; Sheikhi, K.; Ferdousmakan, S.; Owrangi, S.; Fahimi, M.; et al. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int. 2022, 22, 313. [Google Scholar] [CrossRef]
- Fadadu, R.P.; Wei, M.L. Ultraviolet A radiation exposure and melanoma: A review. Melanoma Res. 2022, 32, 405–410. [Google Scholar] [CrossRef]
- Bacorn, C.; Serrano, M.; Lin, L.K. Review of sociodemographic risk factors for presentation with advanced non-melanoma skin cancer. Orbit 2022, 1–6. [Google Scholar] [CrossRef]
- Chu, P.Y.; Chen, Y.F.; Li, C.Y.; Wang, T.H.; Chiu, Y.J.; Ma, H. Influencing factors associated with lymph node status in patients with cutaneous melanoma: An Asian population study. J. Chin. Med. Assoc. 2022. [Google Scholar] [CrossRef]
- Chiavarini, M.; Naldini, G.; Giacchetta, I.; Fabiani, R. Exogenous Hormone Factors in Relation to the Risk of Malignant Melanoma in Women: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3192. [Google Scholar] [CrossRef] [PubMed]
- Saud, A.; Sagineedu, S.R.; Ng, H.S.; Stanslas, J.; Lim, J.C.W. Melanoma metastasis: What role does melanin play? Oncol. Rep. 2022, 48, 217. [Google Scholar] [CrossRef] [PubMed]
- Bruno, W.; Dalmasso, B.; Barile, M.; Andreotti, V.; Elefanti, L.; Colombino, M.; Vanni, I.; Allavena, E.; Barbero, F.; Passoni, E.; et al. Predictors of germline status for hereditary melanoma: 5 years of multi-gene panel testing within the Italian Melanoma Intergroup. ESMO Open 2022, 7, 100525. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Qian, Y.; Mathes, S.; Terry, J.; Arnett, N.; Riddell, T.; Stevens, A.; Funk, K.; Bell, S.; Bokal, Z.; et al. Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo. Front. Oncol. 2022, 12, 936145. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Basu, R.; Mathes, S.C.; Arnett, N.A.; Duran-Ortiz, S.; Funk, K.R.; Brittain, A.L.; Kulkarni, P.; Terry, J.C.; Davis, E.; et al. Growth Hormone Upregulates Mediators of Melanoma Drug Efflux and Epithelial-to-Mesenchymal Transition In Vitro and In Vivo. Cancers 2020, 12, 3640. [Google Scholar] [CrossRef]
- Buckels, A.; Zhang, Y.; Jiang, J.; Athar, M.; Afaq, F.; Shevde-Samant, L.; Frank, S.J. Autocrine/paracrine actions of growth hormone in human melanoma cell lines. Biochem. Biophys. Rep. 2019, 21, 100716. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Appleby, P.N.; Tipper, S.J.; Travis, R.C.; Allen, N.E.; Kvaskoff, M.; Overvad, K.; Tjønneland, A.; Halkjaer, J.; Cervenka, I.; et al. Circulating insulin-like growth factor I in relation to melanoma risk in the European prospective investigation into cancer and nutrition. Int. J. Cancer 2019, 144, 957–966. [Google Scholar] [CrossRef]
- Basu, R.; Baumgaertel, N.; Wu, S.; Kopchick, J.J. Growth Hormone Receptor Knockdown Sensitizes, F. Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps. Horm Cancer 2017, 8, 143–156. [Google Scholar] [CrossRef]
- Dika, E.; Lambertini, M.; Lauriola, M.; Veronesi, G.; Ricci, C.; Tartari, F.; Tassone, D.; Campione, E.; Scarfì, F. Female melanoma and estrogen receptors expression: An immunohistochemical pilot study. Melanoma Res. 2022, 32, 231–240. [Google Scholar] [CrossRef]
- Valea, A.; Sandru, F.; Valea, A.; Albu, S.E.; Dumitrascu, M.C.; Terzea, D.; Stanescu, A.M.; Carsote, M. Skin involvement in neuroendocrine neoplasia. Rom. J. Med. Pract. 2020, 15, 33–36. [Google Scholar] [CrossRef]
- Alegría-Landa, V.; Jo-Velasco, M.; Robledo, M.; Requena, L. Dermal Hyperneury and Multiple Sclerotic Fibromas in Multiple Endocrine Neoplasia Type 2A Syndrome. JAMA Dermatol. 2017, 153, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, T.A.; Mimesh, S. Cutaneous hyperneury: A new entity or an atypical cutaneous manifestation of MEN 2B? Skinmed 2015, 13, 145–146. [Google Scholar] [PubMed]
- Brau-Javier, C.N.; Sánchez, J.E.; Sánchez, J.L. Acquired segmental neuromas. Puerto Rico Health Sci. J. 2013, 32. [Google Scholar]
- Qi, X.P.; Zhao, J.Q.; Cao, Z.L.; Fu, E.; Li, F.; Zhao, Y.H.; Wang, G.P.; Li, P.F.; Ma, W.L.; Guo, J.; et al. The Clinical Spectrum of Multiple Endocrine Neoplasia Type 2A with Cutaneous Lichen Amyloidosis in Ethnic Han Chinese. Cancer Investig. 2018, 36, 141–151. [Google Scholar] [CrossRef]
- Baykal, C.; Buyukbabani, N.; Boztepe, H.; Barahmani, N.; Yazganoglu, K.D. Multiple cutaneous neuromas and macular amyloidosis associated with medullary thyroid carcinoma. J. Am. Acad. Dermatol. 2007, 56 (Suppl. 2), S33–S37. [Google Scholar] [CrossRef]
- Razmi, T.M.; Chatterjee, D.; Parsad, D. Scapular rash and endocrine neoplasia. Clevel. Clin. J. Med. 2017, 84, 831–832. [Google Scholar] [CrossRef]
- Malhotra, R.; Boro, H.; Shamim, S.A.; Khadgawat, R. Multiple endocrine neoplasia type 2A with cutaneous lichen amyloidosis. BMJ Case Rep. 2020, 13, e238423. [Google Scholar] [CrossRef]
Year/ Reference Number/ First Author | Type of Study | Studied Population/ Number of Patients | Age | Findings | Observations | ||
---|---|---|---|---|---|---|---|
Endocrine | Skin | Others | |||||
1997 [48] Darling | Case series | 32 patients | hyperparathyroidism (100%), pancreatic NETs (50%), pituitary NETs (44%) | angiofibromas (88%), collagenomas (72%), lipomas (34%), multiple gingival papules (6%) | |||
1998 [49] Pack | Case series | 5 patients: 2 (40%) males and 3 (60%) females | 16 years | angiofibroma | |||
42 years | angiofibromas | ||||||
46 years | Collagenomas, melanocytic nevus | ||||||
56 years | angiofibromas | ||||||
69 years | angiofibroma, collagenoma and lipoma, acrochordon | ||||||
1999 [50] Hoang-Xuan | Case report | One male patient | 42 years | hypercalcemia, pituitary microadenoma | angiofibroma | ||
2000 [51] Nord | Case series | 7 patients: 5 (71%) males and 2 (29%) females | 34 years | hyperparathyroidism, pancreatic NET | melanoma | ||
30 years | hyperparathyroidism, pancreatic NET | melanoma | |||||
42 years | hyperparathyroidism | melanoma | thymic carcinoid | ||||
51 years | hyperparathyroidism | melanoma | bronchial carcinoid | ||||
68 years | hyperparathyroidism | melanoma | ependymoma | ||||
45 years | hyperparathyroidism, pancreatic NET | melanoma | |||||
54 years | hyperparathyroidism, pancreatic NET, pituitary NET | melanoma | |||||
2000 [52] Sakurai | Case series | 28 (27 MEN1 patients and one asymptomatic gene carrier): 14 males and 14 females | 43 ± 17 years | hyperparathyroidism (96%), pituitary NETs (43%), pancreatic NETs (50%) | angiofibromas in 12 out of 28 patients (42.85%) | ||
2004 [53] Asgharian | Prospective study | 48 patients with MEN1 and Zollinger–Ellison syndrome: 17 (35% male) and 31 (65%) female | 48.6 ± 1.8 years | gastropancreatic NETs (Zollinger-Ellison syndrome), hyperparathyroidism (98%), pituitary NETs (38%) | angiofibromas (64%), collagenomas (62%), lipomas (17%), atypical nevi, basal cell carcinoma, squamous cell carcinoma, melanoma, skin tags, gingival hyperplasia | ||
2006 [54] Nuzzo | Case report | One male patient | 51 years | hyperparathyroidism, pancreatic NET, pituitary NET (lactotroph), nonfunctioning adrenal adenoma | abdominal lipomas, facial and thoracic angiofibromas | Three of the five children of the patient were also affected. His son was also affected by multiple thoracic angiofibromamas. | |
2007 [55] Xia | Case report | One male patient | 32 years | primary hyperparathyroidism, pituitary NET, pancreatic NET | collagenomas, angiofibromas | The patient associated rapid growing collagenomas shortly after pancreatic surgery. The patient had family history of MEN1 (mother and grandmother). | |
2008 [56] Sakurai | Case report | One female patient | 38 years | no endocrine tumors at the time of diagnosis | facial angiofibroma | first manifestation | |
2008 [57] Vidal | Case series | 9 patients: 4 (45%) males and 5 (55%) females | 43.4 years (at the time of the study) | hyperparathyroidism (100%), pancreatic NETs (66%), pituitary NETs (44%) | angiofibromas (22.2%), lipomas (33.3%), melanomas (11.1%) | atypical thymic carcinoid (1 patient) | There were no collagenomas observed. All lipomas were multiple. |
2009 [58] Witchel | Case report | One female patient | 18 years | hyperparathyroidism | more than 70 collagenomas | ||
2009 [59] Zeller | Case report | One male patient | 45 years | primary hyperparathyroidism, pituitary NET (lactotroph), gastrinoma, bilateral adrenal hyperplasia | multiple angiofibromas, collagenomas, fibrolipomas, gingival papules, fifty acrochordons | ||
2009 [39] Baldauf | Case report | One male patient | 70 years | hyperparathyroidism, pancreatic NET | melanoma, papillomatosis confluens et reticularis, squamous cell carcinoma | No loss of heterozygosity; no other cutaneous manifestations | |
2011 [60] Rusconi | Case report | One female patient | 23 years | pituitary NET, parathyroid hyperplasia | subcutaneous lipoma (spindle cell lipoma) | The patient was negative at mutation screening of MEN1 exons 2 to 10 | |
2012 [61] Furtado | Case report | One male patient | 35 years | pituitary NET, primary hyperparathyroidism, pancreatic gastrinoma | abdominal collagenomas | ||
2012 [62] Simi | Case report | One male patient | 41 years | pituitary NET, parathyroid adenoma, pancreatic NET | collagenomas, seborrheic keratosis or angiofibroma | ||
2014 [63] Roman | Case report | One male patient | 28 years | No endocrine tumors at the time of diagnosis | facial angiofibromas, truncal collagenoma | Incidental skin lesions led to MEN1 diagnosis. | |
2015 [64] Brown | Case report | One male patient | In his 20s | hyperparathyroidism | angiofibromas, amelanotic melanoma | The patient had significant sun exposure. He developed an amelanotic melanoma with histologic features of angiofibroma in the proximity of the tumor. | |
2015 [65] Perez | Case report | One male patient | 45 years | pancreatic, parathyroid and pituitary NETs | multiple progressive collagenomas | ||
2016 [66] Okada | Case report | One male patient | 44 years | primary hyperparathyroidism, pancreatic NETs, non-functional adrenal cortical adenoma, pheochromocytoma, pituitary NET | fibroma | neurofibroma | |
2017 [67] Kaiwar | Case report | One female patient | 76 years | pancreatic NET | facial angiofibromas | lymphoma | The patient had a family history of MEN1 in children. She was asymptomatic and was diagnosed following genetic screening. The pancreatic tumor was found on MRI. The skin lesions appeared at an old age, 4–5 years prior to diagnosis. |
2017 [68] Yeh | Case report | One male patient | 47 years | parathyroid adenomas, hyperthyroidism, pheochromocytoma, gastrinoma | angiofibromas, multiple trichodiscomas | The patient was negative for FLCN gene mutation | |
2018 [69] Marini | Retrospective epidemiological, clinical and genetic analysis | 145 clinically affected and 20 asymptomatic mutation carriers: 59 (35.8%) males and 106 (64.2%) females | 31.8 ± 13.5 years | 139 (95.86%) primary hyperparathyroidism, 86 (59.31%) gastroenteropancreatic NETs, 75 (51.72%) pituitary NETs | 37 (25.52%) lipomas, 9 (6.21%) angiofibromas, 3 fibromas, 4 angiomas | ||
2020 [70] Radman | Case report | One male patient | 57 years | pancreatic gastrinoma, parathyroid hyperplasia | fibromas, lipomas, basocellular carcinoma | pulmonary NET grade 2, fibromyxoid sarcoma | |
2021 [71] Fushimi | Case report | One male patient | 28 years | pituitary NET, primary hyperparathyroidism, multiple abnormal fatty deposits in the pancreas | a giant cervical lipoma | The patient’s lipoma was considered very large in size. | |
2021 [31] Febrero | Retrospective analysis | 90 patients: 50 (56%) males and 40 (44%) females | hyperparathyroidism (95%), pancreatic NETs (53%), pituitary NETs (40%), adrenal tumors (33%), nodular thyroid disease (10%), thyroid papillary carcinoma (1 patient), ovarian mucinous cystadenoma (1 patient) | lipomas (22%), cutaneous T-cell lymphoma of the eyelid | thymic tumors (2 patients), breast cancer (2 patients) | No collagenomas or angiofibromas. | |
2022 [72] Ranaweerage | Case report | One female patient | 23 years | pituitary NET (lactotroph), primary hyperparathyroidism, insulinoma | multiple collagenomas on the chest and abdominal wall | PCOS |
Year/ Reference Number/ First Author | Number of Patients with MEN1 | Angiofibromas/ Angiomas/ Fibromas, No. Patients (%) | Collagenomas, No. Patients (%) | Lipomas, No. Patients (%) |
---|---|---|---|---|
2018 [69] Marini | 145 | 16 (11%) | 0 | 37 (25.52%) |
2021 [31] Febrero | 90 | 0 | 0 | 20 (22%) |
2004 [53] Asgharian | 48 | 31 (64%) | 30 (62%) | 8 (17%) |
1997 [48] Darling | 32 | 28 (88%) | 23 (72%) | 11 (34%) |
2008 [57] Vidal | 9 | 2 (22.2%) | 0 | 3 (33.3%) |
1998 [49] Pack | 5 | 4 (80%) | 2 (40%) | 1 (20%) |
Year/ Reference Number/ First Author | 1997 [48] Darling | 2000 [52] Sakurai | 2004 [53] Asgharian |
---|---|---|---|
Number of patients | 32 | 28 (27 patients with familial MEN1 and 1 asymptomatic gene carrier) | 48 |
Age of patients | 39 ± 14 years | 43 ± 17 years | 48.6 ± 1.8 years |
Frequency of angiofibromas | 88% (28/32) | 43% (12/28) | 64% (31/48) |
Frequency of patients with more than 10 angiofibromas | 41% (13/32) | 7% (2/28) | NA |
Number of patients with a single angiofibroma | 0 | 7 | NA |
Frequency of hyperparathyroidism | 100% | 96% | 98% |
Frequency of pituitary NETs | 44% | 43% | 38% |
Frequency of pancreas NETs | 50% | 50% | Only MEN1 patients with pancreatic endocrine tumors were selected |
Year/ Reference Number/ First Author | Genetic Mutations | ||
---|---|---|---|
Angiofibroma | Collagenoma | Lipoma | |
1998 [49] Pack | R460X, Y323X, Q260X, W436R | 713delG, W436R | W436R |
2000 [52] Sakurai | 359del4, K119del, Q166X, 621del9, 1422insA, 1473del5, 1606del29, 1657insC | NA | NA |
2006 [54] Nuzzo | Heterozygote frameshift 579delG in exon 3 | NA | Heterozygote frameshift 579delG in exon 3 |
2008 [56] Sakurai | c.511_519del | NA | NA |
2009 [58] Witchel | NA | C>A substitution in exon 4 of the MEN1 gene (predicted to generate a nonsense mutation) | NA |
2011 [60] Rusconi | NA | NA | heterozygous deletion on chromosome band 11q13.1 that contained all of the MEN1 gene and the 50 end of the adjacent MAP4K2 gene |
2015 [65] Perez | NA | c.265delC | NA |
2016 [66] Okada | g.249_252delGTCT | NA | NA |
2017 [67] Kaiwar | c.1A>G | NA | NA |
2020 [70] Radman | heterozygous mutation c.812_820del, p.Gly271_Leu273del | NA | heterozygous mutation c.812_820del, p.Gly271_Leu273del |
2021 [71] Fushimi | NA | NA | frameshift c.1613delA |
2002 [90] Cavaco | NA | NA | 1539delG, del (Exon 7–3′ untranslated region) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băicoianu-Nițescu, L.-C.; Gheorghe, A.-M.; Carsote, M.; Dumitrascu, M.C.; Sandru, F. Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome–Related Skin Tumors. Diagnostics 2022, 12, 2768. https://doi.org/10.3390/diagnostics12112768
Băicoianu-Nițescu L-C, Gheorghe A-M, Carsote M, Dumitrascu MC, Sandru F. Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome–Related Skin Tumors. Diagnostics. 2022; 12(11):2768. https://doi.org/10.3390/diagnostics12112768
Chicago/Turabian StyleBăicoianu-Nițescu, Livia-Cristiana, Ana-Maria Gheorghe, Mara Carsote, Mihai Cristian Dumitrascu, and Florica Sandru. 2022. "Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome–Related Skin Tumors" Diagnostics 12, no. 11: 2768. https://doi.org/10.3390/diagnostics12112768
APA StyleBăicoianu-Nițescu, L. -C., Gheorghe, A. -M., Carsote, M., Dumitrascu, M. C., & Sandru, F. (2022). Approach of Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome–Related Skin Tumors. Diagnostics, 12(11), 2768. https://doi.org/10.3390/diagnostics12112768