Diagnostic Accuracy of CareStart™ Malaria HRP2 and SD Bioline Pf/PAN for Malaria in Febrile Outpatients in Varying Malaria Transmission Settings in Cameroon
Abstract
:1. Introduction
2. Methods
2.1. Ethical Considerations
2.2. Study Sites
2.3. Study Design
2.4. Participants and Sampling
2.5. Test Methods
- CareStart™ malaria Pf (HRP2) Ag RDT (ACCESSBIO, Somerset, NJ, USA). This mRDT detects parasite histidine rich protein (HRP-2), specifically secreted by Plasmodium. falciparum, which is the major parasite species in most malaria infections in Cameroon.
- SD Bioline Pf/PAN mRDT (Standard DiagnosticsYongin-si, Geonggi-do, Republic of Korea). This is a combination test that detects two proteins viz. HRP-2 and Plasmodium lactate dehydrogenase (pLDH), which is shared by all known Plasmodium species in malaria infections.
2.6. Test Outcome Classification
2.7. Data Analysis
- Sensitivity = The proportion of suspected cases with true malaria infection who have a positive mRDT test result and calculated using the following formula: a/a + c.
- Specificity = The proportion of suspected cases without malaria who have a negative mRDT test result and calculated using the following formula: d/b + d
- Overall accuracy = The overall accuracy of each mRDT test was defined as the proportion of correct mRDT assessments as a function of all mRDT assessments in the study population and for each type of reference test. It was calculated using the following formula:
- 4.
- Predictive value of the positive test = This modality defined the probability of a malaria infection among study volunteers with a positive mRDT test result. It was calculated as follows: a/a + b
- 5.
- Predictive value of the negative test = This was defined as the probability of malaria free participants with a negative mRDT test result, calculated using the following formula: d/c + d.
- 6.
- The likelihood ratios (LR) of the positive and negative tests were calculated and post-test probabilities expressed as percentages estimated from Bayesian theorem. Thus,
3. Results
- Diagnostic accuracy of CareStart™ malaria HRP2 and SD Bioline Pf/PAN mRDTs in different study sites.
- Performance of two band mRDT (HRP-2 only) against microscopy as gold standard.
- We determined the performance characteristics of the two band mRDT rapid tests that detect HRP-2 antigen in patient samples. Table 4 shows the results obtained after analysis.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Malaria Report 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. Guidelines for the Treatment of Malaria, 2nd ed.; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Bell, D.; Fleurent, A.E.; Hegg, M.C.; Boomgard, J.D.; McConnico, C.C. Development of new malaria diagnostics: Matching performance and need. Malar. J. 2016, 15, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abba, K.; Deeks, J.J.; Olliaro, P.L.; Naing, C.-M.; Jackson, S.M.; Takwoingi, Y.; Donegan, S.; Garner, P. Rapid diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic countries. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef]
- Tahar, R.; Sayang, C.; Foumane, V.N.; Soula, G.; Moyou-Somo, R.; Delmont, J.; Basco, L.K. Field evaluation of rapid diagnostic tests for malaria in Yaounde, Cameroon. Acta Trop. 2013, 125, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Moyeh, M.N.; Ali, I.M.; Njimoh, D.L.; Nji, A.M.; Netongo, P.M.; Evehe, M.S.; Atogho-Tiedeu, B.; Ghogomu, S.M.; Mbacham, W.F. Comparison of the Accuracy of Four Malaria Diagnostic Methods in a High Transmission Setting in Coastal Cameroon. J. Parasitol. Res. 2019, 2019, 1417967. [Google Scholar] [CrossRef] [Green Version]
- Hugh, R.; Redepmta, M.; Chris, D.; Ilona, C.; Emmanuel, M.; Ombeni, M.; Saganda, K.; Shao, J.; Kitua, A.; Olomi, R.; et al. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: A prospective study. BMJ 2004, 329, 1212. [Google Scholar]
- Mangham, L.J.; Cundill, B.; Achonduh, O.A.; Ambebila, J.N.; Lele, A.K.; Metoh, T.N.; Ndive, S.N.; Ndong, I.C.; Nguela, R.L.; Nji, A.M.; et al. Malaria prevalence and treatment of febrile patients at health facilities and medicine retailers in Cameroon. Trop. Med. Int. Health 2012, 17, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Mfuh, K.O.; Achonduh-Atijegbe, O.A.; Bekindaka, O.N.; Esemu, L.F.; Mbakop, C.D.; Gandhi, K.; Leke, R.G.F.; Taylor, D.E.; Nerurkar, V.R. A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria. Malar. J. 2019, 18, 73. [Google Scholar] [CrossRef] [Green Version]
- Chandler, C.I.R.; Mangham, L.; Njei, A.N.; Achonduh, O.; Mbacham, W.F.; Wiseman, V. ′As a clinician, you are not managing lab results, you are managing the patient′: How the enactment of malaria at health facilities in Cameroon compares with new WHO guidelines for the use of malaria tests. Soc. Sci. Med. 2012, 74, 1528–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabaghe, A.N.; Visser, B.J.; Spijker, R.; Phiri, K.S.; Grobusch, M.P.; van Vugt, M. Health workers’ compliance to rapid diagnostic tests (RDTs) to guide malaria treatment: A systematic review and meta-analysis. Malar. J. 2016, 15, 163. [Google Scholar] [CrossRef] [Green Version]
- Boadu, N.Y.; Amuasi, J.; Ansong, D.; Einsiedel, E.; Menon, D.; Yanow, S.K. Challenges with implementing malaria rapid diagnostic tests at primary care facilities in a Ghanaian district: A qualitative study. Malar. J. 2016, 15, 126. [Google Scholar] [CrossRef] [Green Version]
- Moonasar, D.; Goga, A.E.; Frean, J.; Kruger, P.; Chandramohan, D. An exploratory study of factors that affect the performance and usage of rapid diagnostic tests for malaria in the Limpopo Province, South Africa. Malar. J. 2007, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Boyce, M.R.; O’Meara, W.P. Use of malaria RDTs in various health contexts across sub-Saharan Africa: A systematic review. BMC Public Health 2017, 17, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moody, A. Rapid diagnostic tests for malaria parasites. Clin. Microbiol. Rev. 2002, 15, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Morris, U.; Aydin-Schmidt, B.; Shakely, D.; Mårtensson, A.; Jörnhagen, L.; Ali, A.S.; I Msellem, M.; Petzold, M.; Gil, J.P.; E Ferreira, P.; et al. Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria -assessment of DNA extraction methods and field applicability. Malar. J. 2013, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.M.; Bigoga, J.D.; Forsah, D.A.; Cho-Ngwa, F.; Tchinda, V.; Moor, V.A.; Fogako, J.; Nyongalema, P.; Nkoa, T.; Same-Ekobo, A.; et al. Field evaluation of the 22 rapid diagnostic tests for community management of malaria with artemisinin combination therapy in Cameroon. Malar. J. 2016, 15, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, N.E.; Antunes Moniz, C.; Holzschuh, A.; Keitel, K.; Boillat-Blanco, N.; Kagoro, F.; Samaka, J.; Mbarack, Z.; Ding, X.C.; González, I.J.; et al. Diagnostic Performance of Conventional and Ultrasensitive Rapid Diagnostic Tests for Malaria in Febrile Outpatients in Tanzania. J. Infect. Dis. 2019, 219, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Kashosi, T.M.; Mutuga, J.M.; Byadunia, D.S.; Mutendela, J.K.; Mulenda, B.; Mubagwa, K. Performance of SD Bioline Malaria Ag Pf/PANrapid test in the diagnosis of malaria in South-Kivu, DR Congo. Pan Afr. Med. J. 2017, 27, 216. [Google Scholar] [CrossRef]
- Osei-Yeboah, J.; Kwame Norgbe, G.; Yao Lokpo, S.; Khadijah Kinansua, M.; Nettey, L.; Allotey, E.A. Comparative Performance Evaluation of Routine Malaria Diagnosis at Ho Municipal Hospital. J. Parasitol. Res. 2016, 2016, 5837890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanja, E.W.; Kuya, N.; Moranga, C.; Hickman, M.; Johnson, J.D.; Moseti, C.; Anova, L.; Ogutu, B.; Ohrt, C. Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya. Malar. J. 2016, 15, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbabazi, P.; Hopkins, H.; Osilo, E.; Kalungu, M.; Byakika-Kibwika, P.; Kamya, M.R. Accuracy of Two Malaria Rapid Diagnostic Tests (RDTS) for Initial Diagnosis and Treatment Monitoring in a High Transmission Setting in Uganda. Am. Soc. Trop. Med. Hyg. 2015, 92, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Abeku, T.A.; Kristan, M.; Jones, C.; Beard, J.; Mueller, D.H.; Okia, M.; Rapuoda, B.; Greenwood, B.; Cox, J. Determinants of the accuracy of rapid diagnostic tests in malaria case management: Evidence from low and moderate transmission settings in the East African highlands. Malar. J. 2008, 7, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albertini, A.; Lee, E.; Coulibaly, S.O.; Sleshi, M.; Faye, B.; Mationg, M.L.; Ouedraogo, K.; Tsadik, A.G.; Feleke, S.M.; Diallo, I.; et al. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines. Malar. J. 2012, 11, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, G.; Faggioni, G.; Paganotti, G.M.; Djeunang Dongho, G.B.; Pomponi, A.; De Santis, R.; Tebano, G.; Mbida, M.; Sobze, M.S.; Vullo, V.; et al. Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, West Cameroon. Malar. J. 2017, 16, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djeunang Dongho, G.B.; Gunalan, K.; L’Episcopia, M.; Paganotti, G.M.; Menegon, M.; Sangong, R.E.; Georges, B.M.; Fondop, J.; Severini, C.; Sobze, M.S.; et al. Plasmodium vivax Infections Detected in a Large Number of Febrile Duffy-Negative Africans in Dschang, Cameroon. Am. J. Trop. Med. Hyg. 2021, 104, 987–992. [Google Scholar]
- Bisoffi, Z.; Sirima, S.B.; Menten, J.; Pattaro, C.; Angheben, A.; Gobbi, F.; Tinto, H.; Lodesani, C.; Neya, B.; Gobbo, M.; et al. Accuracy of a rapid diagnostic test on the diagnosis of malaria infection and of malaria-attributable fever during low and high transmission season in Burkina Faso. Malar. J. 2010, 9, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plucinski, M.M.; Herman, C.; Jones, S.; Dimbu, R.; Fortes, F.; Ljolje, D.; Lucchi, N.; Murphy, S.C.; Smith, N.T.; Cruz, K.R.; et al. Screening for Pfhrp2/3-Deleted Plasmodium falciparum, Non-falciparum, and Low-Density Malaria Infections by a Multiplex Antigen Assay. J. Infect. Dis. 2019, 219, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Watson, O.J.; Sumner, K.M.; Janko, M.; Goel, V.; Winskill, P.; Slater, H.C.; Ghani, A.; Meshnick, S.R.; Parr, J.B. False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Global Health 2019, 4, e001582. [Google Scholar] [CrossRef] [Green Version]
- The, R.N.; Sumbele, I.U.N.; Asoba Nkeudem, G.; Meduke, D.N.; Ojong, S.T.; Kimbi, H.K. Concurrence of CareStart™ Malaria HRP2 RDT with microscopy in population screening for Plasmodium falciparum infection in the Mount Cameroon area: Predictors for RDT positivity. Trop. Med. Health 2019, 47, 17. [Google Scholar]
Gene and Type de PCR | Primers | Sequence (5′→3′) |
---|---|---|
Primary PCR primers | S2 | GAG GGA TGT TGC TGC TCC ACA G |
S3 | GAA GGT AAT TAA AAC ATT GTC | |
Nested PCR Primers | S1 | GAG TAT AAG GAG AAG TAT G |
S4 | CTA GAA CCA TGC ATA TGT CC |
Reference Test Outcome | ||||
---|---|---|---|---|
Positive | Negative | Total | ||
Index test outcome | Positive | a | b | a + b |
Negative | c | d | c + d |
Study Sites Parameters | StVC Dschang (217) | DH Dschang (243) | CS CBCHS-IHC Ngounso (286) | SU-Yaoundé (380) | |
---|---|---|---|---|---|
Mean age ± SD | 31.59 ± 19.6 | 31.15 ± 17.2 | 26.9 ± 18.4 | 19.4 ± 17.3 | |
% (n) | |||||
Sex | F | 76.5 (166) | 80.9 (196) | 65.4 (187) | 56.9 (214) |
M | 23.5 (51) | 19.1 (46) | 34.6 (99) | 43.1 (162) | |
Age groups | (0–20) | 23.7 (50) | 23.7 (57) | 39.5 (113) | 67.4 (256) |
(20–40) | 50.7 (107) | 55.6 (134) | 44.4 (127) | 18.4 (70) | |
(40–60) | 15.6 (33) | 14.9 (36) | 9.8 (28) | 11.3 (43) | |
(60–80) | 8.1 (17) | 5.8 (14) | 5.2 (15) | 2.9 (11) | |
>80 | 1.9 (4) | / | 1.0 (3) | / |
Study Sites Parameters | Reference Test | StVC Dschang (217) | DH Dschang (243) | CS CBCHS-IHC Ngounso (286) | SU-Yaoundé (380) |
---|---|---|---|---|---|
Sensitivity | Microscopy | 0.65 (51–77) | 0.17 (0.10, 0.26) | 0.92 (0.86, 0.96) | 0.94 (0.91, 0.97) |
PCR | 0.56 (0.43, 0.68) | 0.14 (0.08, 0.23) | 0.86 (0.80, 0.91) | 0.91 (0.87, 0.94) | |
Specificity | Microscopy | 0.91 (0.86, 0.95) | 0.77 (0.64, 0.87) | 0.94 (0.89, 0.97) | 0.91 (0.85, 0.96) |
PCR | 0.92 (0.86, 0.96) | 0.71 (0.57, 0.83) | 0.96 (0.92, 0.99) | 0.97 (0.92, 0.99) | |
PPV | Microscopy | 0.73 (0.58, 0.84) | 0.52 (0.33, 0.71) | 0.92 (0.86, 0.96) | 0.96 (0.92, 0.98) |
PCR | 0.76 (0.63, 0.87) | 0.48 (0.29, 0.67) | 0.96 (0.91, 0.99) | 0.99 (0.97, 1.00) | |
NPV | Microscopy | 0.88 (0.82, 0.92) | 0.38 (0.29, 0.47) | 0.94 (0.89, 0.97) | 0.89 (0.83, 0.94) |
PCR | 0.81 (0.74, 0.87) | 0.31 (0.23, 0.40) | 0.87 (0.81, 0.92) | 0.81 (0.73, 0.87) | |
LR+ | Microscopy | 7.37 (4.32, 12.59) | 0.71 (0.37, 1.37) | 14.40 (7.89, 26.28) | 10.99 (6.24, 19.35) |
PCR | 6.78 (3.79, 12.12) | 0.50 (0.26, 0.94) | 24.31 (10.25, 57.64) | 32.98 (10.80, 100.74) | |
LR- | Microscopy | 0.38 (0.27, 0.55) | 1.09 (0.92, 1.29) | 0.08 (0.05, 0.15) | 0.06 (0.04, 0.10) |
PCR | 0.48 (0.37, 0.63) | 1.20 (1.00, 1.46) | 0.14 (0.10, 0.22) | 0.09 (0.07, 0.14) | |
k ± SE | Microscopy | 0.58 ± 0.06 (0.44, 0.71) | −0.057 ± 0.06 (0.16, 0.05) | 0.86 ± 0.05 (0.74, 0.97) | 0.85 ± 0.05 (0.75, 0.95) |
PCR | 0.51 ± 0.07 (0.38, 0.64) | −0.11 ± 0.05 (−0.21, −0.01) | 0.82 ± 0.6 (0.71, 0.94) | 0.83 ± 0.05 (0.76, 0.93) | |
Diagnostic accuracy | Microscopy | 0.84 | 0.41 | 0.93 | 0.94 |
PCR | 0.80 | 0.34 | 0.91 | 0.92 |
Study Sites Parameters | StVC Dschang (217) | DH Dschang (243) | ||
---|---|---|---|---|
Reference Test | ||||
Microscopy | PCR | Microscopy | PCR | |
Sensitivity | 0.51 (0.37, 0.64) | 0.46 (0.34, 0.58) | 0.23 (0.17, 0.31) | 0.25 (0.18, 0.32) |
Specificity | 0.89 (0.83, 0.94) | 0.90 (0.84, 0.95) | 0.75 (0.65, 0.83) | 0.77 (0.67, 0.86) |
PPV | 0.63 (0.48, 0.77) | 0.70 (0.54, 0.82) | 0.59 (0.45, 0.71) | 0.67 (0.54, 0.79) |
NPV | 0.84 (0.77, 0.89) | 0.78 (0.71, 0.84) | 0.39 (0.32, 0.46) | 0.35 (0.28, 0.42) |
LR+ | 4.76 (2.84, 7.98) | 4.77 (2.72, 8.34) | 0.92 (0.58, 1.44) | 1.07 (0.66, 1.73) |
LR- | 0.55 (0.42, 0.72) | 0.60 (0.48, 0.75) | 1.03 (0.89, 1.19) | 0.98 (0.85, 1.13) |
k ± SE | 0.43 ± 0.07 (0.29, 0.56) | 0.40 ± 0.6 (0.26, 0.52) | −0.02 ± 0.05 (−0.11, 0.07) | 0.01 ± 0.4 (−0.07, 0.1) |
Diagnostic Accuracy | 0.79 | 0.76 | 0.43 | 0.42 |
Study Sites Parameters | StVC Dschang (217) | CS CBCHS-IHC Ngounso (286) | SU-Yaoundé (380) |
---|---|---|---|
Sensitivity | 0.80 (0.69, 0.89) | 0.88 (0.81, 0.92) | 0.92 (0.88, 0.95) |
Specificity | 0.99 (0.96, 1.00) | 0.98 (0.94, 1.00) | 0.98 (0.94, 1.00) |
PPV | 0.98 (0.91, 1.00) | 0.98 (0.93, 1.00) | 0.99 (0.97, 1.00) |
NPV | 0.91 (0.86, 0.95) | 0.88 (0.82, 0.93) | 0.84 (0.76, 0.90) |
LR+ | 116.00 (16.39, 820.81) | 41.17 (13.42, 126.31) | 50.28 (12.73, 198.56) |
LR- | 0.20 (0.13, 0.32) | 0.13 (0.08, 0.20) | 0.08 (0.05, 0.12) |
k ± SE | 0.83 ± 0.6 (0.70, 0.96) | 0.85 ± 0.59 (0.74, 0.97) | 0.86 ± 0.05 (0.76, 0.96) |
Site | StVC Dschang | ||||
---|---|---|---|---|---|
GS | Parameters | Index Tests | McNemar’s chi2 | p | |
Pf RDT | Pf + PAN RDT | ||||
Microscopy | Sensitivity | 0.65 (51–77) | 0.56 (0.43, 0.68) | 1.65 | 0.19 |
Specificity | 0.91 (0.86, 0.95) | 0.92 (0.86, 0.96) | 101.14 | ˂0.001 | |
PCR | Sensitivity | 0.56 (0.43, 0.68) | 0.51 (0.37, 0.64) | 0.01 | 0.8 |
Specificity | 0.92 (0.86, 0.96) | 0.89 (0.83, 0.94) | 97.30 | ˂0.001 | |
Site | DH Dschang | ||||
GS | Parameters | Index Tests | McNemar’s chi2 | p | |
Pf mRDT | Pf + PAN mRDT | ||||
Microscopy | Sensitivity | 0.17 (0.10, 0.26) | 0.23 (0.17, 0.31) | 15.42 | ˂0.001 |
Specificity | 0.77 (0.64, 0.87) | 0.75 (0.65, 0.83) | 97.30 | ˂0.001 | |
PCR | Sensitivity | 0.14 (0.08, 0.23) | 0.25 (0.18, 0.32) | 16.47 | ˂0.001 |
Specificity | 0.71 (0.57, 0.83) | 0.77 (0.67, 0.86) | 4.74 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.M.; Nji, A.M.; Bonkum, J.C.; Moyeh, M.N.; Carole, G.K.; Efon, A.; Dabou, S.; Tchuenkam, V.P.K.; Tah, C.; Kengne, J.-P.C.; et al. Diagnostic Accuracy of CareStart™ Malaria HRP2 and SD Bioline Pf/PAN for Malaria in Febrile Outpatients in Varying Malaria Transmission Settings in Cameroon. Diagnostics 2021, 11, 1556. https://doi.org/10.3390/diagnostics11091556
Ali IM, Nji AM, Bonkum JC, Moyeh MN, Carole GK, Efon A, Dabou S, Tchuenkam VPK, Tah C, Kengne J-PC, et al. Diagnostic Accuracy of CareStart™ Malaria HRP2 and SD Bioline Pf/PAN for Malaria in Febrile Outpatients in Varying Malaria Transmission Settings in Cameroon. Diagnostics. 2021; 11(9):1556. https://doi.org/10.3390/diagnostics11091556
Chicago/Turabian StyleAli, Innocent Mbulli, Akindeh Mbuh Nji, Jacob Chefor Bonkum, Marcel Nyuylam Moyeh, Guenang Kenfack Carole, Agni Efon, Solange Dabou, Valery Pacome Kom Tchuenkam, Calvino Tah, Jean-Paul Chedjou Kengne, and et al. 2021. "Diagnostic Accuracy of CareStart™ Malaria HRP2 and SD Bioline Pf/PAN for Malaria in Febrile Outpatients in Varying Malaria Transmission Settings in Cameroon" Diagnostics 11, no. 9: 1556. https://doi.org/10.3390/diagnostics11091556
APA StyleAli, I. M., Nji, A. M., Bonkum, J. C., Moyeh, M. N., Carole, G. K., Efon, A., Dabou, S., Tchuenkam, V. P. K., Tah, C., Kengne, J.-P. C., Achu, D. F., Bigoga, J. D., & Mbacham, W. F. (2021). Diagnostic Accuracy of CareStart™ Malaria HRP2 and SD Bioline Pf/PAN for Malaria in Febrile Outpatients in Varying Malaria Transmission Settings in Cameroon. Diagnostics, 11(9), 1556. https://doi.org/10.3390/diagnostics11091556