Performance and Application of Commercially Available Loop-Mediated Isothermal Amplification (LAMP) Kits in Malaria Endemic and Non-Endemic Settings
Abstract
:1. Introduction
2. Commercially Available LAMP Kits
2.1. The Illumigene® (Alethia®) Malaria LAMP
2.2. The LoopampTM Malaria Detection Kits
3. Performance and Application of Commercial LAMP Kits in Malaria Endemic Settings
3.1. Performance of LAMP in Asymptomatic and Low-Density Infections
3.2. Application of LAMP in Prevalence Surveys in Malaria Endemic Settings
4. Pros and Cons of Commercially Available LAMP Kits in Low Resource Settings
4.1. Lack of Specific Species Identification Is a Limitation with Currently Available Kits
4.2. The Loopamp Malaria Detection Kits Provide Several Advantages in Low Resource Settings
4.3. Improving Throughput Will Aid Large Prevalence Surveys
5. LAMP for Malaria Screening in Pregnancy
5.1. LAMP for Point-of-Care Malaria Screening in Antenatal Care Programmes
5.2. Malaria Detection by LAMP as a Surrogate for Adverse Birth Outcomes in Clinical Trials
6. Malaria LAMP in Returning Travelers in Non-Endemic Settings
7. Expert Opinion
Future Research Directions
- Improving Plasmodium species differentiation, especially for P. knowlesi.
- Improving the throughput of commercial kits, whilst providing objective read-out of results, and reducing the need for plastic consumables.
- Assessing the impact on transmission of applying LAMP in malaria elimination strategies.
- Assessing the impact on adverse birth outcomes of early detection of low-density malaria infections by LAMP during pregnancy.
- Detailed assessments of cost and cost-effectiveness of malaria LAMP in different transmission settings, especially for use in malaria elimination and antenatal care programs.
8. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, J.M.; Korevaar, D.A.; Leeflang, M.M.; Mens, P.F. Molecular malaria diagnostics: A systematic review and meta-analysis. Crit. Rev. Clin. Lab. Sci. 2016, 53, 87–105. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [Green Version]
- Oriero, E.C.; Jacobs, J.; Van Geertruyden, J.P.; Nwakanma, D.; D’Alessandro, U. Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. J. Antimicrob. Chemother. 2015, 70, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Han, E.T. Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. Expert Rev. Mol. Diagn. 2013, 13, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, R.; Al-Mekhlafi, A.M.; Karanis, P. Loop-mediated isothermal amplification (lamp) for malarial parasites of humans: Would it come to clinical reality as a point-of-care test? Acta Trop. 2012, 122, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Polley, S.D.; Mori, Y.; Watson, J.; Perkins, M.D.; González, I.J.; Notomi, T.; Chiodini, P.L.; Sutherland, C.J. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J. Clin. Microbiol. 2010, 48, 2866–2871. [Google Scholar] [CrossRef] [Green Version]
- Han, E.T.; Watanabe, R.; Sattabongkot, J.; Khuntirat, B.; Sirichaisinthop, J.; Iriko, H.; Jin, L.; Takeo, S.; Tsuboi, T. Detection of four plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J. Clin. Microbiol. 2007, 45, 2521–2528. [Google Scholar] [CrossRef] [Green Version]
- Lucchi, N.W.; Demas, A.; Narayanan, J.; Sumari, D.; Kabanywanyi, A.; Kachur, S.P.; Barnwell, J.W.; Udhayakumar, V. Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS ONE 2010, 5, e13733. [Google Scholar] [CrossRef] [Green Version]
- Lucchi, N.W.; Ndiaye, D.; Britton, S.; Udhayakumar, V. Expanding the malaria molecular diagnostic options: Opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Rev. Mol. Diagn. 2018, 18, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.L.; Wong, B.W.; Ma, E.H.; Chan, K.H.; Chow, L.M.; Abeyewickreme, W.; Tangpukdee, N.; Yuen, K.Y.; Guan, Y.; Looareesuwan, S.; et al. Sensitive and inexpensive molecular test for falciparum malaria: Detecting plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 2006, 52, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainabadi, K. Ultrasensitive diagnostics for low density asymptomatic plasmodium falciparum infections in low transmission settings. J. Clin. Microbiol. 2020. [Google Scholar] [CrossRef]
- Mohon, A.N.; Getie, S.; Jahan, N.; Alam, M.S.; Pillai, D.R. Ultrasensitive loop mediated isothermal amplification (us-lamp) to detect malaria for elimination. Malar. J. 2019, 18, 350. [Google Scholar] [CrossRef] [PubMed]
- Kemleu, S.; Guelig, D.; Eboumbou Moukoko, C.; Essangui, E.; Diesburg, S.; Mouliom, A.; Melingui, B.; Manga, J.; Donkeu, C.; Epote, A.; et al. A field-tailored reverse transcription loop-mediated isothermal assay for high sensitivity detection of plasmodium falciparum infections. PLoS ONE 2016, 11, e0165506. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Du, W.; Wu, K.; Xu, W.; Lin, M.; Tan, H.; Li, J. Development of loop-mediated isothermal amplification with plasmodium falciparum unique genes for molecular diagnosis of human malaria. Pathog. Glob. Health 2017, 111, 247–255. [Google Scholar] [CrossRef]
- Oriero, C.E.; van Geertruyden, J.P.; Jacobs, J.; D’Alessandro, U.; Nwakanma, D. Validation of an apicoplast genome target for the detection of plasmodium species using polymerase chain reaction and loop mediated isothermal amplification. Clin. Microbiol. Infect. 2015, 21, 686.e1–686.e7. [Google Scholar] [CrossRef] [Green Version]
- Port, J.R.; Nguetse, C.; Adukpo, S.; Velavan, T.P. A reliable and rapid method for molecular detection of malarial parasites using microwave irradiation and loop mediated isothermal amplification. Malar. J. 2014, 13, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modak, S.S.; Barber, C.A.; Geva, E.; Abrams, W.R.; Malamud, D.; Ongagna, Y.S. Rapid point-of-care isothermal amplification assay for the detection of malaria without nucleic acid purification. Infect. Dis. 2016, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashida, K.; Kajino, K.; Simukoko, H.; Simuunza, M.; Ndebe, J.; Chota, A.; Namangala, B.; Sugimoto, C. Direct detection of falciparum and non-falciparum malaria DNA from a drop of blood with high sensitivity by the dried-lamp system. Parasites Vectors 2017, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Casas, E.; Guetens, P.; Chiheb, D.; Gamboa, D.; Rosanas-Urgell, A. A pilot evaluation of alternative procedures to simplify lamp-based malaria diagnosis in field conditions. Acta Trop. 2019, 200, 105125. [Google Scholar] [CrossRef]
- Mohon, A.N.; Elahi, R.; Khan, W.A.; Haque, R.; Sullivan, D.J., Jr.; Alam, M.S. A new visually improved and sensitive loop mediated isothermal amplification (lamp) for diagnosis of symptomatic falciparum malaria. Acta Trop. 2014, 134, 52–57. [Google Scholar] [CrossRef]
- Lucchi, N.W.; Ljolje, D.; Silva-Flannery, L.; Udhayakumar, V. Use of malachite green-loop mediated isothermal amplification for detection of plasmodium spp. Parasites. PLoS ONE 2016, 11, e0151437. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, D.P.; Savargaonkar, D.; Singh, O.P.; Bhatt, R.M.; Valecha, N. Evaluation of sybr green i based visual loop-mediated isothermal amplification (lamp) assay for genus and species-specific diagnosis of malaria in p. Vivax and p. Falciparum endemic regions. J. Vector Borne Dis. 2017, 54, 54–60. [Google Scholar]
- Yongkiettrakul, S.; Jaroenram, W.; Arunrut, N.; Chareanchim, W.; Pannengpetch, S.; Suebsing, R.; Kiatpathomchai, W.; Pornthanakasem, W.; Yuthavong, Y.; Kongkasuriyachai, D. Application of loop-mediated isothermal amplification assay combined with lateral flow dipstick for detection of plasmodium falciparum and plasmodium vivax. Parasitol. Int. 2014, 63, 777–784. [Google Scholar] [CrossRef]
- Picot, S.; Cucherat, M.; Bienvenu, A.L. Systematic review and meta-analysis of diagnostic accuracy of loop-mediated isothermal amplification (lamp) methods compared with microscopy, polymerase chain reaction and rapid diagnostic tests for malaria diagnosis. Int. J. Infect. Dis. 2020, 98, 408–419. [Google Scholar] [CrossRef]
- Selvarajah, D.; Naing, C.; Htet, N.H.; Mak, J.W. Loop-mediated isothermal amplification (lamp) test for diagnosis of uncomplicated malaria in endemic areas: A meta-analysis of diagnostic test accuracy. Malar. J. 2020, 19, 211. [Google Scholar] [CrossRef]
- Nolasco, O.; Infante, B.; Contreras-Mancilla, J.; Incardona, S.; Ding, X.C.; Gamboa, D.; Torres, K. Diagnosis of plasmodium vivax by loop-mediated isothermal amplification in febrile patient samples from loreto, perú. Am. J. Trop. Med. Hyg. 2020, 103, 1549–1552. [Google Scholar] [CrossRef]
- Aydin-Schmidt, B.; Xu, W.; González, I.J.; Polley, S.D.; Bell, D.; Shakely, D.; Msellem, M.I.; Björkman, A.; Mårtensson, A. Loop mediated isothermal amplification (lamp) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias. PLoS ONE 2014, 9, e103905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polley, S.D.; Bell, D.; Oliver, J.; Tully, F.; Perkins, M.D.; Chiodini, P.L.; González, I.J. The design and evaluation of a shaped filter collection device to sample and store defined volume dried blood spots from finger pricks. Malar. J. 2015, 14, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.P.; Komaki-Yasuda, K.; Iwagami, M.; Kawai, S.; Kano, S. Combination of pure-DNA extraction and lamp-DNA amplification methods for accurate malaria diagnosis on dried blood spots. Malar. J. 2018, 17, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koninck, A.S.; Cnops, L.; Hofmans, M.; Jacobs, J.; Van den Bossche, D.; Philippé, J. Diagnostic performance of the loop-mediated isothermal amplification (lamp) based illumigene(®) malaria assay in a non-endemic region. Malar. J. 2017, 16, 418. [Google Scholar] [CrossRef] [Green Version]
- Lucchi, N.W.; Gaye, M.; Diallo, M.A.; Goldman, I.F.; Ljolje, D.; Deme, A.B.; Badiane, A.; Ndiaye, Y.D.; Barnwell, J.W.; Udhayakumar, V.; et al. Evaluation of the illumigene malaria lamp: A robust molecular diagnostic tool for malaria parasites. Sci. Rep. 2016, 6, 36808. [Google Scholar] [CrossRef] [Green Version]
- Ponce, C.; Kaczorowski, F.; Perpoint, T.; Miailhes, P.; Sigal, A.; Javouhey, E.; Gillet, Y.; Jacquin, L.; Douplat, M.; Tazarourte, K.; et al. Diagnostic accuracy of loop-mediated isothermal amplification (lamp) for screening patients with imported malaria in a non-endemic setting. Parasite (Parisfrance) 2017, 24, 53. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, M.S.; Greenhouse, B.; Rosenthal, P.J. Point of care testing for malaria using lamp, loop mediated isothermal amplification. J. Infect. Dis. 2014, 210, 1167–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rypien, C.; Chow, B.; Chan, W.W.; Church, D.L.; Pillai, D.R. Detection of plasmodium infection by the illumigene malaria assay compared to reference microscopy and real-time pcr. J. Clin. Microbiol. 2017, 55, 3037–3045. [Google Scholar] [CrossRef] [Green Version]
- FIND. Manual of Standard Operating Procedures for Malaria Lamp. Available online: https://www.finddx.org/wp-content/uploads/2016/04/SOP-LAMP-Malaria-Aug2012.pdf (accessed on 5 January 2021).
- Cuadros, J.; Martin Ramírez, A.; González, I.J.; Ding, X.C.; Perez Tanoira, R.; Rojo-Marcos, G.; Gómez-Herruz, P.; Rubio, J.M. Lamp kit for diagnosis of non-falciparum malaria in plasmodium ovale infected patients. Malar. J. 2017, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Piera, K.A.; Aziz, A.; William, T.; Bell, D.; González, I.J.; Barber, B.E.; Anstey, N.M.; Grigg, M.J. Detection of plasmodium knowlesi, plasmodium falciparum and plasmodium vivax using loop-mediated isothermal amplification (lamp) in a co-endemic area in malaysia. Malar. J. 2017, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.; Aydin-Schmidt, B.; González, I.J.; Bell, D.; Edlund, E.; Nassor, M.H.; Msellem, M.; Ali, A.; Abass, A.K.; Mårtensson, A.; et al. Loop-mediated isothermal amplification (lamp) for point-of-care detection of asymptomatic low-density malaria parasite carriers in zanzibar. Malar. J. 2015, 14, 43. [Google Scholar] [CrossRef]
- Hopkins, H.; González, I.J.; Polley, S.D.; Angutoko, P.; Ategeka, J.; Asiimwe, C.; Agaba, B.; Kyabayinze, D.J.; Sutherland, C.J.; Perkins, M.D.; et al. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: Performance of a new loop-mediated isothermal amplification kit in a remote clinic in uganda. J. Infect. Dis. 2013, 208, 645–652. [Google Scholar] [CrossRef]
- Polley, S.D.; González, I.J.; Mohamed, D.; Daly, R.; Bowers, K.; Watson, J.; Mewse, E.; Armstrong, M.; Gray, C.; Perkins, M.D.; et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J. Infect. Dis. 2013, 208, 637–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin-Schmidt, B.; Morris, U.; Ding, X.C.; Jovel, I.; Msellem, M.I.; Bergman, D.; Islam, A.; Ali, A.S.; Polley, S.; Gonzalez, I.J.; et al. Field evaluation of a high throughput loop mediated isothermal amplification test for the detection of asymptomatic plasmodium infections in zanzibar. PLoS ONE 2017, 12, e0169037. [Google Scholar] [CrossRef]
- Morris, U.; Khamis, M.; Aydin-Schmidt, B.; Abass, A.K.; Msellem, M.I.; Nassor, M.H.; González, I.J.; Mårtensson, A.; Ali, A.S.; Björkman, A.; et al. Field deployment of loop-mediated isothermal amplification for centralized mass-screening of asymptomatic malaria in zanzibar: A pre-elimination setting. Malar. J. 2015, 14, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, R.S.; Ding, X.C.; Tully, F.; Oliver, J.; Bright, N.; Bell, D.; Chiodini, P.L.; Gonzalez, I.J.; Polley, S.D. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria. PLoS ONE 2017, 12, e0171126. [Google Scholar] [CrossRef] [Green Version]
- Cuadros, J.; Pérez-Tanoira, R.; Prieto-Pérez, L.; Martin-Martin, I.; Berzosa, P.; González, V.; Tisiano, G.; Balcha, S.; Ramos, J.M.; Górgolas, M. Field evaluation of malaria microscopy, rapid malaria tests and loop-mediated isothermal amplification in a rural hospital in south western ethiopia. PLoS ONE 2015, 10, e0142842. [Google Scholar] [CrossRef]
- Sema, M.; Alemu, A.; Bayih, A.G.; Getie, S.; Getnet, G.; Guelig, D.; Burton, R.; LaBarre, P.; Pillai, D.R. Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (nina-lamp) for the diagnosis of malaria in northwest ethiopia. Malar. J. 2015, 14, 44. [Google Scholar] [CrossRef] [Green Version]
- Katrak, S.; Murphy, M.; Nayebare, P.; Rek, J.; Smith, M.; Arinaitwe, E.; Nankabirwa, J.I.; Kamya, M.; Dorsey, G.; Rosenthal, P.J.; et al. Performance of loop-mediated isothermal amplification for the identification of submicroscopic plasmodium falciparum infection in uganda. Am. J. Trop. Med. Hyg. 2017, 97, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Serra-Casas, E.; Manrique, P.; Ding, X.C.; Carrasco-Escobar, G.; Alava, F.; Gave, A.; Rodriguez, H.; Contreras-Mancilla, J.; Rosas-Aguirre, A.; Speybroeck, N.; et al. Loop-mediated isothermal DNA amplification for asymptomatic malaria detection in challenging field settings: Technical performance and pilot implementation in the peruvian amazon. PLoS ONE 2017, 12, e0185742. [Google Scholar] [CrossRef] [PubMed]
- Tambo, M.; Auala, J.R.; Sturrock, H.J.; Kleinschmidt, I.; Bock, R.; Smith, J.L.; Gosling, R.; Mumbengegwi, D.R. Evaluation of loop-mediated isothermal amplification as a surveillance tool for malaria in reactive case detection moving towards elimination. Malar. J. 2018, 17, 255. [Google Scholar] [CrossRef] [PubMed]
- Mhamilawa, L.E.; Aydin-Schmidt, B.; Mmbando, B.P.; Ngasala, B.; Morris, U. Detection of plasmodium falciparum by light microscopy, loop-mediated isothermal amplification, and polymerase chain reaction on day 3 after initiation of artemether-lumefantrine treatment for uncomplicated malaria in bagamoyo district, tanzania: A comparative trial. Am. J. Trop. Med. Hyg. 2019, 101, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Björkman, A.; Morris, U. Why asymptomatic plasmodium falciparum infections are common in low-transmission settings. Trends Parasitol. 2020, 36, 898–905. [Google Scholar] [CrossRef]
- Slater, H.C.; Ross, A.; Felger, I.; Hofmann, N.E.; Robinson, L.; Cook, J.; Goncalves, B.P.; Bjorkman, A.; Ouedraogo, A.L.; Morris, U.; et al. The temporal dynamics and infectiousness of subpatent plasmodium falciparum infections in relation to parasite density. Nat Commun 2019, 10, 1433. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, M.S.; Ntshalintshali, N.; Kang Dufour, M.S.; Dlamini, N.; Nhlabathi, N.; Vilakati, S.; Malambe, C.; Zulu, Z.; Maphalala, G.; Novotny, J.; et al. Active case finding for malaria: A 3-year national evaluation of optimal approaches to detect infections and hotspots through reactive case detection in the low-transmission setting of eswatini. Clin. Infect. Dis. 2020, 70, 1316–1325. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, A.F.; Martínez, N.L.; González, I.J.; Arévalo-Herrera, M.; Herrera, S. Evaluation of the loop mediated isothermal DNA amplification (lamp) kit for malaria diagnosis in p. Vivax endemic settings of colombia. Plos Negl. Trop. Dis. 2015, 9, e3453. [Google Scholar] [CrossRef]
- WHO. Policy Brief on Malaria Diagnostics in Low-Transmission Settings; September 2014. Available online: https://www.who.int/malaria/publications/atoz/malaria-diagnosis-low-transmission-settings-sep2014.pdf (accessed on 29 January 2021).
- WHO. Mass Drug Administration, Mass Screening and Treatment and Focal Screening and Treatment for Malaria: Who Evidence Review Group Meeting Report; 16–18 September 2015. Available online: https://www.who.int/malaria/mpac/mpac-sept2015-erg-mda-report.pdf (accessed on 29 January 2021).
- Katrak, S.; Day, N.; Ssemmondo, E.; Kwarisiima, D.; Midekisa, A.; Greenhouse, B.; Kamya, M.; Havlir, D.; Dorsey, G. Community-wide prevalence of malaria parasitemia in hiv-infected and uninfected populations in a high-transmission setting in uganda. J. Infect. Dis. 2016, 213, 1971–1978. [Google Scholar] [CrossRef] [Green Version]
- Nankabirwa, J.I.; Briggs, J.; Rek, J.; Arinaitwe, E.; Nayebare, P.; Katrak, S.; Staedke, S.G.; Rosenthal, P.J.; Rodriguez-Barraquer, I.; Kamya, M.R.; et al. Persistent parasitemia despite dramatic reduction in malaria incidence after 3 rounds of indoor residual spraying in tororo, uganda. J. Infect. Dis. 2019, 219, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Rek, J.; Katrak, S.; Obasi, H.; Nayebare, P.; Katureebe, A.; Kakande, E.; Arinaitwe, E.; Nankabirwa, J.I.; Jagannathan, P.; Drakeley, C.; et al. Characterizing microscopic and submicroscopic malaria parasitaemia at three sites with varied transmission intensity in uganda. Malar. J. 2016, 15, 470. [Google Scholar] [CrossRef] [Green Version]
- Katrak, S.; Nayebare, P.; Rek, J.; Arinaitwe, E.; Nankabirwa, J.I.; Kamya, M.; Dorsey, G.; Rosenthal, P.J.; Greenhouse, B. Clinical consequences of submicroscopic malaria parasitaemia in uganda. Malar. J. 2018, 17, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlamini, N.; Hsiang, M.S.; Ntshalintshali, N.; Pindolia, D.; Allen, R.; Nhlabathi, N.; Novotny, J.; Kang Dufour, M.S.; Midekisa, A.; Gosling, R.; et al. Low-quality housing is associated with increased risk of malaria infection: A national population-based study from the low transmission setting of swaziland. Open Forum Infect. Dis. 2017, 4, ofx071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCreesh, P.; Mumbengegwi, D.; Roberts, K.; Tambo, M.; Smith, J.; Whittemore, B.; Kelly, G.; Moe, C.; Murphy, M.; Chisenga, M.; et al. Subpatent malaria in a low transmission african setting: A cross-sectional study using rapid diagnostic testing (rdt) and loop-mediated isothermal amplification (lamp) from zambezi region, namibia. Malar. J. 2018, 17, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.L.; Auala, J.; Tambo, M.; Haindongo, E.; Katokele, S.; Uusiku, P.; Gosling, R.; Kleinschmidt, I.; Mumbengegwi, D.; Sturrock, H.J.W. Spatial clustering of patent and sub-patent malaria infections in northern namibia: Implications for surveillance and response strategies for elimination. PLoS ONE 2017, 12, e0180845. [Google Scholar] [CrossRef] [Green Version]
- Lufungulo Bahati, Y.; Delanghe, J.; Bisimwa Balaluka, G.; Sadiki Kishabongo, A.; Philippé, J. Asymptomatic submicroscopic plasmodium infection is highly prevalent and is associated with anemia in children younger than 5 years in south kivu/democratic republic of congo. Am. J. Trop. Med. Hyg. 2020, 102, 1048–1055. [Google Scholar] [CrossRef]
- Goyal, K.; Kaur, H.; Sehgal, A.; Sehgal, R. Realamp loop-mediated isothermal amplification as a point-of-care test for diagnosis of malaria: Neither too close nor too far. J. Infect. Dis. 2015, 211, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, D.H.; Imwong, M.; Faiz, A.M.; Hasan, M.; Yunus, E.B.; Silamut, K.; Lee, S.J.; Day, N.P.; Dondorp, A.M. Loop-mediated isothermal pcr (lamp) for the diagnosis of falciparum malaria. Am. J. Trop. Med. Hyg. 2007, 77, 972–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutrier, F.N.; Tirta, Y.K.; Cotter, C.; Zarlinda, I.; González, I.J.; Schwartz, A.; Maneh, C.; Marfurt, J.; Murphy, M.; Herdiana, H.; et al. Laboratory challenges of plasmodium species identification in aceh province, indonesia, a malaria elimination setting with newly discovered p. Knowlesi. PLoS Negl. Trop. Dis. 2018, 12, e0006924. [Google Scholar] [CrossRef] [Green Version]
- Mohon, A.N.; Lee, L.D.; Bayih, A.G.; Folefoc, A.; Guelig, D.; Burton, R.A.; LaBarre, P.; Chan, W.; Meatherall, B.; Pillai, D.R. Nina-lamp compared to microscopy, rdt, and nested pcr for the detection of imported malaria. Diagn. Microbiol. Infect. Dis. 2016, 85, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattabongkot, J.; Tsuboi, T.; Han, E.T.; Bantuchai, S.; Buates, S. Loop-mediated isothermal amplification assay for rapid diagnosis of malaria infections in an area of endemicity in thailand. J. Clin. Microbiol. 2014, 52, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- WHO. Malaria Policy Advisory Committee Meeting: Malaria in Pregnancy; July 2017. Available online: https://www.who.int/malaria/mpac/mpac-oct2017-erg-malaria-pregnancy-session8.pdf?ua=1 (accessed on 29 January 2021).
- Vásquez, A.M.; Zuluaga, L.; Tobón, A.; Posada, M.; Vélez, G.; González, I.J.; Campillo, A.; Ding, X. Diagnostic accuracy of loop-mediated isothermal amplification (lamp) for screening malaria in peripheral and placental blood samples from pregnant women in colombia. Malar. J. 2018, 17, 262. [Google Scholar] [CrossRef]
- Ahmed, R.; Poespoprodjo, J.R.; Syafruddin, D.; Khairallah, C.; Pace, C.; Lukito, T.; Maratina, S.S.; Asih, P.B.S.; Santana-Morales, M.A.; Adams, E.R.; et al. Efficacy and safety of intermittent preventive treatment and intermittent screening and treatment versus single screening and treatment with dihydroartemisinin-piperaquine for the control of malaria in pregnancy in indonesia: A cluster-randomised, open-label, superiority trial. Lancet Infect. Dis. 2019, 19, 973–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Guidelines for the Treatment of Malaria, 3rd ed.; 2015; Available online: https://www.who.int/publications/i/item/9789241549127 (accessed on 29 January 2021).
- Kapisi, J.; Kakuru, A.; Jagannathan, P.; Muhindo, M.K.; Natureeba, P.; Awori, P.; Nakalembe, M.; Ssekitoleko, R.; Olwoch, P.; Ategeka, J.; et al. Relationships between infection with plasmodium falciparum during pregnancy, measures of placental malaria, and adverse birth outcomes. Malar. J. 2017, 16, 400. [Google Scholar] [CrossRef]
- Tegegne, B.; Getie, S.; Lemma, W.; Mohon, A.N.; Pillai, D.R. Performance of loop-mediated isothermal amplification (lamp) for the diagnosis of malaria among malaria suspected pregnant women in northwest ethiopia. Malar. J. 2017, 16, 34. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, G.; Kamaliddin, C.; Doolan, C.; Amarasekara, R.; Legese, R.; Mohon, A.N.; Cheaveau, J.; Yewhalaw, D.; Pillai, D.R. Active case detection of malaria in pregnancy using loop-mediated amplification (lamp): A pilot outcomes study in south west ethiopia. Malar. J. 2020, 19, 305. [Google Scholar] [CrossRef]
- Unwin, V.T.; Ahmed, R.; Noviyanti, R.; Puspitasari, A.M.; Utami, R.A.S.; Trianty, L.; Lukito, T.; Syafruddin, D.; Poespoprodjo, J.R.; Santana-Morales, M.A.; et al. Use of a highly-sensitive rapid diagnostic test to screen for malaria in pregnancy in indonesia. Malar. J. 2020, 19, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vásquez, A.M.; Vélez, G.; Medina, A.; Serra-Casas, E.; Campillo, A.; Gonzalez, I.J.; Murphy, S.C.; Seilie, A.M.; Ding, X.C.; Tobón Castaño, A. Evaluation of highly sensitive diagnostic tools for the detection of p. Falciparum in pregnant women attending antenatal care visits in colombia. BMC Pregnancy Childbirth 2020, 20, 440. [Google Scholar] [CrossRef]
- Kakuru, A.; Jagannathan, P.; Muhindo, M.K.; Natureeba, P.; Awori, P.; Nakalembe, M.; Opira, B.; Olwoch, P.; Ategeka, J.; Nayebare, P.; et al. Dihydroartemisinin-piperaquine for the prevention of malaria in pregnancy. N. Engl. J. Med. 2016, 374, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Kajubi, R.; Ochieng, T.; Kakuru, A.; Jagannathan, P.; Nakalembe, M.; Ruel, T.; Opira, B.; Ochokoru, H.; Ategeka, J.; Nayebare, P.; et al. Monthly sulfadoxine-pyrimethamine versus dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria in pregnancy: A double-blind, randomised, controlled, superiority trial. Lancet 2019, 393, 1428–1439. [Google Scholar] [CrossRef]
- Tran, E.E.; Cheeks, M.L.; Kakuru, A.; Muhindo, M.K.; Natureeba, P.; Nakalembe, M.; Ategeka, J.; Nayebare, P.; Kamya, M.; Havlir, D.; et al. The impact of gravidity, symptomatology and timing of infection on placental malaria. Malar. J. 2020, 19, 227. [Google Scholar] [CrossRef]
- Ategeka, J.; Kakuru, A.; Kajubi, R.; Wasswa, R.; Ochokoru, H.; Arinaitwe, E.; Yeka, A.; Jagannathan, P.; Kamya, M.R.; Muehlenbachs, A.; et al. Relationships between measures of malaria at delivery and adverse birth outcomes in a high-transmission area of uganda. J. Infect. Dis. 2020, 222, 863–870. [Google Scholar] [CrossRef]
- Briggs, J.; Ategeka, J.; Kajubi, R.; Ochieng, T.; Kakuru, A.; Ssemanda, C.; Wasswa, R.; Jagannathan, P.; Greenhouse, B.; Rodriguez-Barraquer, I.; et al. Impact of microscopic and submicroscopic parasitemia during pregnancy on placental malaria in a high-transmission setting in uganda. J. Infect. Dis. 2019, 220, 457–466. [Google Scholar] [CrossRef]
- Cheaveau, J.; Nguyen, H.; Chow, B.; Marasinghe, D.; Mohon, A.N.; Yuan, H.; Viana, G.; van Schalkwyk, D.; Church, D.; Chan, W.; et al. Clinical validation of a commercial lamp test for ruling out malaria in returning travelers: A prospective diagnostic trial. Open Forum Infect. Dis. 2018, 5, ofy260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Hinz, R.; Rojak, S.; Bonow, I.; Ruben, S.; Wegner, C.; Zielke, I.; Hagen, R.M.; Tannich, E. Evaluation of automated loop-mediated amplification (lamp) for routine malaria detection in blood samples of german travelers—A cross-sectional study. Travel Med. Infect. Dis. 2018, 24, 25–30. [Google Scholar] [CrossRef]
- Burdino, E.; Calleri, G.; Ghisetti, V. Added value of loop-mediated isothermal amplification technology (lamp) in real life for the diagnosis of malaria in travellers. J. Travel Med. 2019, 26, taz052. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Benichou, E.; Pagès, A.; Chauvin, P.; Fillaux, J.; Valentin, A.; Guegan, H.; Guemas, E.; Salabert, A.S.; Armengol, C.; et al. Performance evaluation of different strategies based on microscopy techniques, rapid diagnostic test and molecular loop-mediated isothermal amplification assay for the diagnosis of imported malaria. Clin. Microbiol. Infect. 2020, 26, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Hartmeyer, G.N.; Hoegh, S.V.; Skov, M.N.; Kemp, M. Use of loop-mediated isothermal amplification in a resource-saving strategy for primary malaria screening in a non-endemic setting. Am. J. Trop. Med. Hyg. 2019, 100, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Marti, H.; Stalder, C.; González, I.J. Diagnostic accuracy of a lamp kit for diagnosis of imported malaria in switzerland. Travel Med. Infect. Dis. 2015, 13, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.K.; Gasser, R.A., Jr.; Magill, A.J.; Miller, R.S. Update on rapid diagnostic testing for malaria. Clin. Microbiol. Rev. 2008, 21, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Maltha, J.; Gillet, P.; Jacobs, J. Malaria rapid diagnostic tests in travel medicine. Clin. Microbiol. Infect. 2013, 19, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiodini, P.L. Lamp in the context of travellers’ malaria: A shining light? Travel Med. Infect. Dis. 2015, 13, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Morris, U.; Msellem, M.I.; Mkali, H.; Islam, A.; Aydin-Schmidt, B.; Jovel, I.; Shija, S.J.; Khamis, M.; Ali, S.M.; Hodzic, L.; et al. A cluster randomised controlled trial of two rounds of mass drug administration in zanzibar, a malaria pre-elimination setting-high coverage and safety, but no significant impact on transmission. BMC Med. 2018, 16, 215. [Google Scholar] [CrossRef] [Green Version]
- Morris, U.; Xu, W.; Msellem, M.I.; Schwartz, A.; Abass, A.; Shakely, D.; Cook, J.; Bhattarai, A.; Petzold, M.; Greenhouse, B.; et al. Characterising temporal trends in asymptomatic plasmodium infections and transporter polymorphisms during transition from high to low transmission in zanzibar, 2005-2013. Infect. Genet. Evol. 2015, 33, 110–117. [Google Scholar] [CrossRef]
- Zelman, B.W.; Baral, R.; Zarlinda, I.; Coutrier, F.N.; Sanders, K.C.; Cotter, C.; Herdiana, H.; Greenhouse, B.; Shretta, R.; Gosling, R.D.; et al. Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of aceh province, indonesia. Malar. J. 2018, 17, 220. [Google Scholar] [CrossRef] [Green Version]
Comparator | Sensitivity (%; 95% CI) | Specificity (%; 95% CI) | AUC | Reference |
---|---|---|---|---|
LAMP vs. LM | 98; 94–99 | 97; 85–99 | ND | [1] |
LAMP vs. PCR | 96; 79–99 | 91; 68–98 | ND | [1] |
LAMP vs. LM | 97; 96–98 | 96; 94–97 | 0.98 | [24] |
LAMP vs. RDT | 97; 92–99 | 96; 92–98 | 0.98 | [24] |
LAMP vs. PCR | 97; 96–98 | 96; 94–97 | 0.98 | [24] |
Pv LAMP vs. PCR | 95; 80–99 | 96; 86–99 | 0.98 | [24] |
Pan LAMP vs. PCR | 95; 91–97 | 98; 95–99 | 0.99 | [25] |
Pf LAMP vs. PCR | 96; 94–98 | 99, 96–100 | 0.99 | [25] |
Pv LAMP vs. PCR | 98; 92–99 | 99, 72–100 | 1.00 | [25] |
Comparator | Illumigene® | LoopampTM |
---|---|---|
Species identification | Pan-Plasmodium | Pan-Plasmodium; P. falciparum; P. vivax 1 |
Sample type | Fresh/frozen blood | Fresh/frozen blood or dried blood spots |
Methods of DNA extraction | Illumigene malaria; Illumigene malaria PLUS | PURE DNA Extraction Kit; Boil and spin; other methods 2 |
Limit of detection 3 | 2.0 p/µL for P. falciparum and 0.1 p/µL for P. vivax | 1–2 p/µL |
Required equipment | Illumipro-10™ incubator | Centrifuge, heat block/water bath, UV light, (or LA-500 turbidimeter/HumaLoop M) |
Number of samples per run | 10 | 16, 46 or 94 4 |
Read out of results | Turbidity in Illumipro-10™ incubator or by eye | Turbidity in turbidimeter or by eye; fluorescence under UV light |
Primary area of use | Malaria diagnosis in non-endemic settings | Malaria prevalence surveys in endemic settings |
Cost per test 5 | 28 EUR | 5.2 EUR |
Setting | Sample Size 1 | Sample Type 2 | LAMP Method | Comparator | Prevalence (%) | Mean Parasite Densities (p/µL) | Sensitivity (%; 95% CI) | Specificity (%; 95% CI) | Reference |
---|---|---|---|---|---|---|---|---|---|
Zanzibar, Pre-elimination | 996 | Fresh blood + Boil and Spin | Loopamp Pan/Pf | RDT; Ref: qPCR | RDT: 1.0 LAMP/PCR: 1.8 | 26 (range: 0–4626). | Pan LAMP: 83.3; 59–96 RDT: 55.6; 31–79 | Pan-LAMP: 99.7; 99–100 RDT: 100; 99.6–100 | [38] |
Zanzibar, Pre-elimination | 3983 | Fresh blood + Boil and Spin | Loopamp Pan/Pf | RDT; Ref: LAMP | RDT: 0.5; LAMP 1.6 | ND; 71% of LAMP positives <LOD of RDT | RDT: 24.6; 15–37 | RDT: 99.9; 99.7–100 | [42] |
Zanzibar, Pre-elimination | 3008 | Filter device +HTP extraction | Loopamp Pan/Pf | RDT; Ref: qPCR | RDT: 0.4; qPCR: 1.6; HTP-LAMP 0.7 | 1.8 (range: 0.1–770) | HTP-LAMP: 40.8; 27–56 Chelex-LAMP: 49; 34–64 HTP_LAMP >2: 54; 25–81 HTP_LAMP ≤2: 36; 21–54 | HTP-LAMP: 99.9; 99.8–100 | [41] |
Eswatini (formally Swaziland), Very low transmission | 10890 | DBS + Chelex extraction | Loopamp Pan/Pf | RDT Ref; LAMP LAMP Ref: nPCR | RDT: 0.6; LAMP: 1.7 | ND; 67% of LAMP positives <LOD of RDT | LAMP: 72.2; 63−80 RDT: 33.4; 33–35 | LAMP: 98.0; 97−98 RDT: >90.0 | [52] |
Namibia, Low transmission | 2642 | DBS and used RDTs + Chelex extraction | Loopamp Pan | RDT Ref: nPCR | RDT: 0.9; LAMP 1.8 | ND; 51% of LAMP positives <LOD of RDT | LAMP on RDT: 95.4; 84–99 LAMP on DBS: 95.5; 85–99 RDT: 9.3; 2.6–22 | All > 99 | [48] |
Colombia, Varied transmission | 980 | Fresh blood + Boil and Spin | Loopamp Pan/Pf | LM Ref: qPCR | LM: 0.2; LAMP: 6.6; qPCR: 7.2 | ND, (range: 1–897) | Pv: 90.9; 80–97 Pf: 100; 78–100 | All > 99 | [53] |
Peruvian Amazon, Low to moderate transmission | 1167 | Fresh blood + Boil and Spin | Loopamp Pan/Pf | LM Ref: qPCR | LM: 4.9; LAMP: 21.9 | 10 (CI95% 7.5–13) | LAMP: 91.8; 88–95 LM: 20.3; 16–26 | 91.9; 88–95 LM: 98.0; 95–99 | [47] |
Uganda, High transmission | 554 | DBS + Chelex extraction | Loopamp Pan | LM Ref: qPCR | LM: 18.2; LAMP: 37.2; qPCR: 48.9 | LAMP neg: 0.1 (CI95% 0.07–0.2) LAMP pos: 5.7 (CI95% 3.0–10.8) | LAMP: All LM negs: 44.7 ≥0.01–<0.1 p/µL: 10.8 ≥0.1–<1 p/µL: 40.9≥1 p/µL: 81.5 | All LM negs: 94.0 | [46] |
Setting | Sample Size | Sample Type | LAMP Method | Comparator | Prevalence (%) | Sensitivity (%; 95% CI) | Specificity (%; 95% CI) | Reference |
---|---|---|---|---|---|---|---|---|
Colombia | 531 | Venous and placental blood | Loopamp Pan/Pf | LM + RDT; Ref: nPCR | Peripheral: LM 5.8; RDT 5.6; LAMP 7.3; nPCR 7.3 Placental: LM + RDT 0.8; LAMP 3.1; nPCR 3.6 | Peripheral: LAMP: 100; 92–100 LM: 80; 65–89 RDT: 77; 62–87 Placental: LAMP: 89; 57–98 LM+RDT: 22; 6–55 | 100% all tests | [70] |
Colombia | 858 | Finger prick blood | Loopamp Pan/Pf | LM; RDT; hsRDT; nPCR; Ref: qRT-PCR | LM 2.7; RDT 2.4; hsRDT 3.0; LAMP 5.2; nPCR 4.2 qRT-PCR 5.5 | LAMP: 90; 76–97 LM: 59; 42–74 RDT: 54; 37–70 hsRDT: 64; 47–79 nPCR: 77; 61–89 | ≥99.9% all tests | [77] |
Ethiopia | 87 | Venous blood | Loopamp Pan/Pf | LM + RDT; Ref: nPCR | LM 11.5; RDT 10.3; nPCR 11.5 LAMP 17.2 | LAMP: 100 LM: 90; 66–100 RDT: 70; 34–100 | LAMP: 94; 87–100 LM: 99; 97–100 RDT: 97; 93–100 | [74] |
Ethiopia | 193 | Venous blood | Illumigene | LM + RDT; Ref: LAMP | LM 2.0, RDT 2.0; LAMP 4.2 | LM: 56; 21–86 RDT: 67; 30–93 | 100 both tests | [75] |
Uganda | 282 | DBS from peripheral, placental and cord blood | Loopamp Pf | LM + HP at delivery | Placental: LM 2.9; LAMP 8.6; Peripheral: LM 2.1; LAMP 10.0; (Cord: LM 0.0; LAMP 1.1; HP: 37.2) | ND | ND | [73,78,80] |
Uganda | 687 | DBS from placental blood | Loopamp Pf | LM + HP at delivery | Placental: LM 4.4; LAMP 12.0; HP: 44.6 | ND | ND | [79,81] |
Setting | Sample Size | Sample Type 1 | LAMP Method | Comparator | Sensitivity (%; 95% CI) | Specificity (%; 95% CI) | NPV (%) | PPV (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Belgium | 133 | Pro + Retrospective | Illumigene | qPCR | 100; 95–100 | 100; 90–100 | ND | ND | [30] |
Canada | 140 | Retrospective | Illumigene | LM + qPCR | 97.3; 91–100 | 93.8; 85–98 | 99.8 | 45.2 | [34] |
France | 310 | Prospective | Illumigene | qPCR | 100; 96–100 | 98.1; 95–99 | 100 | 95.5 | [32] |
Canada | 348 | Pro + Retrospective | Illumigene | LM + qPCR | 100; 94–100 | 100; 99–100 | 100 | 100 | [83] |
Germany | 1000 | Prospective | Illumigene | LM Ref: qPCR | 98.7 LM: 76.1 | 99.6 LM: 100 | 99.6 LM: 86 | 98.7 LM: 100 | [84] |
Italy | 478 | Prospective | Illumigene | LM + RDT Ref: qPCR | 100 LM: 94.7 RDT: 92.1 | 100 LM: 100 RDT: 100 | 100 LM; 99.0 RDT: 98.5 | 100 LM: 94.7 RDT: 100 | [85] |
Denmark | 38 | Retrospective | Illumigene | qPCR | 96.4 | ND | ND | ND | [87] |
France | 331 | Prospective | Illumigene | LM + RDT Ref: qPCR | 97.3 LM: 84.9 RDT: 86.3 | 99.6 LM: 99.6 RDT: 100 | 99.8 LM: 98.9 RDT: 99.0 | 94.8 LM: 94.1 RDT: 100 | [86] |
Great Britain | 705 | Prospective | Loopamp Pan/Pf | LM; Ref: nPCR | 97.0; 90–100 LM: 84; 73.92 | 99.2; 98–100 LM: 100; 99–100 | 99.7 LM: 98.3 | 92.7 LM 100 | [40] |
Switzerland | 205 | Prospective | Loopamp Pan/Pf | qPCR | 100; 92–100 | 100; 98–100 | 100 | 100 | [88] |
Canada | 140 | Retrospective | Loopamp Pan/Pf | RDT; Ref: nPCR | 100; 93–100 RDT: 85.9; 75–92 | 98.6; 91–99 RDT: 98.6; 91–100 | ND | ND | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, U.; Aydin-Schmidt, B. Performance and Application of Commercially Available Loop-Mediated Isothermal Amplification (LAMP) Kits in Malaria Endemic and Non-Endemic Settings. Diagnostics 2021, 11, 336. https://doi.org/10.3390/diagnostics11020336
Morris U, Aydin-Schmidt B. Performance and Application of Commercially Available Loop-Mediated Isothermal Amplification (LAMP) Kits in Malaria Endemic and Non-Endemic Settings. Diagnostics. 2021; 11(2):336. https://doi.org/10.3390/diagnostics11020336
Chicago/Turabian StyleMorris, Ulrika, and Berit Aydin-Schmidt. 2021. "Performance and Application of Commercially Available Loop-Mediated Isothermal Amplification (LAMP) Kits in Malaria Endemic and Non-Endemic Settings" Diagnostics 11, no. 2: 336. https://doi.org/10.3390/diagnostics11020336