Pre-Planned and Non-Planned Agility in Patients Ongoing Rehabilitation after Knee Surgery: Design, Reliability and Validity of the Newly Developed Testing Protocols
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Variables
2.3. Statistics
3. Results
4. Discussion
4.1. Reliability of the Newly Developed PPA and NPA in Untrained/Clinical Subjects
4.2. Validity of the Newly Developed PPA and NPA Tests in Untrained/Clinical Subjects
4.3. Correlates of the Newly Developed NPA and PPA Performances in Untrained/Clinical Subjects
4.4. Methodological Considerations
4.5. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korhonen, N.; Kannus, P.; Niemi, S.; Palvanen, M.; Parkkari, J. Fall-induced deaths among older adults: Nationwide statistics in Finland between 1971 and 2009 and prediction for the future. Injury 2013, 44, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Z.; Lofler, S.; Hofer, C.; Carraro, U.; Sarabon, N. Diagnostic balance tests for assessing risk of falls and distinguishing older adult fallers and non-fallers: A systematic review with meta-analysis. Diagnostics (Basel) 2020, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H. Tools for assessing fall risk in the elderly: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2018, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef]
- Davis, J.C.; Donaldson, M.G.; Ashe, M.C.; Khan, K.M. The role of balance and agility training in fall reduction. A comprehensive review. Eura Medicophys 2004, 40, 211–221. [Google Scholar]
- Sarabon, N.; Kern, H.; Loefler, S.; Jernej, R. Selection of body sway parameters according to their sensitivity and repeatability. Eur. J. Transl. Myol. 2010, 20, 5–12. [Google Scholar] [CrossRef][Green Version]
- Sarabon, N.; Loefler, S.; Cvecka, J.; Sedliak, M.; Kern, H. Strength training in elderly people improves static balance: A randomized controlled trial. Eur. J. Transl. Myol. 2013, 23, 85–89. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef]
- Miyamoto, K.; Takebayashi, H.; Takimoto, K.; Miyamoto, S.; Morioka, S.; Yagi, F. A new simple performance test focused on agility in elderly people: The Ten Step Test. Gerontology 2008, 54, 365–372. [Google Scholar] [CrossRef]
- Young, W.B.; Dawson, B.; Henry, G.J. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int. J. Sports Sci. Coach. 2015, 10, 159–169. [Google Scholar]
- Sekulic, D.; Krolo, A.; Spasic, M.; Uljevic, O.; Peric, M. The development of a new stop’n’go reactive-agility test. J. Strength Cond. Res. 2014, 28, 3306–3312. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, D.; Foretic, N.; Gilic, B.; Esco, M.R.; Hammami, R.; Uljevic, O.; Versic, S.; Spasic, M. Importance of Agility Performance in Professional Futsal Players; Reliability and Applicability of Newly Developed Testing Protocols. Int. J. Environ. Res. Public Health 2019, 16, 3246. [Google Scholar] [CrossRef] [PubMed]
- Pojskic, H.; Aslin, E.; Krolo, A.; Jukic, I.; Uljevic, O.; Spasic, M.; Sekulic, D. Importance of reactive agility and change of direction speed in differentiating performance levels in junior soccer players: Reliability and validity of newly developed soccer-specific tests. Front. Physiol. 2018, 9, 506. [Google Scholar] [CrossRef]
- Sekulic, D.; Pehar, M.; Krolo, A.; Spasic, M.; Uljevic, O.; Calleja-Gonzalez, J.; Sattler, T. Evaluation of Basketball-Specific Agility: Applicability of Preplanned and Nonplanned Agility Performances for Differentiating Playing Positions and Playing Levels. J. Strength Cond. Res. 2017, 31, 2278–2288. [Google Scholar] [CrossRef]
- Sattler, T.; Sekulic, D.; Spasic, M.; Peric, M.; Krolo, A.; Uljevic, O.; Kondric, M. Analysis of the Association Between Motor and Anthropometric Variables with Change of Direction Speed and Reactive Agility Performance. J. Hum. Kinet. 2015, 47, 137–145. [Google Scholar] [CrossRef]
- Spasic, M.; Krolo, A.; Zenic, N.; Delextrat, A.; Sekulic, D. Reactive Agility Performance in Handball; Development and Evaluation of a Sport-Specific Measurement Protocol. J. Sports Sci. Med. 2015, 14, 501–506. [Google Scholar]
- Manderoos, S.A.; Vaara, M.E.; Maki, P.J.; Malkia, E.A.; Aunola, S.K.; Karppi, S.L. A New Agility Test for Adults: Its Test-Retest Reliability and Minimal Detectable Change in Untrained Women and Men Aged 28-55. J. Strength Cond. Res. 2016, 30, 2226–2234. [Google Scholar] [CrossRef]
- Reed-Jones, R.J.; Dorgo, S.; Hitchings, M.K.; Bader, J.O. Vision and agility training in community dwelling older adults: Incorporating visual training into programs for fall prevention. Gait Posture 2012, 35, 585–589. [Google Scholar] [CrossRef]
- Sobolewski, E.J.; Thompson, B.J.; Conchola, E.C.; Ryan, E.D. Development and examination of a functional reactive agility test for older adults. Aging Clin. Exp. Res. 2018, 30, 293–298. [Google Scholar] [CrossRef]
- Perić, I.; Spasić, M.; Sekulić, D. Reliability of newly developed tests of pre-planned and nonplanned agility for older persons: A pilot study. BMC Sport Sci. Med. Rehabil. 2019, 11, 9. [Google Scholar]
- Bos, A.J.G.; Morsch, P.; Myskiw, M.; Carvalho Myskiw, J.D. Development and validation of a questionnaire to assess older adults perception about fall risks. J. Gerontol. Geriatr. Res. 2017, 6, 2. [Google Scholar]
- Green, B.S.; Blake, C.; Caulfield, B.M. A valid field test protocol of linear speed and agility in rugby union. J. Strength Cond. Res. 2011, 25, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Sekulic, D.; Spasic, M.; Mirkov, D.; Cavar, M.; Sattler, T. Gender-specific influences of balance, speed, and power on agility performance. J. Strength Cond. Res. 2013, 27, 802–811. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Metikos, B.; Mikulic, P.; Sarabon, N.; Markovic, G. Peak Power Output Test on a Rowing Ergometer: A Methodological Study. J. Strength Cond. Res. 2015, 29, 2919–2925. [Google Scholar] [CrossRef]
- Fery, Y.A.; Ferry, A.; Vom Hofe, A.; Rieu, M. Effect of physical exhaustion on cognitive functioning. Percept. Mot. Skills 1997, 84, 291–298. [Google Scholar] [CrossRef]
- Scanlan, A.; Humphries, B.; Tucker, P.S.; Dalbo, V. The influence of physical and cognitive factors on reactive agility performance in men basketball players. J. Sports Sci. 2014, 32, 367–374. [Google Scholar] [CrossRef]
- Huck, S.W. Reading Statistics and Research; Longman: New York, NY, USA, 2000. [Google Scholar]
- Figueiredo, A.I.; Balbinot, G.; Brauner, F.d.O.; Schiavo, A.; Baptista, R.R.; Pagnussat, A.d.S.; Hollands, K.L.; Mestriner, R.G. SPARC metrics provide mobility smoothness assessment in oldest-old with and without a history of falls: A case control study. Front. Physiol. 2020, 11, 540. [Google Scholar] [CrossRef] [PubMed]
- Vianna, L.C.; Oliveira, R.B.; Araujo, C.G. Age-related decline in handgrip strength differs according to gender. J. Strength Cond. Res. 2007, 21, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Desouza, C.A.; Jones, P.P.; Stevenson, E.T.; Davy, K.P.; Seals, D.R. Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. J. Appl. Physiol. (1985) 1997, 83, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Stathokostas, L.; McDonald, M.W.; Little, R.M.; Paterson, D.H. Flexibility of older adults aged 55-86 years and the influence of physical activity. J. Aging Res. 2013, 2013, 743843. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A. Menopause and physical fitness. Menopause 2009, 16, 856–857. [Google Scholar] [CrossRef] [PubMed]
- Levinger, P.; Menz, H.B.; Morrow, A.D.; Wee, E.; Feller, J.A.; Bartlett, J.R.; Bergman, N. Lower limb proprioception deficits persist following knee replacement surgery despite improvements in knee extension strength. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1097–1103. [Google Scholar] [CrossRef]
- Doma, K.; Grant, A.; Morris, J. The Effects of Balance Training on Balance Performance and Functional Outcome Measures Following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 2367–2385. [Google Scholar] [CrossRef]
- Gandolfi, M.; Ricci, M.; Sambugaro, E.; Valè, N.; Dimitrova, E.; Meschieri, A.; Grazioli, S.; Picelli, A.; Foti, C.; Rulli, F.; et al. Changes in the sensorimotor system and semitendinosus muscle morphometry after arthroscopic anterior cruciate ligament reconstruction: A prospective cohort study with 1-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3770–3779. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, Y.S. The Diagnostic Accuracy of the Berg Balance Scale in Predicting Falls. West. J. Nurs. Res. 2017, 39, 1502–1525. [Google Scholar] [CrossRef]
- Mittendorfer, B.; Fields, D.A.; Klein, S. Excess body fat in men decreases plasma fatty acid availability and oxidation during endurance exercise. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E354–E362. [Google Scholar] [CrossRef]
- Petrofsky, J.S.; Lind, A.R. The relationship of body fat content to deep muscle temperature and isometric endurance in man. Clin. Sci. Mol. Med. 1975, 48, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Naylor, J.; Greig, M. A hierarchical model of factors influencing a battery of agility tests. J. Sports Med. Phys. Fitness 2015, 55, 1329–1335. [Google Scholar] [PubMed]
- Sillanpaa, E.; Laaksonen, D.E.; Hakkinen, A.; Karavirta, L.; Jensen, B.; Kraemer, W.J.; Nyman, K.; Hakkinen, K. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur. J. Appl. Physiol. 2009, 106, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Plowman, S.; Smith, D. Exercise Physiology for Health, Fitness, and Performance; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Astrup, A. Physical activity and weight gain and fat distribution changes with menopause: Current evidence and research issues. Med. Sci. Sports Exerc. 1999, 31, S564–S567. [Google Scholar] [CrossRef] [PubMed]
- Worst, H.; Henderson, N.; Decarreau, R.; Davies, G. A Novel Test to Assess Change of Direction: Development, Reliability, and Rehabilitation Considerations. Int. J. Sports Phys. Ther. 2019, 14, 228–236. [Google Scholar] [CrossRef]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D.; Berry, S.P. Reliability and Validity of a New Test of Change-of-Direction Speed for Field-Based Sports: The Change-of-Direction and Acceleration Test (CODAT). J. Sports Sci. Med. 2013, 12, 88–96. [Google Scholar]
- Dingenen, B.; Gokeler, A. Optimization of the Return-to-Sport Paradigm After Anterior Cruciate Ligament Reconstruction: A Critical Step Back to Move Forward. Sports Med. 2017, 47, 1487–1500. [Google Scholar] [CrossRef]
1st Testing Day | 2nd Testing Day | Inter-Session Reliability | ||||||
---|---|---|---|---|---|---|---|---|
Mean (95%CI) | SD | Mean (95% CI) | SD | ICC (95%CI) | CV | SEM | MDC | |
PPA (s) | 24.09 (22.5–25.6) | 2.88 | 22.81 (21.29–24.32) | 2.79 | 0.97 (0.82–0.99) | 0.08 | 1.71 | 2.58 |
NPA (s) | 24.08 (22.12–26.03) | 3.59 | 22.29 (20.18–24.39) | 3.87 | 0.95 (0.90–0.99) | 0.08 | 1.82 | 5.03 |
Mean | Min | Max | SD | ICC (95% CI) | CV | SEM | MDC | |
---|---|---|---|---|---|---|---|---|
PPA (s) | 24.58 | 10.82 | 49.95 | 10.02 | 0.97 (0.90–0.99) | 0.04 | 1.56 | 4.28 |
NPA (s) | 25.33 | 11.9 | 57.5 | 10.35 | 0.97 (0.89–0.99) | 0.05 | 1.60 | 4.39 |
Body height (cm) | 170.42 | 152.6 | 193.7 | 10.82 | ||||
Body mass (kg) | 82.54 | 55.5 | 124.1 | 14.79 | ||||
Body fat (kg) | 26.35 | 6.44 | 49.76 | 10.46 | ||||
Body fat (%) | 31.62 | 11.6 | 51.9 | 10.46 | ||||
Lean body mass (kg) | 24.83 | 15.93 | 38.5 | 5.83 | ||||
Lean body mass (%) | 30.27 | 19.7 | 41.3 | 5.58 |
Mean ± SD | Mean ± SD | ANOVA | ANCOVA | |
---|---|---|---|---|
F TEST(p) | F TEST(p) | |||
Gender | Males | Females | ||
PPA (s) | 19.88 ± 6.42 | 27.99 ± 10.88 | 7.07(0.01) | 6.81(0.01) |
NPA (s) | 20.79 ± 5.93 | 28.63 ± 11.68 | 6.05(0.02) | 5.70(0.02) |
Type of surgery | Arthroscopic surgery | Total knee arthroplasty | ||
PPA (s) | 19.37 ± 6.27 | 29.27 ± 10.56 | 11.98(0.001) | 4.7(0.037) |
NPA (s) | 20.17 ± 5.69 | 29.98 ± 11.47 | 10.75(0.002) | 4.04(0.06) |
Fall history | Yes | No | ||
PPA (s) | 19.8 ± 6.96 | 26.06 ± 10.45 | 2.81(0.10) | 0.530(0.47) |
NPA (s) | 21.09 ± 6.33 | 26.65 ± 11.07 | 2.04(0.16) | 0.228(0.64) |
Total (n = 38) | PPA (s) | NPA (s) | Age (Years) | Body Height (cm) | Body Mass (kg) | Body Fat (kg) | Body Fat (%) | Lean Body Mass (kg) |
---|---|---|---|---|---|---|---|---|
NPA (s) | 0.98 *** | |||||||
Age (years) | 0.42 ** | 0.41 ** | ||||||
Body height (cm) | −0.33 * | −0.28 | −0.45 ** | |||||
Body mass (kg) | 0.19 | 0.18 | 0.08 | 0.36 * | ||||
Body fat (kg) | 0.52 *** | 0.48 ** | 0.30 | −0.43 * | 0.57 *** | |||
Body fat (%) | 0.56 *** | 0.52 *** | 0.34 * | −0.70 *** | 0.16 | 0.89 *** | ||
Lean body mass (kg) | −0.24 | −0.21 | −0.30 | 0.86 *** | 0.59 *** | −0.29 | −0.63 *** | |
Lean body mass (%) | −0.54 *** | −0.48 ** | −0.46 ** | 0.72 *** | −0.19 | 0.88 *** | 0.96 *** | 0.66 *** |
Females (n = 22) | PPA (s) | NPA (s) | Age (Years) | Body Height (cm) | Body Mass (kg) | Body Fat (kg) | Body Fat (%) | Lean Body Mass (kg) |
---|---|---|---|---|---|---|---|---|
NPA (s) | 0.98 *** | |||||||
Age (years) | 0.41 | 0.42 * | ||||||
Body height (cm) | −0.13 | −0.08 | −0.39 | |||||
Body mass (kg) | 0.68 *** | 0.67 *** | 0.14 | 0.28 | ||||
Body fat (kg) | 0.70 *** | 0.64 *** | 0.35 | −0.41 | 0.66 *** | |||
Body fat (%) | 0.57 ** | 0.51 * | 0.41 | −0.62 ** | 0.41 | 0.94 *** | ||
Lean body mass (kg) | 0.08 | 0.12 | −0.26 | 0.80 *** | 0.54 ** | −0.26 | −0.54 ** | |
Lean body mass (%) | −0.55 ** | −0.49 * | −0.46 * | 0.63 ** | −0.33 | −0.90 *** | −0.99 *** | 0.60 ** |
Males (n = 16) | PPA (s) | NPA (s) | Age (Years) | Body Height (cm) | Body Mass (kg) | Body Fat (kg) | Body Fat (%) | Lean Body Mass (kg) |
---|---|---|---|---|---|---|---|---|
NPA (s) | 0.98 *** | |||||||
Age (years) | 0.46 | 0.42 | ||||||
Body height (cm) | −0.11 | −0.09 | −0.67 ** | |||||
Body mass (kg) | 0.2 | 0.09 | 0.16 | −0.12 | ||||
Body fat (kg) | 0.12 | 0.04 | 0.22 | −0.43 | 0.88 *** | |||
Body fat (%) | 0.09 | 0.04 | 0.21 | −0.54 * | 0.74 *** | 0.96 *** | ||
Lean body mass (kg) | 0.02 | 0.01 | −0.45 | 0.75 *** | 0.22 | −0.19 | −0.34 | |
Lean body mass (%) | −0.21 | −0.13 | −0.48 | 0.65 ** | −0.74 *** | −0.93 *** | −0.92 *** | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peric, I.; Spasic, M.; Novak, D.; Ostojic, S.; Sekulic, D. Pre-Planned and Non-Planned Agility in Patients Ongoing Rehabilitation after Knee Surgery: Design, Reliability and Validity of the Newly Developed Testing Protocols. Diagnostics 2021, 11, 146. https://doi.org/10.3390/diagnostics11010146
Peric I, Spasic M, Novak D, Ostojic S, Sekulic D. Pre-Planned and Non-Planned Agility in Patients Ongoing Rehabilitation after Knee Surgery: Design, Reliability and Validity of the Newly Developed Testing Protocols. Diagnostics. 2021; 11(1):146. https://doi.org/10.3390/diagnostics11010146
Chicago/Turabian StylePeric, Ivan, Miodrag Spasic, Dario Novak, Sergej Ostojic, and Damir Sekulic. 2021. "Pre-Planned and Non-Planned Agility in Patients Ongoing Rehabilitation after Knee Surgery: Design, Reliability and Validity of the Newly Developed Testing Protocols" Diagnostics 11, no. 1: 146. https://doi.org/10.3390/diagnostics11010146
APA StylePeric, I., Spasic, M., Novak, D., Ostojic, S., & Sekulic, D. (2021). Pre-Planned and Non-Planned Agility in Patients Ongoing Rehabilitation after Knee Surgery: Design, Reliability and Validity of the Newly Developed Testing Protocols. Diagnostics, 11(1), 146. https://doi.org/10.3390/diagnostics11010146