Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ng, M.; Fleming, T. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- 2018 Global Nutrition Report—Global Nutrition Report. Available online: https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (accessed on 10 March 2020).
- Serdula, M.K.; Ivery, D. Do Obese Children Become Obese Adults? A Review of the Literature. Prev. Med. 1993, 22, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Whincup, P.H.; Orfei, L.; Chou, Q.A.; Rudnicka, A.R.; Wathern, A.K.; Kaye, S.J.; Eriksson, J.G.; Osmond, C.; Cook, D.G. Is Body Mass Index before Middle Age Related to Coronary Heart Disease Risk in Later Life? Evidence from Observational Studies. Int. J. Obes. 2009, 33, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Ben-Ami Shor, D.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, 2430–2440. [Google Scholar] [CrossRef]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. In Mayo Clinic Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 251–265. [Google Scholar] [CrossRef]
- Levy, D.; Garrison, R.J.; Savage, D.D.; Kannel, W.B.; Castelli, W.P. Prognostic Implications of Echocardiographically Determined Left Ventricular Mass in the Framingham Heart Study. N. Engl. J. Med. 1990, 322, 1561–1566. [Google Scholar] [CrossRef]
- Gardin, J.M.; McClelland, R.; Kitzman, D.; Lima, J.A.C.; Bommer, W.; Klopfenstein, H.S.; Wong, N.D.; Smith, V.E.; Gottdiener, J. M-Mode Echocardiographic Predictors of Six- to Seven-Year Incidence of Coronary Heart Disease, Stroke, Congestive Heart Failure, and Mortality in an Elderly Cohort (The Cardiovascular Health Study). Am. J. Cardiol. 2001, 87, 1051–1057. [Google Scholar] [CrossRef]
- Chinali, M.; De Simone, G.; Roman, M.J.; Lee, E.T.; Best, L.G.; Howard, B.V.; Devereux, R.B. Impact of Obesity on Cardiac Geometry and Function in a Population of Adolescents. The Strong Heart Study. J. Am. Coll. Cardiol. 2006, 47, 2267–2273. [Google Scholar] [CrossRef]
- Alp, H.; Karaarslan, S.; Eklioǧlu, B.S.; Atabek, M.E.; Baysal, T. The Effect of Hypertension and Obesity on Left Ventricular Geometry and Cardiac Functions in Children and Adolescents. J. Hypertens. 2014, 32, 1283–1292. [Google Scholar] [CrossRef]
- Pieruzzi, F.; Antolini, L.; Salerno, F.R.; Giussani, M.; Brambilla, P.; Galbiati, S.; Mastriani, S.; Rebora, P.; Stella, A.; Valsecchi, M.G.; et al. The Role of Blood Pressure, Body Weight and Fat Distribution on Left Ventricular Mass, Diastolic Function and Cardiac Geometry in Children. J. Hypertens. 2015, 33, 1182–1192. [Google Scholar] [CrossRef]
- Lauer, M.S.; Anderson, K.M.; Kannel, W.B.; Levy, D. The Impact of Obesity on Left Ventricular Mass and Geometry: The Framingham Heart Study. JAMA J. Am. Med. Assoc. 1991, 266, 231–236. [Google Scholar] [CrossRef]
- Ayer, J.; Charakida, M.; Deanfield, J.E.; Celermajer, D.S. Lifetime Risk: Childhood Obesity and Cardiovascular Risk. Eur. Heart J. 2015, 36, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, G.; Pacileo, G.; Del Giudice, E.M.; Natale, F.; Limongelli, G.; Verrengia, M.; Rea, A.; Fratta, F.; Castaldi, B.; D’Andrea, A.; et al. Abnormal Myocardial Deformation Properties in Obese, Non-Hypertensive Children: An Ambulatory Blood Pressure Monitoring, Standard Echocardiographic, and Strain Rate Imaging Study. Eur. Heart J. 2006, 27, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- Ingul, C.B.; Tjonna, A.E.; Stolen, T.O.; Stoylen, A.; Wisloff, U. Impaired Cardiac Function among Obese Adolescents: Effect of Aerobic Interval Training. Arch. Pediatr. Adolesc. Med. 2010, 164, 852–859. [Google Scholar] [CrossRef]
- Dhuper, S.; Abdullah, R.A.; Weichbrod, L.; Mahdi, E.; Cohen, H.W. Association of Obesity and Hypertension with Left Ventricular Geometry and Function in Children and Adolescents. Obesity 2011, 19, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Zangl, E.; Dugue, A.E.; Bougle, D.; Pellissier, A.; Ribault, V.; Maragnes, P.; Milliez, P.; Saloux, E. Alterations of Left Ventricular Myocardial Strain in Obese Children. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Kamal, H.M.; Atwa, H.A.; Saleh, O.M.; Mohamed, F.A. Echocardiographic Evaluation of Cardiac Structure and Function in Obese Egyptian Adolescents. Cardiol. Young 2012, 22, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.A.; Singh, G.K. Early Ventricular Remodeling and Dysfunction in Obese Children and Adolescents. Curr. Treat. Opt. Cardiovasc. Med. 2014, 16, 340. [Google Scholar] [CrossRef]
- Wirix, A.J.G.; Kaspers, P.J.; Nauta, J.; Chinapaw, M.J.M.; Kist-van Holthe, J.E. Pathophysiology of Hypertension in Obese Children: A Systematic Review. Obes. Rev. 2015, 16, 831–842. [Google Scholar] [CrossRef]
- Dahiya, R.; Shultz, S.P.; Dahiya, A.; Fu, J.; Flatley, C.; Duncan, D.; Cardinal, J.; Kostner, K.M.; Byrne, N.M.; Hills, A.P.; et al. Relation of Reduced Preclinical Left Ventricular Diastolic Function and Cardiac Remodeling in Overweight Youth to Insulin Resistance and Inflammation. Am. J. Cardiol. 2015, 115, 1222–1228. [Google Scholar] [CrossRef]
- Porcar-Almela, M.; Codoñer-Franch, P.; Tuzón, M.; Navarro-Solera, M.; Carrasco-Luna, J.; Ferrando, J. Left Ventricular Diastolic Function and Cardiometabolic Factors in Obese Normotensive Children. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 108–115. [Google Scholar] [CrossRef]
- Murdolo, G.; Angeli, F.; Reboldi, G.; Di Giacomo, L.; Aita, A.; Bartolini, C.; Vedecchia, P. Left Ventricular Hypertrophy and Obesity: Only a Matter of Fat? High Blood Press. Cardiovasc. Prev. 2015, 22, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Brady, T.M. The Role of Obesity in the Development of Left Ventricular Hypertrophy among Children and Adolescents. Curr. Hypertens. Rep. 2016, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. Br. Med. J. 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- Androutsos, O.; Grammatikaki, E.; Moschonis, G.; Roma-Giannikou, E.; Chrousos, G.P.; Manios, Y.; Kanaka-Gantenbein, C. Neck Circumference: A Useful Screening Tool of Cardiovascular Risk in Children. Pediatr. Obes. 2012, 7, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Serdula, M.K.; Srinivasan, S.R.; Berenson, G.S. Relation of Circumferences and Skinfold Thicknesses to Lipid and Insulin Concentrations in Children and Adolescents: The Bogalusa Heart Study. Am. J. Clin. Nutr. 1999, 69, 308–317. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical Longitudinal Standards for Height, Weight, Height Velocity, Weight Velocity, and Stages of Puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef]
- Motamed, N.; Perumal, D.; Zamani, F.; Ashrafi, H.; Haghjoo, M.; Saeedian, F.S.; Maadi, M.; Akhavan-Niaki, H.; Rabiee, B.; Asouri, M. Conicity Index and Waist-to-Hip Ratio Are Superior Obesity Indices in Predicting 10-Year Cardiovascular Risk among Men and Women. Clin. Cardiol. 2015, 38, 527–534. [Google Scholar] [CrossRef]
- Santos, S.; Severo, M.; Lopes, C.; Oliveira, A. Anthropometric Indices Based on Waist Circumference as Measures of Adiposity in Children. Obesity 2018, 26, 810–813. [Google Scholar] [CrossRef]
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis Model Assessment Is More Reliable than the Fasting Glucose/Insulin Ratio and Quantitative Insulin Sensitivity Check Index for Assessing Insulin Resistance among Obese Children and Adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; De Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017. [Google Scholar] [CrossRef]
- Khoury, P.R.; Mitsnefes, M.; Daniels, S.R.; Kimball, T.R. Age-Specific Reference Intervals for Indexed Left Ventricular Mass in Children. J. Am. Soc. Echocardiogr. 2009, 22, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Loggie, J.M.H.; Khoury, P.; Kimball, T.R. Left Ventricular Geometry and Severe Left Ventricular Hypertrophy in Children and Adolescents With Essential Hypertension. Circulation 1998, 97, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Victor, M.A.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28. [Google Scholar] [CrossRef] [PubMed]
- Kharod, A.M.; Ramlogan, S.R.; Kumar, S.; Raghuveer, T.; Drake, W.; Dai, H.; Raghuveer, G. Childhood Obesity Increases Left-Ventricular Mass Irrespective of Blood Pressure Status. Pediatr. Cardiol. 2014, 35, 353–360. [Google Scholar] [CrossRef]
- Jing, L.; Nevius, C.D.; Friday, C.M.; Suever, J.D.; Pulenthiran, A.; Mejia-Spiegeler, A.; Kirchner, H.L.; Cochran, W.J.; Wehner, G.J.; Chishti, A.S.; et al. Ambulatory Systolic Blood Pressure and Obesity Are Independently Associated with Left Ventricular Hypertrophic Remodeling in Children. J. Cardiovasc. Magn. Reson. 2017, 19, 86. [Google Scholar] [CrossRef]
- Di Bonito, P.; Capaldo, B.; Forziato, C.; Sanguigno, E.; Di Fraia, T.; Scilla, C.; Cavuto, L.; Saitta, F.; Sibilio, G.; Moio, N. Central Adiposity and Left Ventricular Mass in Obese Children. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 613–617. [Google Scholar] [CrossRef]
- Mehta, S.K. Waist Circumference to Height Ratio and Left Ventricular Mass in Children and Adolescents. Cardiol. Young 2016, 26, 658–662. [Google Scholar] [CrossRef]
- Rodicio, M.M.; Domenech de Miguel, V.; Guinda Jiménez, M.; Cigarrán Guldrís, S.; López Franco, M.M.; Estany Gestal, A.; Couce, M.L.; Leis Trabazo, M.R. Early Cardiac Abnormalities in Obese Children and Their Relationship with Adiposity. Nutrition 2018, 46, 83–89. [Google Scholar] [CrossRef]
- Kinik, S.T.; Varan, B.; Yildirim, S.V.; Tokel, K. The Effect of Obesity on Echocardiographic and Metabolic Parameters in Childhood. J. Pediatr. Endocrinol. Metab. 2006, 19, 1007–1014. [Google Scholar] [CrossRef]
- Muiesan, M.L.; Lupia, M.; Salvetti, M.; Grigoletto, C.; Sonino, N.; Boscaro, M.; Agabiti Rosei, E.; Mantero, F.; Fallo, F. Left Ventricular Structural Andnfunctional Characteristics in Cushing’s Syndrome. J. Am. Coll. Cardiol. 2003, 41, 2275–2279. [Google Scholar] [CrossRef]
- Pereira, A.M.; Delgado, V.; Romijn, J.A.; Smit, J.W.A.; Bax, J.J.; Feelders, R.A. Cardiac Dysfunction Is Reversed upon Successful Treatment of Cushing’s Syndrome. Eur. J. Endocrinol. 2010, 162, 331–340. [Google Scholar] [CrossRef]
- Pivonello, R.; De Martino, M.C.; Iacuaniello, D.; Simeoli, C.; Muscogiuri, G.; Carlomagno, F.; De Leo, M.; Cozzolino, A.; Colao, A. Metabolic Alterations and Cardiovascular Outcomes of Cortisol Excess. Front. Horm. Res. 2016, 46, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Adolf, C.; Köhler, A.; Franke, A.; Lang, K.; Riester, A.; Löw, A.; Heinrich, D.A.; Bidlingmaier, M.; Treitl, M.; Ladurner, R.; et al. Cortisol Excess in Patients with Primary Aldosteronism Impacts Left Ventricular Hypertrophy. J. Clin. Endocrinol. Metab. 2018, 103, 4543–4552. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.E.; Eisenmann, J.C.; Gentile, D.; Holmes, M.E.; Walsh, D. The Association between Morning Cortisol and Adiposity in Children Varies by Weight Status. J. Pediatr. Endocrinol. Metab. 2011, 24, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Toprak, A.; Wang, H.; Chen, W.; Paul, T.; Srinivasan, S.; Berenson, G. Relation of Childhood Risk Factors to Left Ventricular Hypertrophy (Eccentric or Concentric) in Relatively Young Adulthood (from the Bogalusa Heart Study). Am. J. Cardiol. 2008, 101, 1621–1625. [Google Scholar] [CrossRef]
- Falkner, B.; Deloach, S.; Keith, S.W.; Gidding, S.S. High Risk Blood Pressure and Obesity Increase the Risk for Left Ventricular Hypertrophy in African-American Adolescents. J. Pediatr. 2013, 162, 94–100. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pires, A.; Martins, P.; Pereira, A.M.; Silva, P.V.; Marinho, J.; Marques, M.; Castela, E.; Sena, C.; Seiça, R. Insulin Resistance, Dyslipidemia and Cardiovascular Changes in a Group of Obese Children. Arq. Bras. Cardiol. 2015, 104, 266–273. [Google Scholar] [CrossRef]
- Jing, L.; Binkley, C.M.; Suever, J.D.; Umasankar, N.; Haggerty, C.M.; Rich, J.; Nevius, C.D.; Wehner, G.J.; Hamlet, S.M.; Powell, D.K.; et al. Cardiac Remodeling and Dysfunction in Childhood Obesity: A Cardiovascular Magnetic Resonance Study. J. Cardiovasc. Magn. Reson. 2016, 18. [Google Scholar] [CrossRef]
- Khositseth, A.; Suthutvoravut, U.; Chongviriyaphan, N. Left Ventricular Mass and Geometry in Obese Children. Asian J. Clin. Nutr. 2009, 1, 58–64. [Google Scholar] [CrossRef]
- Ghandi, Y.; Sharifi, M.; Habibi, D.; Dorreh, F.; Hashemi, M. Evaluation of Left Ventricular Function in Obese Children without Hypertension by a Tissue Doppler Imaging Study. Ann. Pediatr. Cardiol. 2018, 11, 28–33. [Google Scholar] [CrossRef]
- Kibar, A.E.; Pac, F.A.; Balli, S.; Oflaz, M.B.; Ece, I.; Bas, V.N.; Aycan, Z. Early Subclinical Left-Ventricular Dysfunction in Obese Nonhypertensive Children: A Tissue Doppler Imaging Study. Pediatr. Cardiol. 2013, 34, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, C.; Armeno, M.; Mazza, C.S. Waist-to-Height Ratio as a Marker of Low-Grade Inflammation in Obese Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2016, 29, 543–551. [Google Scholar] [CrossRef]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Cañete, R.; Tojo, R.; Moreno, L.A.; Gil, A. Waist-to-Height Ratio, Inflammation and CVD Risk in Obese Children. Public Health Nutr. 2013, 17, 2378–2385. [Google Scholar] [CrossRef]
- Hara, M.; Saitou, E.; Iwata, F.; Okada, T.; Harada, K. Waist-to-Height Ratio Is the Best Predictor of Cardiovascular Disease Risk Factors in Japanese Schoolchildren. J. Atheroscler. Thromb. 2002, 9, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A Systematic Review of Waist-to-Height Ratio as a Screening Tool for the Prediction of Cardiovascular Disease and Diabetes: 05 Could Be a Suitable Global Boundary Value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef]
- Shah, S.J.; Marcus, G.M.; Gerber, I.L.; McKeown, B.H.; Vessey, J.C.; Jordan, M.V.; Huddleston, M.; Foster, E.; Chatterjee, K.; Michaels, A.D. High-Sensitivity C-Reactive Protein and Parameters of Left Ventricular Dysfunction. J. Card. Fail. 2006, 12, 61–65. [Google Scholar] [CrossRef]
- Masugata, H.; Senda, S.; Inukai, M.; Murao, K.; Tada, S.; Hosomi, N.; Iwado, Y.; Noma, T.; Kohno, M.; Himoto, T.; et al. Association between High-Sensitivity C-Reactive Protein and Left Ventricular Diastolic Function Assessed by Echocardiography in Patients with Cardiovascular Risk Factors. Tohoku J. Exp. Med. 2011, 223, 263–268. [Google Scholar] [CrossRef][Green Version]
- Wang, K.-T.; Liu, Y.-Y.; Sung, K.-T.; Liu, C.-C.; Su, C.-H.; Hung, T.-C.; Hung, C.-L.; Chien, C.-Y.; Yeh, H.-I. Circulating Monocyte Count as a Surrogate Marker for Ventricular-Arterial Remodeling and Incident Heart Failure with Preserved Ejection Fraction. Diagnostics 2020, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- El Saiedi, S.A.; Mira, M.F.; Sharaf, S.A.; Al Musaddar, M.M.; El Kaffas, R.M.H.; Abdelmassih, A.F.; Barsoum, I.H.Y. Left Ventricular Diastolic Dysfunction without Left Ventricular Hypertrophy in Obese Children and Adolescents: A Tissue Doppler Imaging and Cardiac Troponin I Study. Cardiol. Young 2018, 28, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.A.A.; Mota, C.C.C.; Simões e Silva, A.C.; Nunes, M.d.C.P.; Barbosa, M.M. Assessing Pre-Clinical Ventricular Dysfunction in Obese Children and Adolescents: The Value of Speckle Tracking Imaging. Eur. Hear. J. Cardiovasc. Imaging 2013, 14, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Bajraktari, G.; Koltai, M.S.; Ademaj, F.; Rexhepaj, N.; Qirko, S.; Ndrepepa, G.; Elezi, S. Relationship between Insulin Resistance and Left Ventricular Diastolic Dysfunction in Patients with Impaired Glucose Tolerance and Type 2 Diabetes. Int. J. Cardiol. 2006, 110, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Stabouli, S.; Kotsis, V.; Toumanidis, S.; Papamichael, C.; Constantopoulos, A.; Zakopoulos, N. White-Coat and Masked Hypertension in Children: Association with Target-Organ Damage. Pediatr. Nephrol. 2005, 20, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Tobisch, B.; Blatniczky, L.; Barkai, L. Cardiometabolic Risk Factors and Insulin Resistance in Obese Children and Adolescents: Relation to Puberty. Pediatr. Obes. 2015, 10, 37–44. [Google Scholar] [CrossRef] [PubMed]
Parameters | NW (n = 26) | OB (n = 36) | p |
---|---|---|---|
Sex (Male/Female) | 16/10 | 24/12 | 0.79 |
Age (years) | 9.65 ± 1.57 | 9.76 ± 1.28 | 0.772 |
BMI (kg/m2) | 17.09 ± 1.54 | 26.5 ± 3.43 | 0.000 |
BMI z score | 0.11 ± 0.66 | 2.14 ± 0.32 | 0.000 |
NC (cm) | 28.99 ± 1.93 | 33.29 ± 1.96 | 0.000 |
WHR | 0.87 ± 0.05 | 0.93 ± 0.04 | 0.000 |
WHtR | 0.44 ± 0.03 | 0.59 ± 0.05 | 0.000 |
Triceps fold (mm) | 8.12 ± 2.43 | 20.28 ± 3.9 | 0.000 |
Subscapular fold (mm) | 6.17 ± 1.62 | 20.46 ± 5.51 | 0.000 |
Suprailiac fold (mm) | 5.95 ± 1.87 | 19.3 ± 4.04 | 0.000 |
Parameters | Non Overweight (n = 26) | Overweight (n = 36) | p |
---|---|---|---|
UA (mg/dL) | 3.29 ± 0.63 | 4.9 ± 1.04 | 0.000 |
TC (mg/dL) | 163.59 ± 27.16 | 170.67 ± 38.26 | 0.452 |
HDL (mg/dL) | 73.72 ± 20.59 | 54.53 ± 14.73 | 0.001 |
LDL (mg/dL) | 77.18 ± 18.18 | 98.14 ± 28.93 | 0.004 |
TG (mg/dL) | 64.59 ± 26.65 | 89.5 ± 45.50 | 0.023 |
hs-CRP(mg/dL) | 0.04 ± 0.05 | 0.28 ± 0.19 | 0.000 |
HbA1c (%) | 5.15 ± 0.31 | 5.26 ± 0.29 | 0.225 |
Cortisol (μg/dL) | 9.44 ± 5.05 | 8.73 ± 4.93 | 0.601 |
HOMA-IR | 1.66 ± 0.68 | 2.95 ± 1.51 | 0.000 |
Insulin (μIU/mL) | 7.83 ± 3.27 | 14.4 ± 7.38 | 0.000 |
Parameters | NW (n = 26) | OB (n = 36) | p |
---|---|---|---|
SBP (mmHg) | 101.15 ± 10.23 | 107.58 ± 7.84 | 0.07 |
DBP (mmHg) | 64.35 ± 11.15 | 66.25 ± 7.7 | 0.43 |
LAD (mm) | 24.7 ± 3.29 | 29.13 ± 3.44 | 0.000 |
IVSd (mm) | 6.63 ± 0.67 | 8.05 ± 1.03 | 0.000 |
LVIDd (mm) | 38.19 ± 4.05 | 42.64 ± 3.50 | 0.000 |
LVPWd (mm) | 6.77 ± 0.68 | 8.26 ± 1.02 | 0.000 |
EF% | 72.46 ± 5.05 | 72.85 ± 4.22 | 0.747 |
E(m/s) | 1.00 ± 0,16 | 1.08 ± 0.20 | 0.124 |
A(m/s) | 0.49 ± 0.09 | 0.62 ± 0.12 | 0.000 |
E/A | 2.08 ± 0.56 | 1.76 ± 0.33 | 0.013 |
e’(m/s) | 0.18 ± 0.03 | 0.18 ± 0.02 | 0.345 |
a’(m/s) | 0.08 ± 0.16 | 0.08 ± 0.02 | 0.139 |
E/e’ | 5.43 ± 0.96 | 6.04 ± 1.13 | 0.032 |
LVM (gr) | 70.19 ± 19.32 | 109.04 ± 31.94 | 0.000 |
LVMI | 28.31 ± 6.22 | 40.05 ± 9.44 | 0.000 |
Parameters | HOMA-IR | LVMI | E/A | E/e’ | ||||
---|---|---|---|---|---|---|---|---|
All | Obese | All | Obese | All | Obese | All | Obese | |
HOMA-IR | - | - | 0.167 | −0.028 | −0.086 | 0.239 | 0.031 | −0.074 |
LVMI | 0.167 | −0.028 | - | - | −0.174 | −0.083 | 0.175 | −0.030 |
E/A | −0.086 | 0.239 | −0.174 | −0.083 | - | - | 0.236 | 0.277 |
E/e’ | 0.031 | −0.074 | 0.175 | −0.030 | 0.210 | 0.277 | - | - |
BMI | 0.528 ** | 0.236 | 0.585 ** | 0.387 * | −0.369 ** | −0.232 | 0.114 | −0.146 |
NC | 0.577 ** | 0.273 | 0.578 ** | 0.429 * | −0.287 * | −0.200 | 0.234 | −0.104 |
WC | 0.555 ** | 0.250 | 0.580 ** | 0.280 | −0.376 ** | −0.357 * | 0.158 | −0.126 |
WHR | 0.187 | −0.100 | 0.483 ** | 0.280 | −0.275 * | −0.307 | 0.358 ** | 0.021 |
WHtR | 0.412 ** | −0.030 | 0.632 ** | 0.414 * | −0.439 ** | −0.347 * | 0.166 | −0.091 |
Triceps | 0.543 ** | 0.306 | 0.573 ** | 0.375 * | −0.377 ** | −0.231 | 0.205 | −0.047 |
Subscapular | 0.525 ** | 0.299 | 0.534 ** | 0.205 | −0.398 ** | −0.272 | 0.288 ** | −0.026 |
Suprailiac | 0.545 ** | 0.335 | 0.590 ** | 0.333 | −0.242 | 0.162 | 0.364 ** | −0.053 |
SAP | 0.319 * | 0.477** | 0.269 * | 0.114 | 0.072 | 0.056 | 0.161 | 0.073 |
UA | 0.628 ** | 0.263 | 0.447 ** | 0.021 | −0.184 | −0.028 | 0.346 ** | 0.050 |
TC | −0.131 | −0.351 | −0.100 | −0.100 | −0.079 | −0.212 | 0.000 | −0.048 |
HDL | −0.569 ** | −0.252 | −0.308 * | 0.044 | 0.355 * | 0.274 | −0.096 | 0.329 |
LDL | 0.199 | −0.378 | 0.191 | −0.050 | −0.248 | 0.160 | 0.123 | −0.030 |
TG | 0.406 ** | 0.437* | 0.039 | −0.023 | −0.188 | −0.009 | −0.015 | −0.186 |
hs-CRP | 0.708 ** | 0.002 | 0.510 ** | 0.232 | 0.510 ** | 0.232 | 0.122 | −0.129 |
Cortisol | −0.088 | −0.038 | 0.160 | 0.252 | 0.160 | 0.252 | 0.122 | −0.084 |
Variables | Beta (OR) | S.E | p |
---|---|---|---|
Sex | −1.609 (0.2) | 1.044 | 0.123 |
SBP | −0.053 (0.948) | 0.057 | 0.354 |
Cortisol * | 2.851 (17.305) | 1.0209 | 0.018 |
WHtR | 0.259 (1.296) | 0.109 | 0.018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannisi, F.; Keivanidou, A.; Sakellari, I.; Balala, S.; Hassapidou, M.; Hitoglou-Makedou, A.; Giannopoulos, A. Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children. Diagnostics 2020, 10, 468. https://doi.org/10.3390/diagnostics10070468
Giannisi F, Keivanidou A, Sakellari I, Balala S, Hassapidou M, Hitoglou-Makedou A, Giannopoulos A. Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children. Diagnostics. 2020; 10(7):468. https://doi.org/10.3390/diagnostics10070468
Chicago/Turabian StyleGiannisi, Filippina, Anastasia Keivanidou, Ioanna Sakellari, Sofia Balala, Maria Hassapidou, Areti Hitoglou-Makedou, and Andreas Giannopoulos. 2020. "Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children" Diagnostics 10, no. 7: 468. https://doi.org/10.3390/diagnostics10070468
APA StyleGiannisi, F., Keivanidou, A., Sakellari, I., Balala, S., Hassapidou, M., Hitoglou-Makedou, A., & Giannopoulos, A. (2020). Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children. Diagnostics, 10(7), 468. https://doi.org/10.3390/diagnostics10070468