Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 2020, 92, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Promislow, D.E.L. A geroscience perspective on COVID-19 mortality. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality of COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 2020, 27, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Woo, P.C.; Lau, S.K.; Wong, B.H.; Tsoi, H.W.; Fung, A.M.; Kao, R.Y.; Chan, K.H.; Peiris, J.S.; Yuen, K.Y. Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol. 2005, 43, 3054–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.K.; Sue, S.C.; Yu, T.H.; Hsieh, C.M.; Tsai, C.K.; Chiang, Y.C.; Lee, S.J.; Hsiao, H.H.; Wu, W.J.; Chang, W.L.; et al. Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 2006, 13, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, K.R.; Koetzner, C.A.; Masters, P.S. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J. Virol. 2009, 83, 7221–7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. The Laboratory Diagnosis of COVID-19 Infection: Current Issues and Challenges. J. Clin. Microbiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e286. [Google Scholar] [CrossRef]
- Zheng, M.; Song, L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol. Immunol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur. Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2020, 25. [Google Scholar] [CrossRef] [Green Version]
- ECDC. Novel Coronavirus Disease 2019 (COVID-19) Pandemic: Increased Transmission in the EU/EEA and the UK—Sixth Update—12 March 2020; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020. [Google Scholar]
- Service, R.F. The standard coronavirus test, if available, works well—But can new diagnostics help in this pandemic? ScienceMag 2020. [Google Scholar] [CrossRef]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. New Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J. Clin. Med. 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Forero, D.A.; Lopez-Leon, S.; González-Giraldo, Y.; Bagos, P.G. Ten simple rules for carrying out and writing meta-analyses. PLoS Comput. Biol. 2019, 15, e1006922. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Zhu, F.; Guo, F.; Yang, B.; Wang, T. Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Liu, R.; Liu, X.; Han, H.; Shereen, M.A.; Niu, Z.; Li, D.; Liu, F.; Wu, K.; Luo, Z.; Zhu, C. The comparative superiority of IgM-IgG antibody test to real-time reverse transcriptase PCR detection for SARS-CoV-2 infection diagnosis. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Yan, M.; Li, H.; Liu, T.; Lin, C.; Huang, S.; Shen, C. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold—Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19). medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.A.T.; Gao, D.C.; Zhang, D.S. Profile of Specific Antibodies to SARS-CoV-2: The First Report. J. Infect. 2020. [Google Scholar] [CrossRef]
- Lassaunière, R.; Frische, A.; Harboe, Z.B.; Nielsen, A.C.Y.; Fomsgaard, A.; Krogfelt, K.A.; Jørgensen, C.S. Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Lou, B.; Li, T.; Zheng, S.; Su, Y.; Li, Z.; Liu, W.; Yu, F.; Ge, S.; Zou, Q.; Yuan, Q.; et al. Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Zhu, C.; Feng, F.; Qiu, Y.; Feng, J.; Jia, Q.; Song, Q.; Zhu, B.; Wang, J. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y. Dynamic profile of severe or critical COVID-19 cases. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, H.; Li, J.; Yang, C.; Guo, X.; Hu, Z.; Chen, Z.; Wang, S.; Liu, J. Elevated serum IgM levels indicate poor outcome in patients with coronavirus disease 2019 pneumonia: A retrospective case-control study. medRxiv 2020. [Google Scholar] [CrossRef]
- Lin, D.; Liu, L.; Zhang, M.; Hu, Y.; Yang, Q.; Guo, J.; Dai, Y.; Xu, Y.; Cai, Y.; Chen, X.; et al. Evaluations of serological test in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; An, T.; Situ, B.; Hu, Y.; Ou, Z.; Li, Q.; He, X.; Zhang, Y.; Tian, P.; Sun, D.; et al. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Zhang, P.; Tian, Y.; Wang, J.; Zeng, H.; Wang, J.; Jiao, L.; Chen, Z.; Zhang, L.; He, H.; et al. Clinical significance of IgM and IgG test for diagnosis of highly suspected COVID-19 infection. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Van Houwelingen, H.C.; Zwinderman, K.H.; Stijnen, T. A bivariate approach to meta-analysis. Stat. Med. 1993, 12, 2273–2284. [Google Scholar] [CrossRef]
- Arends, L.R.; Hamza, T.H.; van Houwelingen, J.C.; Heijenbrok-Kal, M.H.; Hunink, M.G.; Stijnen, T. Bivariate random effects meta-analysis of ROC curves. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2008, 28, 621–638. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Chu, H. A unification of models for meta-analysis of diagnostic accuracy studies without a gold standard. Biometrics 2015, 71, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629. [Google Scholar] [CrossRef] [Green Version]
- White, I.R. Multivariate random-effects meta-regression: Updates to mvmeta. Stata J. 2011, 11, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.L.; Wang, J.Y.; Zhou, Y.Q.; Yu, D.S.; Gao, X.M.; Li, L.L.; Yang, F. Analysis of the first cluster of cases in a family of novel coronavirus pneumonia in Gansu Province. Zhonghua Yu Fang Yi Xue Za Zhi Chin. J. Prev. Med. 2020, 54, E005. [Google Scholar] [CrossRef]
- Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Ling, E.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.; Saavedra, R.; Tedrow, J.; et al. COVID-19 Antibody Seroprevalence in Santa Clara County, California. medRxiv 2020. [Google Scholar] [CrossRef]
- Cassaniti, I.; Novazzi, F.; Giardina, F.; Salinaro, F.; Sachs, M.; Perlini, S.; Bruno, R.; Mojoli, F.; Baldanti, F. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yuan, Y.; Li, T.T.; Wang, W.X.; Li, Y.X.; Li, A.; Han, F.M. Evaluation the auxiliary diagnosis value of antibodies assays for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). medRxiv 2020. [Google Scholar] [CrossRef]
- Garcia, F.P.; Perez Tanoira, R.; Romanyk Cabrera, J.P.; Arroyo Serrano, T.; Gomez Herruz, P.; Cuadros Gonzalez, J. Rapid diagnosis of SARS-CoV-2 infection by detecting IgG and IgM antibodies with an immunochromatographic device: A prospective single-center study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Wang, M.; Zuo, Z.; Fan, C.; Ye, F.; Cai, Z.; Wang, Y.; Cui, H.; Pan, K.; Xu, A. Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 94, 49–52. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Wang, S.; Zheng, S. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S.; et al. Evaluation of Nucleocapsid and Spike Protein-based ELISAs for detecting antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, Y.; Diao, B.; Ren, F.; Wang, Y.; Ding, J.; Huang, Q. Diagnostic Indexes of a Rapid IgG/IgM Combined Antibody Test for SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Long, Q.-X.; Deng, H.-J.; Chen, J.; Hu, J.; Liu, B.-Z.; Liao, P.; Lin, Y.; Yu, L.-H.; Mo, Z.; Xu, Y.-Y.; et al. Antibody responses to SARS-CoV-2 in COVID-19 patients: The perspective application of serological tests in clinical practice. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Okba, N.M.A.; Muller, M.A.; Li, W.; Wang, C.; GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Yang, G.; Fan, J.; Tang, Y.; Zhao, J.; Long, X.; Guo, S.; Zhao, Z.; Liu, Y.; et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J. Infect. 2020. [Google Scholar] [CrossRef]
- Paradiso, A.V.; De Summa, S.; Loconsole, D.; Procacci, V.; Sallustio, A.; Centrone, F.; Silvestris, N.; Cafagna, V.; De Palma, G.; Tufaro, A.; et al. Clinical meanings of rapid serological assay in patients tested for SARS-Co2 RT-PCR. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Lu, Y.; Zhang, J.; Wang, J.; Dan, Y.; Tan, Z.; He, X.; Qian, C.; Sun, Q.; Hu, Q.; et al. Viral Kinetics and Antibody Responses in Patients with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Xu, C.; Fan, J.; Tang, Y.; Deng, Q.; Zhang, W.; Long, X. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA 2020. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, L.; Pan, Y.; Deng, Q.; Ye, G.; Li, Y.; Wang, X. Re: Profile of specific antibodies to SARS-CoV-2: The first report. J. Infect. 2020. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Li, N.; Liu, Y.; Ye, R.; Qin, X.; Zheng, R. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gao, Q.; Wang, T.; Ke, Y.; Mo, F.; Jia, R.; Liu, W.; Liu, L.; Zheng, S.; Liu, Y.; et al. Evaluation of recombinant nucleocapsid and spike proteins for serological diagnosis of novel coronavirus disease 2019 (COVID-19). medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Li, M.; Song, H.; Chen, J.; Ren, W.; Feng, Y.; Song, J.-W.; Peng, Y.; Su, B.; Guo, X.; et al. Serological diagnostic kit of SARS-CoV-2 antibodies using CHO-expressed full-length SARS-CoV-2 S1 proteins. medRxiv 2020. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, J.; Guo, H.; Lu, Z.; Ma, Y.; Zhu, Y.; Xia, D.; Wang, Y.; He, H.; Zhou, J.; et al. Risk-adapted Treatment Strategy For COVID-19 Patients. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Chuan, J.; Gong, B.O.; Shuai, P.; Zhou, Y.; Zhang, Y.; Jiang, Z.; Zhang, D.; Liu, X.; Ma, S.; et al. Detection of serum IgM and IgG for COVID-19 diagnosis. Sci. China Life Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA 2020. [Google Scholar] [CrossRef] [Green Version]
- Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020. [Google Scholar] [CrossRef]
- Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S.; Ling, Y.; Zhang, Y.; Xun, J.; Lu, L.; et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020. [Google Scholar] [CrossRef]
- Bao, L.; Deng, W.; Gao, H.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Liu, J.; Yu, P.; Xu, Y.; et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
Author [Ref] | Covid19/Healthy | Covid19 Ascertainment | Severe Covid19 (%) | Male Cases (%) | Cases Age | Days from Onset | Antibodies | Method | Company | Limit of Detection IgM/IgG | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Liu [27] | 238/120 | RT-PCR/clinical features | NR | 58 | 55 | 14 | IgM (N)/IgG (N) | ELISA | ZhuHai LivZon, Diagnostics | A450: 0.100/0.130 | 0.11–0.81 | 0.96–0.99 |
Long [55] | 262/148 | RT-PCR | 13.6 | 55.4 | 47 | 13 | IgM (N,S)/IgG (N,S) | CLIA | Bioscience (Chongqing) Co., Ltd. | NR | 0.67–0.80 | 0.95 |
Jia [38] | 33/242 | NR-NAT/clinical features | NR | NR | NR | 15 | IgM (N,S)/IgG (N,S) | FIA | Beijing Diagreat Biotechnologies Co., Ltd. | Fluorescence Intensity: 0.88/1.02 (Flu units) | 0.45–0.72 | 0.95 |
Liu [54] | 95/84 | RT-PCR | 49 | 70 | 76 | 18 | IgM (N)/IgG (N) | LFIA | Not Reported (a Chinese Company) | NA | 0.37–0.86 | 0.93–0.94 |
Xu [33] | 10/0 | NAT/sequencing | 100 | 60 | NR | 22 | IgM (S)/IgG (S) | LFIA | In-house test | NA | 0.3–0.9 | NA |
Wang [34] | 116/0 | RT-PCR/clinical features | 12.9 | 56 | 68.8 | 31 | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 1 | NA |
Xiang [28] | 63/35 ELISA, 91/35 LFIA | RT-PCR/clinical features | 6.3 | 55.5 | 57.82 | NR | IgM (N,S)/IgG (N,S) | ELISA/LFIA | ZhuHai LivZon, Diagnostics Inc.BioEasy/Shenzhen BioEasy Biotechnology Co. | NR/NA | 0.44–0.87 | 1 |
Zhang [64] | 154/660 | RT-PCR/clinical features | NR | NR | NR | NR | IgM (S)/IgG (S) | LFIA | In-house test | NA | 0.82 | 0.99 |
Lin [35] | 79/80 | RT-PCR/clinical features | NR | 35 | 43.6 | 14 | IgM (N)/IgG (N) | ELISA/CLIA | Darui Biotech, China/Tianshen Tech, Shenzhen, China | NR/NR | 0.23–0.91 | 0.78–1 |
Hu [37] | 34/9 | RT-PCR | NR | NR | NR | NR | IgM (N,S)/IgG (N,S) | FIA | KingFocus Biomedical engineering Co., Ltd. | Cutoff values were based on of seronegative samples | 0.97-1 | 1 |
Zhang [32] | 222/0 | RT-PCR | 39.2 | 48.2 | 64 | 20 | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) and the high-speed CLIA system iFlash 3000, BATCH ANALYZER | Cutoff values were based on of seronegative samples | 0.83–0.99 | NA |
Okba [56] | 12/0 | RT-PCR | NR | NR | NR | 11 | IgG (S) | ELISA | EUROIMMUN Medizinische Labordiagnostika AG | Cutoff values set by mean of seronegative samples plus 6SD | 0.92 | 1 |
Zhang [63] | 3/733 | RT-PCR/clinical features | 66.6 | 66.6 | 50.67 | 10 | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 1 | 0.98 |
Zhao [66] | 69/412 | NR-NAT/clinical features | NR | NR | NR | NR | IgM (S)/IgG (S) | ELISA | In-house test | Cutoff values were based on seronegative samples | 0.97 | 0.97 |
Pan [57] | 86/0 | RT-PCR/clinical features | NR | 45.7 | 58 | 12 | IgM (N,S)/IgG (N,S) | LFIA | ZhuHai LivZon, Diagnostics | NA | 0.55–0.69 | NA |
Lou [31] | 80/300 | RT-PCR/clinical features | 33 | 61.3 | 55 | 15 | IgM (N,S)/IgG (N,S) | ELISA/CLIA/LFIA | Beijing Wantai Biological Pharmacy Enterprise Co., Ltd., China (Beijing, China)/Xiamen InnoDx Biotech Co., Ltd. | NR/NR/NA | 0.86–0.97 | 0.95–1 |
Liu [27] | 133/0 | RT-PCR/clinical features | 66.9 | 52.6 | 68.5 | NR | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 0.79–0.97 | NA |
Tan [59] | 65/0 | RT-PCR/clinical features | 43.3 | 52.2 | 49 | 15 | IgM (N)/IgG (N) | ELISA | ZhuHai LivZon, Diagnostics | Titer cutoff value set according to non-responders | 0.43–0.78 | NA |
To [60] | 16/0 | RT-PCR/sequencing/clinical features | 43.5 | 56.5 | 62 | 20 | IgM (N,S)/IgG (N,S) | ELISA | In-house test | Cutoff set by mean of seronegative samples plus 3SD | 0.87–1 | NA |
Xiao [29] | 34/0 | RT-PCR/clinical features | NR | 64.7 | 55 | 25 | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 0.82–0.94 | NA |
Cassaniti [47] | 30/38 | RT-PCR | NR | 83.3 | 73.5/61.5 | 7 | IgM (N,S)/IgG (N,S) | LFIA | VivaChekTM | NA | 0.13–0.83 | 1 |
Liu [53] | 214/100 | RT-PCR | NR | NR | NR | 15 | IgM (N,S)/IgG (N,S) | ELISA | ZhuHai LivZon, Diagnostics | A450: 0.100/0.130 | 0.68–0.77 | 1 |
Li [26] | 397/128 | RT-PCR | NR | NR | NR | 20 | IgM (S)/IgG (S) | LFIA | Jiangsu Medomics Medical Technologies | NA | 0.7–0.82 | 0.91 |
Zhao [65] | 173/0 | RT-PCR/clinical features | 18.5 | 48.5 | 48 | 7 | IgM (S)/IgG (S) | ELISA | Beijing Wantai Biological Pharmacy Enterprise Co., Ltd. | Cutoff value set by seronegative samples | 0.65–0.93 | NA |
Bai [45] | 6/0 | RT-PCR/clinical features | 16.7 | 50 | 49 | 2 | IgM (N,S) | LFIA | Institute of Microbiology and Epidemiology of the Military Medical Research Institute and Beijingh Rejing Biotecnology Co., Ltd. | NA | 0.83 | NA |
Zheng [67] | 55/0 | RT-PCR/clinical features | 40 | 43.6 | 60 | 11 | IgM (N,S)/IgG (N,S) | CLIA | Not Reported | NR | 0.82–0.98 | NA |
Zeng [61] | 6/0 | RT-PCR/clinical features | 0 | 0 | NR | NR | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 0.83 | 1 |
Guo [50] | 140/285 | RT-PCR/sequencing/clinical features | 23.6 | NR | NR | 13 | IgM (N) | ELISA | In-house test | A450: 0.130/0.300 | 0.83 | 1 |
Jin [51] | 27/33 | RT-PCR | 0 | 39.5 | 47 | 16 | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 0.48–0.89 | 0.9-1 |
Du [25] | 60/0 | NR-NAT/clinical features | NR | NR | NR | 43 | IgM (N,S)/IgG (N,S) | CLIA | YHLO Biotechnology (Shenzhen, China) | 10 AU/mL | 0.78–1 | NA |
Wölfel [36] | 9/0 | RT-PCR/clinical features | 0 | NR | NR | 18 | IgM (S)/IgG (S) | FIA | In-house with reagents from Euroimmun AG, Lübeck, Germany | NR | 0.66–1 | NA |
Zhong [68] | 47/300 | NR-NAT | 23.4 | 34 | 48.21 | 15 | IgM (N,S)/IgG (N,S) | ELISA / CLIA | In-house test | A450: IgM(N) 0.059, IgM(S) 0.167/IgG(N) 0.036, IgG(S) 0.079/NR | 0.89–0.98 | 0.85–0.97 |
Lassaunière [30] | 30/82 | RT-PCR | 100 | NR | NR | NR | IgM (N,S)/IgG (N,S) | ELISA / LFIA | Εuroimmun Medizinische Labordiagnostika, Lübeck, Germany/Beijing Wantai Biological Pharmacy Enterprise, Beijing, China/Dynamiker Biotechnology, Tianjin, China/CTK Biotech, Poway, CA, USA/AutoBio Diagnostics, Zhengzhou, China/Artron, Laboratories, Burnaby, Canada | NR/NA | 0.66–0.93 | 0.95–1 |
Gao [48] | 38/0 | RT-PCR/clinical features | 7.9 | 55.3 | 40.5 | 16 | IgM (N,S)/IgG (N,S) | LFIA | Innovita Biological Technology Co., Ltd. | NA | 0.51–0.92 | NA |
Zeng [62] | 27/36 | RT-PCR/clinical features | 63 | 51.8 | 62 | 18 | IgM (N)/IgG (N) | ELISA | ZhuHai LivZon, Diagnostics | A450: 0.105/0.105 | 1 | 1 |
Garcia [49] | 118/45 | RT-PCR/clinical features | NR | 67.8 | 65.14 | 14 | IgM (N,S)/IgG (N,S) | LFIA | Biotech AllTest, Hangzhou, China | NA | 0.31–0.69 | 1 |
Paradiso [58] | 191/0 | RT-PCR/clinical features | NR | 60.62 | 58.5 | 4 | IgM (N,S)/IgG (N,S) | LFIA | VivaChekTM | NA | 0.14–0.16 | NA |
Bendavid [46] | 122/456 | RT-PCR | NR | NR | NR | NR | IgM (N,S)/IgG (N,S) | LFIA | Premier Biotech | NA | 0.67–0.92 | 0.99–1 |
Method | Ab | Ag | Studies/Patients | Sensitivity (95% CI) | Specificity (95% CI) | Covariates | Begg’s/Egger’s |
---|---|---|---|---|---|---|---|
ELISA | IgG | N | 8/1472 | 0.747 (0.509, 0.984) | 0.994 (0.988, 0.999) | mdfo, severe | -/- |
ELISA | IgG | S | 7/1072 | 0.814 (0.688, 0.940) | 0.961 (0.910, 1.000) | - | -/- |
ELISA | IgM | N | 8/1717 | 0.722 (0.449, 0.996) | 0.995 (0.989, 1.000) | - | -/- |
ELISA | IgM | S | 6/1328 | 0.817 (0.704, 0.931) | 0.991 (0.976, 1.000) | - | -/- |
ELISA | IgG/IgM | N | 2/423 | 0.808 (0.764, 0.853) | 0.967 (0.915, 0.987) | NA | NA |
ELISA | IgG/IgM | S | 5/1244 | 0.935 (0.900, 0.971) | 0.987 (0.973, 1.000) | - | -/- |
LFIA | IgG | S | 2/535 | 0.537 (0.123, 0.951) | 0.914 (0.853, 0.951) | NA | NA |
LFIA | IgG | NS | 8/944 | 0.650 (0.404, 0.895) | 0.988 (0.973, 1.000) | mdfo | -/- |
LFIA | IgG | S/NS | 10/1479 | 0.626 (0.439, 0.814) | 0.964 (0.922, 1.000) | - | -/- |
LFIA | IgM | S | 2/535 | 0.663 (0.236, 1.000) | 0.914 (0.852, 0.951) | NA | NA |
LFIA | IgM | NS | 9/1059 | 0.528 (0.329, 0.726) | 0.986 (0 974, 0.998) | - | -/- |
LFIA | IgM | S/NS | 11/1594 | 0.555 (0.352, 0.758) | 0.979 (0.958, 0.999) | - | -/- |
LFIA | IgG/IgM | S | 2/824 | 0.828 (0.770, 0.886) | 0.994 (0.984, 0.998) | NA | NA |
LFIA | IgG/IgM | NS | 8/1373 | 0.777 (0.592. 0.962) | 0.986 (0.973, 1.000) | mdfo | -/- |
LFIA | IgG/IgM | S/NS | 10/2197 | 0.793 (0.643, 0.942) | 0.989 (0.978, 0.999) | mdfo | -/- |
LFIA | IgG/IgM | S/N/NS | 11/2376 | 0.800 (0.663, 0.935) | 0.984 (0.969, 0.999) | mdfo | -/- |
CLIA | IgG | NS | 12/2320 | 0.944 (0.906, 0.983) | 0 971 (0.931, 1.000) | mdfo | -/+ |
CLIA | IgG | N/NS | 13/2479 | 0.935 (0.896, 0.975) | 0.974 (0.953, 0.994) | mdfo | -/+ |
CLIA | IgM | NS | 12/2411 | 0.810 (0.722, 0.897) | 0.984 (0.970, 0.999) | - | -/- |
CLIA | IgM | N/NS | 13/2570 | 0.799 (0.737, 0.860) | 0.967 (0.927, 1.000) | - | -/- |
CLIA | IgG/IgM | NS | 2/790 | 0.907 (0.753, 1.000) | 0.981 (0.944, 1.000) | NA | NA |
CLIA | IgG/IgM | N/NS | 3/949 | 0.902 (0.811, 0.993) | 0.954 (0.875, 1.000) | NA | NA |
FIA | IgG | NS | 2/318 | 0.859 (0.339, 1.000) | 0.950 (0.923, 0.977) | NA | NA |
FIA | IgG | S/NS | 3/327 | 0.890 (0.591, 1.000) | 0.950 (0.923, 0.977) | NA | NA |
FIA | IgM | NS | 2/318 | 0.860 (0.500, 1.000) | 0.950 (0.923, 0.977) | NA | NA |
FIA | IgM | S/NS | 3/327 | 0.786 (0.531, 1.000) | 0.950 (0.923, 0.977) | NA | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics 2020, 10, 319. https://doi.org/10.3390/diagnostics10050319
Kontou PI, Braliou GG, Dimou NL, Nikolopoulos G, Bagos PG. Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics. 2020; 10(5):319. https://doi.org/10.3390/diagnostics10050319
Chicago/Turabian StyleKontou, Panagiota I., Georgia G. Braliou, Niki L. Dimou, Georgios Nikolopoulos, and Pantelis G. Bagos. 2020. "Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis" Diagnostics 10, no. 5: 319. https://doi.org/10.3390/diagnostics10050319
APA StyleKontou, P. I., Braliou, G. G., Dimou, N. L., Nikolopoulos, G., & Bagos, P. G. (2020). Antibody Tests in Detecting SARS-CoV-2 Infection: A Meta-Analysis. Diagnostics, 10(5), 319. https://doi.org/10.3390/diagnostics10050319