Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review
Abstract
:1. Introduction
2. Molecular Blood Culture-Independent Methods for Identification Directly from Blood Samples
3. Positive Blood Culture-Dependent Methods for Identification and Antimicrobial Susceptibility Testing of S. aureus
4. Other Rapid Antimicrobial Susceptibility Testing (AST) Phenotypic Methods Directly on Positive Blood Cultures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M.; SENTRY Partcipants Group. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32, S114–S132. [Google Scholar] [PubMed] [Green Version]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-Ce18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S. Vital signs: Epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. MMWR Morb. Mortal. Wkly Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thampi, N.; Showler, A.; Burry, L.; Bai, A.D.; Steinberg, M.; Ricciuto, D.R.; Bell, C.M.; Morris, A.M. Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: Impact of length of stay and intensity of care. Am. J. Infect. Control. 2015, 43, 739–744. [Google Scholar] [CrossRef]
- Whitby, M.; McLaws, M.L.; Berry, G. Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: A meta-analysis. Med. J. Aust. 2001, 175, 264–267. [Google Scholar] [CrossRef]
- Wolk, D.M.; Struelens, M.J.; Pancholi, P.; Davis, T.; Della-Latta, P.; Fuller, D.; Picton, E.; Dickenson, R.; Denis, O.; Johnson, D.; et al. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: Multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J. Clin. Microbiol. 2009, 47, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Hartman, B.J.; Tomasz, A. Low-affinity penicillin-binding protein associated with beta lactam resistance in Staphylococcus aureus. J. Bacteriol. 1984, 158, 513–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiramatsu, K.; Asada, K.; Suzuki, E.; Okonogi, K.; Yokota, T. Molecular cloning and nucleotide sequence determination of the regulator region of mecA gene in methicillin-resistant Staphylococcus aureus (MRSA). FEBS Lett. 1992, 298, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Katayama, Y.; Ito, T.; Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Matsuhashi, M.; Song, M.D.; Ishino, F.; Wachi, M.; Doi, M.; Inoue, M.; Ubukata, K.; Yamashita, N.; Konno, M. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to betalactam antibiotics in Staphylococcus aureus. J. Bacteriol. 1986, 167, 975–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utsui, Y.; Yokota, T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1985, 28, 397–403. [Google Scholar] [CrossRef] [Green Version]
- García-Álvarez, L.; Holden, M.T.; Lindsay, H.; Webb, C.R.; Brown, D.F.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Eby, J.C.; Richey, M.M.; Platts-Mills, J.A.; Mathers, A.J.; Novicoff, W.M.; Cox, H.L. A healthcare improvement intervention combining nucleic acid microarray testing with direct physician response for management of Staphylococcus aureus bacteremia. Clin. Infect. Dis. 2018, 66, 64–71. [Google Scholar] [CrossRef]
- Robinson, J.O.; Pozzi-Langhi, S.; Phillips, M.; Pearson, J.C.; Christiansen, K.J.; Coombs, G.W.; Murray, R.J. Formal infectious diseases consultation is associated with decreased mortality in Staphylococcus aureus bacteraemia. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2421–2428. [Google Scholar] [CrossRef]
- Tissot, F.; Calandra, T.; Prod’hom, G.; Taffe, P.; Zanetti, G.; Greub, G.; Senn, L. Mandatory infectious diseases consultation for MRSA bacteremia is associated with reduced mortality. J. Infect. 2014, 69, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Gaieski, D.F.; Mikkelsen, M.E.; Band, R.A.; Pines, J.M.; Massone, R.; Furia, F.F.; Shofer, S.F.; Goyal, M. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit. Care Med. 2010, 38, 1045–1053. [Google Scholar] [CrossRef]
- Lodise, T.P.; McKinnon, P.S.; Swiderski, L.; Rybak, M.J. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin. Infect. Dis. 2003, 36, 1418–1423. [Google Scholar] [CrossRef] [Green Version]
- Marchaim, D.; Kaye, K.S.; Fowler, V.G.; Anderson, D.J.; Chawla, V.; Golan, Y.; Karchmer, A.W.; Carmeli, Y. Case-control study to identify factors associated with mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clin. Microbiol. Infect. 2010, 16, 47–52. [Google Scholar] [CrossRef] [Green Version]
- van Hal, S.J.; Jensen, S.O.; Vaska, V.L.; Espedido, B.A.; Paterson, D.L.; Gosbell, I.B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Mandrekar, J.N.; Patel, R. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, K.A.; West, J.E.; Balada-Llasat, J.M.; Pancholi, P.; Stevenson, K.B.; Goff, D.A. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin. Infect. Dis. 2010, 51, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- May, L.S.; Rothman, R.E.; Miller, L.G.; Brooks, G.; Zocchi, M.; Zatorski, C.; Dugas, A.F.; Ware, C.E.; Jordan, J.A. A randomized clinical trial comparing use of rapid molecular testing for Staphylococcus aureus for patients with cutaneous abscesses in the emergency department with standard of care. Infect. Control. Hosp. Epidemiol. 2015, 36, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Messacar, K.; Parker, S.K.; Todd, J.K.; Dominguez, S.R. Implementation of rapid molecular infectious disease diagnostics: The role of diagnostic and antimicrobial stewardship. J. Clin. Microbiol. 2017, 55, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Peker, N.; Couto, N.; Sinha, B.; Rossen, J.W. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: Recent developments in molecular approaches. Clin. Microbiol. Infect. 2018, 24, 944–955. [Google Scholar] [CrossRef] [Green Version]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: A systematic review and meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Mizusawa, M.; Carroll, K.C. Novel strategies for rapid identification and susceptibility testing of MRSA. Expert. Rev. Anti Infect. Ther. 2020, 13, 1–19. [Google Scholar] [CrossRef]
- Palavecino, E.L. Rapid methods for detection of MRSA in clinical specimens. Meth. Mol. Biol. 2020, 2069, 29–45. [Google Scholar]
- Wilson, M.L. Development of new methods for detecting bloodstream pathogens. Clin. Microbiol. Infect. 2020, 26, 319–324. [Google Scholar] [CrossRef]
- Opota, O.; Jaton, K.; Greub, G. Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood. Clin. Microbiol. Infect. 2015, 21, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rello, J.; van Engelen, T.S.R.; Alp, E.; Calandra, T.; Cattoir, V.; Kern, W.V.; Netea, M.G.; Nseir, S.; Opal, S.M.; van de Veerdonk, F.L.; et al. Towards precision medicine in sepsis: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. 2018, 24, 1264–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordana-Lluch, E.; Giménez, M.; Quesada, M.D.; Rivaya, B.; Marcó, C.; Domínguez, M.J.; Arméstar, F.; Martró, E.; Ausina, V. Evaluation of the broad-range PCR/ESI-MS technology in blood specimens for the molecular diagnosis of bloodstream infections. PLoS ONE 2015, 10, e0140865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clancy, C.J.; Hong Nguyen, M. T2 magnetic resonance for the diagnosis of bloodstream infections: Charting a path forward. J. Antimicrob. Chemother. 2018, 73, iv2–iv5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, G.; Posteraro, B.; De Carolis, E.; Menchinelli, G.; Franceschi, F.; Tumbarello, M.; De Pascale, G.; Spanu, T.; Sanguinetti, M. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J. Antimicrob. Chemother. 2018, 73, iv20–iv26. [Google Scholar] [CrossRef] [PubMed]
- Idelevich, E.A.; Becker, K. Identification and susceptibility testing from shortly incubated cultures accelerate blood culture diagnostics at no cost. Clin. Infect. Dis. 2016, 62, 268–269. [Google Scholar] [CrossRef] [Green Version]
- Idelevich, E.A.; Schule, I.; Grunastel, B.; Wullenweber, J.; Peters, G.; Becker, K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin. Microbiol. Infect. 2014, 20, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Opota, O.; Croxatto, A.; Prod’hom, G.; Greub, G. Blood culture-based diagnosis of bacteraemia: State of the art. Clin. Microbiol. Infect. 2015, 21, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Verroken, A.; Defourny, L.; Lechgar, L.; Magnette, A.; Delmee, M.; Glupczynski, Y. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 405–413. [Google Scholar] [CrossRef]
- Zhang, B.; Maimaiti, Y.; Liu, C.; Li, J.; Wang, H.; Lin, H.; Deng, Z.; Lu, X.; Zhang, X. Direct detection of Staphylococcus aureus in positive blood cultures through molecular beacon-based fluorescence in situ hybridization. J. Microbiol. Methods 2019, 159, 34–41. [Google Scholar] [CrossRef]
- Mancini, N.; Infurnari, L.; Ghidoli, N.; Valzano, G.; Clementi, N.; Burioni, R.; Clementi, M. Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. J. Clin. Microbiol. 2014, 52, 1242–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojewoda, C.M.; Sercia, L.; Navas, M.; Tuhoy, M.; Wilson, D.; Hall, G.S.; Procop, G.W.; Richter, S.S. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J. Clin. Microbiol. 2013, 51, 2072–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, S.L.; Hemmige, V.S.; Koo, H.L.; Vuong, N.N.; Lasco, T.M.; Garey, K.W. Real-world performance of a microarray-based rapid diagnostic for Gram-positive bloodstream infections and potential utility for antimicrobial stewardship. Diagn. Microbiol. Infect. Dis. 2015, 81, 4–8. [Google Scholar] [CrossRef]
- Tissari, P.; Zumla, A.; Tarkka, E.; Mero, S.; Savolainen, L.; Vaara, M.; Aittakorpi, A.; Laakso, S.; Lindfors, M.; Piiparinen, H.; et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: An observational study. Lancet 2010, 375, 224–230. [Google Scholar] [CrossRef]
- Clerc, O.; Prod’hom, G.; Senn, L.; Jaton, K.; Zanetti, G.; Calandra, T.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and PCR-based rapid diagnosis of Staphylococcus aureus bacteraemia. Clin. Microbiol. Infect. 2014, 20, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, H.; Kutsukake, E.; Chiba, K.; Fukui, T.; Matsumoto, T. The performance of the BD geneOhm MRSATM assay for MRSA isolated from clinical patients in Japan, including the effects of specimen contamination and ways to improve it. J. Infect. Chemother. 2011, 17, 214–218. [Google Scholar] [CrossRef]
- Spencer, D.H.; Sellenriek, P.; Burnham, C.A. Validation and implementation of the GeneXpert MRSA/SA blood culture assay in a pediatric setting. Am. J. Clin. Pathol. 2011, 136, 690–694. [Google Scholar] [CrossRef]
- Stamper, P.D.; Cai, M.; Howard, T.; Speser, S.; Carroll, K.C. Clinical validation of the molecular BD geneOhm StaphSR assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J. Clin. Microbiol. 2007, 45, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Tenover, F.C.; Tickler, I.A.; Le, V.M.; Dewell, S.; Mendes, R.E.; Goering, R.V. Updating molecular diagnostics for detecting methicillin-susceptible and methicillin-resistant Staphylococcus aureus isolates in blood culture bottles. J. Clin. Microbiol. 2019, 57, e01195-Ce19. [Google Scholar] [CrossRef] [Green Version]
- Ellem, J.A.; Olma, T.; O’Sullivan, M.V. Rapid detection of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus directly from positive blood cultures by use of the BD Max StaphSR assay. J. Clin. Microbiol. 2015, 53, 3900–3904. [Google Scholar] [CrossRef] [Green Version]
- Buchan, B.W.; Allen, S.; Burnham, C.A.; McElvania TeKippe, E.; Davis, T.; Levi, M.; Mayne, D.; Pancholi, P.; Relich, R.F.; Thomson, R.; et al. Comparison of the next-generation Xpert MRSA/SA BC assay and the GeneOhm StaphSR assay to routine culture for identification of Staphylococcus aureus and methicillin-resistant S. aureus in positive-blood-culture broths. J. Clin. Microbiol. 2015, 53, 804–809. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, A.J.; Heyrend, C.; Byington, C.L.; Fisher, M.A.; Barker, E.; Garrone, N.F.; Thatcher, S.A.; Pavia, A.T.; Barney, T.; Alger, G.D.; et al. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn. Microbiol. Infect. Dis. 2012, 74, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Francois, P.; Tangomo, M.; Hibbs, J.; Bonetti, E.J.; Boehme, C.C.; Notomi, T.; Perkins, M.D.; Schrenzel, J. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 2011, 62, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Goldmeyer, J.; Li, H.; McCormac, M.; Cook, S.; Stratton, C.; Lemieux, B.; Kong, H.; Tang, W.; Tang, Y.W. Identification of Staphylococcus aureus and determination of methicillin resistance directly from positive blood cultures by isothermal amplification and a disposable detection device. J. Clin. Microbiol. 2008, 46, 1534–1536. [Google Scholar] [CrossRef] [Green Version]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [Green Version]
- Rödel, J.; Bohnert, J.A.; Stoll, S.; Wassill, L.; Edel, B.; Karrasch, M.; Löffler, B.; Pfister, W. Evaluation of loop-mediated isothermal amplification for the rapid identification of bacteria and resistance determinants in positive blood cultures. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1033–1040. [Google Scholar] [CrossRef]
- Marschal, M.; Bachmaier, J.; Autenrieth, I.; Oberhettinger, P.; Willmann, M.; Peter, S. Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by gram-negative pathogens. J. Clin. Microbiol. 2017, 55, 2116e26. [Google Scholar] [CrossRef] [Green Version]
- Qian, Q.; Eichelberger, K.; Kirby, J.E. Rapid identification of Staphylococcus aureus in blood cultures by use of the direct tube coagulase test. J. Clin. Microbiol. 2007, 45, 2267–2269. [Google Scholar] [CrossRef] [Green Version]
- Carretto, E.; Bardaro, M.; Russello, G.; Mirra, M.; Zuelli, C.; Barbarini, D. Comparison of the Staphylococcus QuickFISH BC test with the tube coagulase test performed on positive blood cultures for evaluation and application in a clinical routine setting. J. Clin. Microbiol. 2013, 51, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Dhiman, N.; Trienski, T.L.; DiPersio, L.P.; DiPersio, J.R. Evaluation of the BinaxNOW Staphylococcus aureus test for rapid identification of Gram-positive cocci from VersaTREK blood culture bottles. J. Clin. Microbiol. 2013, 51, 2939–2942. [Google Scholar] [CrossRef] [Green Version]
- Dubourg, G.; Lamy, B.; Ruimy, R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: Meeting the challenge to reduce the time to result. Clin. Microbiol. Infect. 2018, 24, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, C.; Stapleton, P.; Phelan, E.; Mulhare, P.; Carey, B.; Hickey, M.; Lynch, B.; Doyle, M. Rapid identification and antimicrobial susceptibility testing of positive blood cultures using MALDI-TOF MS and a modification of the standardized disc diffusion test: A pilot study. J. Clin. Pathol. 2016, 2015-203436. [Google Scholar] [CrossRef] [Green Version]
- Idelevich, E.A.; Becker, K. How to accelerate antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2019, 25, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Périllaud, C.; Pilmis, B.; Diep, J.; Péan de Ponfilly, G.; Vidal, B.; Couzigou, C.; Mizrahi, A.; Lourtet-Hascoët, J.; Le Monnier, A.; Nguyen Van, J.C. Prospective evaluation of rapid antimicrobial susceptibility testing by disk diffusion on Mueller-Hinton rapid-SIR directly on blood cultures. Diagn. Microbiol. Infect. Dis. 2019, 93, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Pilmis, B.; Thy, M.; Diep, J.; Krob, S.; Périllaud, C.; Couzigou, C.; Vidal, B.; Mizrahi, A.; Lourtet-Hascoët, J.; Le Monnier, A.; et al. Clinical impact of rapid susceptibility testing on MHR-SIR directly from blood cultures. J. Antimicrob. Chemother. 2019, 74, 3063–3068. [Google Scholar] [CrossRef]
- Sánchez-Carrillo, C.; Pescador, P.; Ricote, R.; Fuentes, J.; Losada, C.; Candela, A.; Cercenado, E. Evaluation of the Alfred AST® system for rapid antimicrobial susceptibility testing directly from positive blood cultures. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1665–1670. [Google Scholar] [CrossRef]
- Maxson, T.; Taylor-Howell, C.L.; Minogue, T.D. Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus. PLoS ONE 2017, 12, e0183899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delport, J.A.; Mohorovic, I.; Burn, S.; McCormick, J.K.; Schaus, D.; Lannigan, R.; John, M. Rapid detection of methicillin-resistant Staphylococcus aureus bacteraemia using combined three-hour short-incubation matrix-assisted laser desorption/ionization time-of-flight MS identification and Alere Culture Colony PBP2a detection test. J. Med. Microbiol. 2016, 65, 626–631. [Google Scholar] [CrossRef]
- Heraud, S.; Freydiere, A.M.; Doleans-Jordheim, A.; Bes, M.; Tristan, A.; Vandenesch, F.; Laurent, F.; Dauwalder, O. Direct identification of Staphylococcus aureus and determination of methicillin susceptibility from positive blood-culture bottles in a Bact/ALERT system using Binax Now S. aureus and PBP2a Tests. Ann. Lab. Med. 2015, 35, 454–457. [Google Scholar] [CrossRef] [Green Version]
- Dupieux, C.; Mouton, W.; André, C.; Vandenesch, F.; Bes, M.; Tristan, A.; Laurent, F. Performance of the revised version of an immunochromatographic assay for detection of mecA- and mecC-mediated methicillin resistance in staphylococci. J. Clin. Microbiol. 2020, 58, e01346-Ce19. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 1 August 2020).
- Giacobbe, D.R.; Giani, T.; Bassetti, M.; Marchese, A.; Viscoli, C.; Rossolini, G.M. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: Therapeutic implications. Clin. Microbiol. Infect. 2020, 26, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Idelevich, E.A. The 24-h clinical microbiology service is essential for patient management. Future Microbiol. 2018, 13, 1625–1628. [Google Scholar] [CrossRef] [PubMed]
- Frye, A.M.; Baker, C.A.; Rustvold, D.L.; Heath, K.A.; Hunt, J.; Leggett, J.E.; Oethinger, M. Clinical impact of real-time PCR assay for rapid identification of staphylococcal bacteremia. J. Clin. Microbiol. 2012, 50, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parta, M.; Goebel, M.; Thomas, J.; Matloobi, M.; Stager, C.; Musher, D.M. Impact of an assay that enables rapid determination of Staphylococcus species and their drug susceptibility on the treatment of patients with positive blood culture results. Infect. Control. Hosp. Epidemiol. 2010, 31, 1043–1048. [Google Scholar] [CrossRef]
- Delerue, T.; Cordel, H.; Delerue, T.; Figoni, J.; Dziri, S.; Billard-Pomares, T.; Bouchaud, O.; Carbonnelle, E.; Zahar, J.R. Prediction of methicillin-resistant Staphylococcus aureus bloodstream infection: Do we need rapid diagnostic tests? Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1319–1326. [Google Scholar] [CrossRef]
- Florio, W.; Morici, P.; Ghelardi, E.; Barnini, S.; Lupetti, A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit. Rev. Microbiol. 2018, 44, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Lamy, B.; Sundqvist, M.; Idelevich, E.A. ESCMID Study Group for Bloodstream Infections, Endocarditis and Sepsis (ESGBIES). Bloodstream infections—Standard and progress in pathogen diagnostics. Clin. Microbiol. Infect. 2020, 26, 142–150. [Google Scholar]
System (Manufacturer) | Principle | Time to Result (Hours) | Methicillin Resistance Detection a |
---|---|---|---|
Blood Culture-Independent Methods | |||
Septifast (Roche Molecular Diagnostics) | Multiplex real-time PCR | 4–6 | yes |
MagicPlex (Seegene) | Multiplex real-time PCR | 3–5 | yes |
SepsiTest (Molzym) | Broad range PCR + sequencing | 8–12 | no |
VYOO (Analytic Jena) | Multiplex PCR + gel electrophoresis | 7–8 | yes |
PLEX-ID Iridica (Abbott Molecular) | Multiplex PCR + ESI-MS | 6–8 | yes |
T2Dx bacteria panel (T2 Biosystems) | PCR + magnetic resonance technology | 6 | no |
Blood Culture-Dependent Methods | |||
Microflex (Bruker Daltonics) | MALDI-TOF | 0.2–0.5 | no |
Vitek MS (bioMérieux) | MALDI-TOF | 0.2–0.5 | no |
S. aureus/CNS PNA-FISH/Quick-FISH (AdvanDx) | FISH with PNA probes | 0.5–3 | no |
Verigene Gram-positive blood culture (BC-GP) assay (Luminex) | Multiplex PCR + solid-microarray detection | 2.5 | yes |
Prove-it Sepsis (Mobidiag) | Broad range PCR + microarray | 3.5 | yes |
GeneXpert MRSA/SA BC Assay (Cepheid) | Multiplex real-time PCR | 1 | yes |
BD Max StaphSR assay (BD) | Multiplex real-time PCR | 1.5 | yes |
FilmArray BCID panel (BioFire; bioMérieux) | FilmArray BCID panel | 1 | yes |
Eazyplex MRSA (Amplex BioSystems) | Loop-mediated isothermal amplification | 0.5 | yes |
Accelerate Pheno System (Accelerate Diagnostics) | FISH (ID) + morpho-kinetic cellular analysis (AST) | 1.5 (ID)7 (AST) | yes |
Direct Tube Coagulase Test | Clot formation by rabbit plasma | 2–24 | no |
BinaxNOW Staphylococcus aureus (BNSA) (Alere) | Immunochromatographic test | 0.5 | no |
System (Manufacturer) | Principle | Time to Result (Hours) |
---|---|---|
Accelerate Pheno System (Accelerate Diagnostics) | Morpho-kinetic cellular analysis | 7 |
Phoenix (BD) | Broth microdilution | 7 |
Vitek (bioMérieux) | Broth microdilution | 7 |
Several systems/manufacturers a | Disk diffusion methods | 16–24 |
Etest (bioMérieux), MIC Strip (Liofilchem) | Gradient strips | 16–24 |
Alfred AST system (Alifax) | Turbidimetry | 5 |
Microflex (Bruker Daltonics) | Mass spectrometry-based tests | 3–4 |
PBP2a detection test assay (Alere) | Immunochromatographic test | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonomini, A.R.; Riva, E.; Di Bonaventura, G.; Gherardi, G. Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review. Diagnostics 2020, 10, 830. https://doi.org/10.3390/diagnostics10100830
Buonomini AR, Riva E, Di Bonaventura G, Gherardi G. Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review. Diagnostics. 2020; 10(10):830. https://doi.org/10.3390/diagnostics10100830
Chicago/Turabian StyleBuonomini, Anna Rita, Elisabetta Riva, Giovanni Di Bonaventura, and Giovanni Gherardi. 2020. "Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review" Diagnostics 10, no. 10: 830. https://doi.org/10.3390/diagnostics10100830
APA StyleBuonomini, A. R., Riva, E., Di Bonaventura, G., & Gherardi, G. (2020). Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review. Diagnostics, 10(10), 830. https://doi.org/10.3390/diagnostics10100830