MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise—A Comprehensive Review
Abstract
:1. Introduction
2. Article Search Process
3. Results
3.1. MicroRNAs and Adaptive Cardiac Hypertrophy Versus Hypertrophic Cardiomyopathy
First Author | miRNAs | Material | Exercise | Training Protocol and Samples Collection | Methodology | Subjects | Results (p < 0.05) |
---|---|---|---|---|---|---|---|
Alack 2019 [31] | miR-24, miR-27a, miR-21, miR-15a, miR-23a, miR-221, miR-125b | Leukocytes | - | At rest | qRT-PCR, miRNAeasy Mini kit, TaqTM Universal SYBR Green Supermix | 13 trained triathletes and marathon runners (VO2max > 59 mL/kg × min) and 12 untrained healthy controls (VO2max < 45 mL/kg × min) | Endurance athletes: downregulated: miR-21, miR-23a |
Backes 2014 [32] | 1205 different miRNAs | Whole blood | Cycling | Before and after exhaustive exercise on cyclic ergometer in each group | Microarray, qRT-PCR miScript SYBR Green | 12 elite endurance athletes (6 males, 6 females; 10 triathletes, 2 cyclists) and 12 age- and sex-matched controls; included 8 athletes and 8 controls | Endurance/control after exercise miR-181a, miR-320b were decreased in athletes |
Baggish 2011 [16] | miR-20a, miR-210, miR-221, miR-222, miR-328, miR-21, miR-146a, miR-21, miR-133a, miR-21, miR-146a, and miR-210 | Blood (plasma) | Cycling | At rest and during acute exhaustive exercise testing on upright cycle ergometer, before and after a 90-day period of aerobic exercise training | qRT-PCR | 10 competitive male rowers (n = 10, age = 19.1 ± 0.6 years) | Elevated by acute exercise before and after sustained training: miR-146a, miR-222 elevated by acute exercise before but not after sustained training: miR-21, miR-221 elevated after sustained training: miR-20a nonresponsive: miR-133a, miR-210, miR-328 |
Baggish 2014 [12] | miR-1, miR-133a, miR-499-5p, miR-208a, miR-126, miR-146a | Blood (plasma) | Running | At rest, immediately after marathon and 24 h after | qRT-PCR, TaqMan miRNA | 21 healthy male marathon runners | Upregulated after the race: miR-126, miR-1, miR-133a, miR-499-5p, miR-208a, miR-146a |
Bye 2013 [33] | miR-210, miR-21, miR-125a, miR-652, miR-151, miR-29a, Let-7d, miR-222 | Blood (plasma) | VO2max test | Before the start of the exercise test | qRT-PCR | Screening cohort: 12- high VO2max, 12- low VO2max validation cohort: 38- high VO2max, 38- low VO2max | Low VO2max group: upregulated: miR-210, miR-222, miR-21 (with only males) |
Danese 2018 [34] | miR-133a, miR-206 | Blood (plasma) | Half-marathon | Before and immediately after the half-marathon—21.1 km | qRT-PCR, TaqMan MicroRNA assay | 28 middle-aged, recreation athletes (11 women and 17 men; mean age, 46 years) | Elevated after the half-marathon run: miR-133a and miR-206 |
Fernandez-Sanjurjo 2020 [22] | Global miRNA screening (752 miRs) | Blood (plasma) | Running | Before and immediately after: 10 km race, half-marathon, and marathon | qRT-PCR | 9 runners | After 10 km run Upregulated: miR-199b-5p, miR-424-3p, miR-33a-5p, miR-551a, miR-1537, miR-223-5p, miR-1260q, let-7b-3p, miR-150-5p, miR-423-5p, miR-223-3p, miR-345-5p, miR-505-3p Downregulated: miR-346 After half-marathon: Upregulated: miR-425-3p, miR-33a-5p, miR-338-3p, miR-339-5p, miR-106b-3p, miR-502-3p, miR-27a-3p, miR-660-5p, miR-505-3p, miR-100-5p, miR-22-3p, miR-30e-5p, miR-497-5p After marathon: Upregulated:miR-1972, miR- 940, miR-424-3p, miR-130b-5p, miR-223-5p, miR-145-3p, miR-181c-30, miR-501-3p, miR1260a, miR675-3p, miR345-5p, miR-424-5p, miR-1-3p, miR-34a-5p, miR-629-5p, miR-30a-5p, miR-148a-3p, miR-596, miR-10b-5p, miR-30d-5p, miR-320d Downregulated: miR-192-5p, miR-20b-5p, miR-103a-3p, miR-106b-5p, miR144-3p, miR-665, miR-486-3p |
Gomes 2014 [13] | miR-1, miR-133a, miR-206 | Blood (plasma) | Half-marathon | Before warm-up and up to 10 min after the run | qRT-PCRTaq Man miRNA | 5 male recreational runners | Upregulated: miR-1, miR-133a, miR-206 |
Gonzalo-Calvo 2018 [30] | Panel of 74 c-miRNAs | Blood (plasma) | 10 km, half-marathon, marathon | Before and after (0 h, 24 h, 72 h): 10-km, half-marathon, and marathon separated by one-month break | qRT-PCR miScript SYBR Green | 9 healthy, highly trained middle-aged amateur subjects | 10 km run: immediately after – increased miRNAs: miR-132-3p, miR-150-5p, decreased miRNAs: miR-103a-3p and miR-139-5p 24 h after – decreased miRNA: miR-590-5p Marathon run: immediately after – increased miRNAs: miR-21-5p, miR-27a-3p, miR-29a-3p, miR-30a-5p, miR-34a-5p, miR-126-3p, miR-142-5p, miR-143-3p, miR-195-5p, miR-199a-3p 24 h after– decreased miRNAs: miR-25-3p, miR-29b-3p, miR-30b-5p, miR-106b-5p, miR-107, miR-497-5p downregulated immediately after and remained downregulated for 24 h: miR-103a-3p and miR-375-5p |
Denham 2016 [18] | miR-1, miR-133a, miR-181a, miR-486, and miR-494 | Whole blood | Running-sprint | Before and after 4 weeks (thrice weekly) of sprint interval training and a single bout of maximal aerobic treadmill exercise | qRT-PCR, TaqMan miRNA | 67 endurance athletes and 61 healthy controls; 19 young men—acute exercise trial | Endurance athletes, increased: miR-1, miR-486, and miR-494 after endurance training Healthy, young men decreased: miR-1, miR-133a, and miR-486 immediately after maximal aerobic exercise |
Kern 2020 [35] | Global miRNA | Blood (plasma) | Running | Before, after 8 weeks of endurance training, after 8 weeks of wash-out phase, and after another 8 weeks of endurance training | Microarray | 23 healthy untrained volunteers | Most important miRNA associated with VO2max Cluster 1:miR-4465, miR-5581-5p, miR-6879-5p, miR-6869-5p Cluster 2: miR-7975 Cluster 6: miR-326-5p, miR-502-5p, miR-502-3p, miR-340-5p |
Kravinen 2019 [36] | miR-21, miR-26, miR-126, miR-146, miR-221, miR-222 | Blood (serum and extracellular vesicles, EV) and sweat (EV) | Cycling | Sweat collection during, blood collection before and after each protocol: (1) maximal aerobic capacity test (2) anaerobic threshold, and (3) aerobic threshold (AerT) tests. Sauna—control | qRT-PCR, miRNAeasy Mini kit, miScript II RT Kit | 8 healthy trained subjects (all protocols) | Elevated In sweat: All endurance exercise: miR-26 Protocol 3 vs. control: miR-21 In serum EVs: Protocol 2 vs. control: miR-21, miR-222 |
Mooren 2013 [11] | miR-1, miR-133, miR- 206, miR-499, miR-208b, miR- 21, and miR-155 | Blood (plasma) | Marathon | 2 days before in the morning, directly after, and 24 h after a public marathon run | qRT-PCR TaqMan miRNA | 14 male endurance athletes | Increased after race: miR-1, miR-133a, miR-206, miR-208b, miR-499 Elevated 24 h after race: miR-1, miR-133a, miR-206 |
Nielsen 2013 [37] | global miRNA (742 miRNA) | Blood (plasma) | Cycling | Before (at rest) and immediately after 1 h, post 1 h, post 3 h an acute exercise training (60 min cycle ergometer exercise at 65% of Pmax) and following 12 weeks of endurance training (cycle ergometer with frequency of 5 times per week for 12 weeks) | Microarray, RT-PCR, miScript SYBR green and ROX, Exiqons miRNome panel V.2, ViiA7 Sequence Detection | 13 healthy men—acute exercise training, 7 healthy men—endurance training | Immediately after: all downregulated: miR-106a, miR-221, miR-30b, miR-151-5p, Let7i, miR-146a, miR-652, miR-151-3p upregulated 1 h–3 h: after 1 h: miR-330-3p, miR-223, miR-139-5p, miR-143, miR-145, miR-424 after 3 h: miR-1, miR-424, miR-133a, miR-133b after 12-week training: a) upregulated: miR-103, miR-107 b) downregulated: miR-342-3p, Let-7d, miR-766, miR-25, miR-148a, miR-185, miR-21, miR-148b, miR-133a, miR- 92a, miR-29b |
Ramos 2017 [17] | miR-21, miR-210, miR-24, miR-146, miR-1, miR-133, miR-222 | Blood (plasma) | Running | Two studies: 1) controlled intensity 1-week intervals at 3 intensities (6,7,8 miles/h) and final 5-mile test 2) duration test speed 7 miles/h, 30,60, 90 min duration, final 5-mile treadmill run. Blood samples collected immediately after treadmill running | qRT-PCR, TaqMan miRNA | 26 healthy young men—12 in intensity trial and 14 in duration trial | Elevated in both groups and not intensity- or duration-dependent: miR-24, miR-146a Elevated and intensity-responsive: miR-1 Elevated and duration-responsive: miR-133, miR-222 |
Uhlemann 2014 [38] | miR-126, miR-133 | Blood (plasma) | Three studies regarding endurance exercise: Study 1: maximal symptom–limited exercise test, Study 2: bicycling for 4 h, Study 3: running a marathon | qRT-PCR, TaqMan miRNA | Study 1: 13 healthy participants, Study 2: 12 healthy well-trained men, Study 3: 22 male middle-aged marathon runners with no history of coronary artery disease | Study 1: increased miR-126 at maximum power Study 2: increased miR-126 Study 3: increased miR-126 and miR-133 | |
Yin 2020 [39] | miR-1-3p, miR-133a-3p, miR-133b, miR-206 | Blood (plasma) | Running | Before, immediately after, and 24 h after 8 km run | qRT-PCR | 18 healthy trained young men | Immediately after run elevated: miR-1–3p, miR-133a-3p, and miR-133b 24 h after run: elevated: miR-133a-3p |
3.2. MicroRNAs and Cardiomyocytes Damage
3.3. MicroRNAs and Fibrosis
3.4. MicroRNAs and Inflammatory Response
3.5. MicroRNAs and VO2max
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | acute coronary syndrome |
CAD | coronary artery disease |
c-miRNA | circulating microRNA |
CRP | c-reactive proteins |
CTGF | connective tissue growth factor |
CVD | cardiovascular disease |
GDF1 | growth differentiation factor 1 |
HCM | hypertrophic cardiomyopathy |
hs-cTnT | high-sensitivity cardiac troponin T |
ISH | ischemic heart disease |
LA | left atrium |
LV | left ventricle |
MACE | major adverse cardiac events |
min/week | minutes per week |
miR | microRNA |
MMP | matrix metalloproteinase |
mRNA | messenger RNA |
NT-pro-BNP | n-terminal b-type natriuretic peptide |
RNA | ribonucleotide acid |
SCD | sudden cardiac death |
TIMP | tissue inhibitor of metalloproteinase |
TLR | toll-like receptors |
WHO | World Health Organization |
References
- World Health Organization (WHO). World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Booth, F.W.; Gordon, S.E.; Carlson, C.J.; Hamilton, M.T. Waging war on modern chronic diseases: Primary prevention through exercise biology. J. Appl. Physiol. 1985 2000, 88, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Back, M.; Borjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.; Ellefsen, S.; Baar, K. Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect. Med. 2018, 8, a029769. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Merghani, A.; Mont, L. Exercise and the heart: The good, the bad, and the ugly. Eur. Heart J. 2015, 36, 1445–1453. [Google Scholar] [CrossRef][Green Version]
- Mavrogeni, S.I.; Bacopoulou, F.; Apostolaki, D.; Chrousos, G.P. Sudden cardiac death in athletes and the value of cardiovascular magnetic resonance. Eur. J. Clin. Investig. 2018, 48, e12955. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wojciechowska, A.; Osiak, A.; Kozar-Kamińska, K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017, 26, 868–874. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Feinberg, M.W.; Moore, K.J. MicroRNA Regulation of Atherosclerosis. Circ. Res. 2016, 118, 703–720. [Google Scholar] [CrossRef][Green Version]
- Romaine, S.P.R.; Tomaszewski, M.; Condorelli, G.; Samani, N.J. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart 2015, 101, 921–928. [Google Scholar] [CrossRef]
- Mooren, F.C.; Viereck, J.; Krüger, K.; Thum, T. Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am. J. Physiol. Circ. Physiol. 2014, 306, H557–H563. [Google Scholar] [CrossRef]
- Baggish, A.L.; Park, J.; Min, P.K.; Isaacs, S.; Parker, B.A.; Thompson, P.D.; Troyanos, C.; D’Hemecourt, P.; Dyer, S.; Thiel, M.; et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J. Appl. Physiol. 1985 2014, 116, 522–531. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gomes, C.P.D.C.; Oliveira, G.P., Jr.; Madrid, B.; Almeida, J.A.; Franco, O.L.; Pereira, R.W. Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomarkers 2014, 19, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Nyberg, M. Cardiovascular Adaptations to Exercise Training. Compr. Physiol. 2015, 6, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liew, O.W.; Richards, A.M.; Chen, Y.T. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. Int. J. Mol. Sci. 2016, 17, 749. [Google Scholar] [CrossRef]
- Baggish, A.L.; Hale, A.; Weiner, R.B.; Lewis, G.D.; Systrom, D.; Wang, F.; Wang, T.J.; Chan, S.Y. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 2011, 589, 3983–3994. [Google Scholar] [CrossRef]
- Ramos, A.E.; Lo, C.; Estephan, L.E.; Tai, Y.Y.; Tang, Y.; Zhao, J.; Sugahara, M.; Gorcsan, J., III; Brown, M.G.; Lieberman, D.E.; et al. Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. Am. J. Physiol. Circ. Physiol. 2018, 315, H273–H283. [Google Scholar] [CrossRef]
- Denham, J.; Prestes, P.R. Muscle-Enriched MicroRNAs Isolated from Whole Blood Are Regulated by Exercise and Are Potential Biomarkers of Cardiorespiratory Fitness. Front. Genet. 2016, 7, 196. [Google Scholar] [CrossRef][Green Version]
- Zilahi, E.; Adamecz, Z.; Bodoki, L.; Griger, Z.; Póliska, S.; Nagy-Vincze, M.; Dankó, K. Dysregulated expression profile of myomiRs in the skeletal muscle of patients with polymyositis. EJIFCC 2019, 30, 237–245. [Google Scholar]
- Fochi, S.; Giuriato, G.; De Simone, T.; Gomez-Lira, M.; Tamburin, S.; Del Piccolo, L.; Schena, F.; Venturelli, M.; Romanelli, M.G. Regulation of microRNAs in Satellite Cell Renewal, Muscle Function, Sarcopenia and the Role of Exercise. Inallt. J. Mol. Sci. 2020, 21, 6732. [Google Scholar] [CrossRef]
- Chen, J.F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; Callis, T.E.; Hammond, S.M.; Conlon, F.L.; Wang, D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38, 228–233. [Google Scholar] [CrossRef]
- Fernández-Sanjurjo, M.; Úbeda, N.; Fernández-García, B.; Del Valle, M.; De Molina, A.R.; Crespo, M.C.; Martin-Hernández, R.; Casas-Agustench, P.; Martínez-Camblor, P.; De Gonzalo-Calvo, D.; et al. Exercise dose affects the circulating microRNA profile in response to acute endurance exercise in male amateur runners. Scand. J. Med. Sci. Sports 2020, 30, 1896–1907. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Li, Y.; Xu, C.; Li, X.; Zhu, D.; Zhang, Y.; Xing, S.; Wang, H.; Zhang, Z.; et al. Tanshinone IIA Improves miR-133 Expression Through MAPK ERK1/2 Pathway in Hypoxic Cardiac Myocytes. Cell. Physiol. Biochem. 2012, 30, 843–852. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mitchelson, K.R.; Qin, W.Y. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J. Biol. Chem. 2015, 6, 162–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wen, Y.; Bi, P.; Lai, X.; Liu, X.S.; Liu, X.; Kuang, S. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development 2012, 139, 2857–2865. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rao, P.K.; Kumar, R.M.; Farkhondeh, M.; Baskerville, S.; Lodish, H.F. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA 2006, 103, 8721–8726. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Palacín, M.; Reguero, J.R.; Martín, M.; Molina, B.D.; Moris, C.; Alvarez, V.; Coto, E. Profile of MicroRNAs Differentially Produced in Hearts from Patients with Hypertrophic Cardiomyopathy and Sarcomeric Mutations. Clin. Chem. 2011, 57, 1614–1616. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Roncarati, R.; Anselmi, C.V.; Losi, M.A.; Papa, L.; Cavarretta, E.; Martins, P.D.C.; Contaldi, C.; Jotti, G.S.; Franzone, A.; Galastri, L.; et al. Circulating miR-29a, Among Other Up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients With Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2014, 63, 920–927. [Google Scholar] [CrossRef][Green Version]
- Karlsen, A.; Soendenbroe, C.; Malmgaard-Clausen, N.M.; Wagener, F.; Moeller, C.E.; Senhaji, Z.; Damberg, K.; Andersen, J.L.; Schjerling, P.; Kjaer, M.; et al. Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men. FASEB J. 2020, 34, 6418–6436. [Google Scholar] [CrossRef][Green Version]
- De Gonzalo-Calvo, D.; Dávalos, A.; Fernández-Sanjurjo, M.; Amado-Rodriguez, L.; Diaz-Coto, S.; Tomás-Zapico, C.; Montero, A.; García-González, Á.; Llorente-Cortés, V.; Heras, M.E.; et al. Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise. Int. J. Cardiol. 2018, 264, 130–136. [Google Scholar] [CrossRef]
- Alack, K.; Krüger, K.; Weiss, A.; Schermuly, R.; Frech, T.; Eggert, M.; Mooren, F.C. Aerobic endurance training status affects lymphocyte apoptosis sensitivity by induction of molecular genetic adaptations. Brain Behav. Immun. 2019, 75, 251–257. [Google Scholar] [CrossRef]
- Backes, C.; Leidinger, P.; Keller, A.; Hart, M.; Meyer, T.; Meese, E.; Hecksteden, A. Blood Born miRNAs Signatures that Can Serve as Disease Specific Biomarkers Are Not Significantly Affected by Overall Fitness and Exercise. PLoS ONE 2014, 9, e102183. [Google Scholar] [CrossRef] [PubMed]
- Bye, A.; Røsjø, H.; Aspenes, S.T.; Condorelli, G.; Omland, T.; Wisloff, U. Circulating MicroRNAs and Aerobic Fitness—The HUNT-Study. PLoS ONE 2013, 8, e57496. [Google Scholar] [CrossRef][Green Version]
- Danese, E.; Benati, M.; Sanchis-Gomar, F.; Tarperi, C.; Salvagno, G.L.; Paviati, E.; Montagnana, M.; Schena, F.; Lippi, G. Influence of middle-distance running on muscular micro RNAs. Scand. J. Clin. Lab. Investig. 2018, 78, 165–170. [Google Scholar] [CrossRef]
- Kern, F.; Ludwig, N.; Backes, C.; Maldener, E.; Fehlmann, T.; Suleymanov, A.; Meese, E.; Hecksteden, A.; Keller, A.; Meyer, T. Systematic Assessment of Blood-Borne MicroRNAs Highlights Molecular Profiles of Endurance Sport and Carbohydrate Uptake. Cells 2019, 8, 1045. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Karvinen, S.; Sievänen, T.; Karppinen, J.E.; Hautasaari, P.; Bart, G.; Samoylenko, A.; Vainio, S.J.; Ahtiainen, J.P.; Laakkonen, E.K.; Kujala, U.M. MicroRNAs in Extracellular Vesicles in Sweat Change in Response to Endurance Exercise. Front. Physiol. 2020, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Akerstrom, T.; Nielsen, A.R.; Yfanti, C.; Scheele, C.; Pedersen, B.K.; Laye, M.J. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training. PLoS ONE 2014, 9, e87308. [Google Scholar] [CrossRef] [PubMed]
- Uhlemann, M.; Möbius-Winkler, S.; Fikenzer, S.; Adam, J.; Redlich, M.; Möhlenkamp, S.; Hilberg, T.; Schuler, G.C.; Adams, V. Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur. J. Prev. Cardiol. 2014, 21, 484–491. [Google Scholar] [CrossRef]
- Yin, X.; Cui, S.; Li, X.; Li, W.; Lu, Q.J.; Jiang, X.H.; Wang, H.; Chen, X.; Ma, J.Z. Regulation of Circulatory Muscle-specific MicroRNA during 8 km Run. Int. J. Sports Med. 2020, 41, 582–588. [Google Scholar] [CrossRef]
- Patil, H.R.; O’Keefe, J.H.; Lavie, C.J.; Magalski, A.; Vogel, R.A.; McCullough, P.A. Cardiovascular Damage Resulting from Chronic Excessive Endurance Exercise. Mo. Med. 2012, 109, 312–321. [Google Scholar]
- Scherr, J.; Braun, S.; Schuster, T.; Hartmann, C.; Moehlenkamp, S.; Wolfarth, B.; Pressler, A.; Halle, M. 72-h Kinetics of High-Sensitive Troponin T and Inflammatory Markers after Marathon. Med. Sci. Sports Exerc. 2011, 43, 1819–1827. [Google Scholar] [CrossRef]
- Fernandes, T.; Barauna, V.G.; Negrao, C.E.; Phillips, M.I.; De Oliveira, E.M. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am. J. Physiol. Circ. Physiol. 2015, 309, H543–H552. [Google Scholar] [CrossRef][Green Version]
- Wang, X.; Yang, C.; Liu, X.; Yang, P. Ghrelin Alleviates Angiotensin II-Induced H9c2 Apoptosis: Impact of the miR-208 Family. Med. Sci. Monit. 2018, 24, 6707–6716. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Dong, Y.H.; Du, W.; Shi, C.Y.; Wang, K.; Akram, J.; Wang, J.; Li, P.F. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. Int. J. Mol. Sci. 2017, 18, 745. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guo, Y.; Luo, F.; Liu, Q.; Xu, D. Regulatory non-coding RNAs in acute myocardial infarction. J. Cell. Mol. Med. 2017, 21, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Baggish, A.L. Focal Fibrosis in the Endurance Athlete’s Heart. JACC Cardiovasc. Imaging 2018, 11, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.L.; Barczuk-Falęcka, M.; Werys, K.; Czajkowska, A.; Mróz, A.; Witek, K.; Burrage, M.; Bakalarski, W.; Nowicki, D.; Roik, D.; et al. Cardiovascular magnetic resonance with parametric mapping in long-term ultra-marathon runners. Eur. J. Radiol. 2019, 117, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyösi, M.; Winkler, J.; Ramos, I.; Do, Q.; Firat, H.; McDonald, K.; González, A.; Thum, T.; Díez, J.; Jaisser, F.; et al. Myocardial fibrosis: Biomedical research from bench to bedside. Eur. J. Heart Fail. 2017, 19, 177–191. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Kiriazis, H.; Gao, X.M.; Du, X.J. Cardiac Fibrosis and Arrhythmogenesis. Compr. Physiol. 2017, 7, 1009–1049. [Google Scholar] [CrossRef]
- Creemers, E.E.; van Rooij, E. Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. Circ. Res. 2016, 118, 108–118. [Google Scholar] [CrossRef][Green Version]
- Thum, T. Noncoding RNAs and myocardial fibrosis. Nat. Rev. Cardiol. 2014, 11, 655–663. [Google Scholar] [CrossRef]
- Clauss, S.; Wakili, R.; Hildebrand, B.; Kaab, S.; Hoster, E.; Klier, I.; Martens, E.; Hanley, A.; Hanssen, H.; Halle, M.; et al. MicroRNAs as Biomarkers for Acute Atrial Remodeling in Marathon Runners (The miRathon Study—A Sub-Study of the Munich Marathon Study). PLoS ONE 2016, 11, e148599. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar, F.; Lucía, A. Pathophysiology of atrial fibrillation in endurance athletes: An overview of recent findings. CMAJ 2016, 188, E433–E435. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schmitz, B.; Rolfes, F.; Schelleckes, K.; Mewes, M.; Thorwesten, L.; Krüger, M.; Klose, A.; Brand, S.-M. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c. Front. Physiol. 2018, 9, 395. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, Y.; Huang, X.R.; Wei, L.H.; Chung, A.C.; Yu, C.M.; Lan, H.Y. miR-29b as a Therapeutic Agent for Angiotensin II-induced Cardiac Fibrosis by Targeting TGF-β/Smad3 signaling. Mol. Ther. 2014, 22, 974–985. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Katsiari, C.G.; Bogdanos, D.P.; Sakkas, L. Inflammation and cardiovascular disease. World J. Transl. Med. 2019, 8, 1–8. [Google Scholar] [CrossRef]
- Barros, E.S.; Nascimento, D.C.; Prestes, J.; Nóbrega, O.T.; Córdova, C.; Sousa, F.; Boullosa, D.A. Acute and Chronic Effects of Endurance Running on Inflammatory Markers: A Systematic Review. Front. Physiol. 2017, 8, 779. [Google Scholar] [CrossRef][Green Version]
- Tahamtan, A.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front. Immunol. 2018, 9, 1377. [Google Scholar] [CrossRef][Green Version]
- Grabarek, B.O.; Wcisło-Dziadecka, D.; Gola, J. In silico analysis of CpG islands and miRNAs potentially regulating the JAK-STAT signalling pathway. Adv. Dermatol. Allergol. 2020, 37, 513–519. [Google Scholar] [CrossRef]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef][Green Version]
- Keteyian, S.J.; Brawner, C.A.; Savage, P.D.; Ehrman, J.K.; Schairer, J.; Divine, G.; Aldred, H.; Ophaug, K.; Ades, P.A. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am. Heart J. 2008, 156, 292–300. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soplinska, A.; Zareba, L.; Wicik, Z.; Eyileten, C.; Jakubik, D.; Siller-Matula, J.M.; De Rosa, S.; Malek, L.A.; Postula, M. MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise—A Comprehensive Review. Diagnostics 2020, 10, 813. https://doi.org/10.3390/diagnostics10100813
Soplinska A, Zareba L, Wicik Z, Eyileten C, Jakubik D, Siller-Matula JM, De Rosa S, Malek LA, Postula M. MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise—A Comprehensive Review. Diagnostics. 2020; 10(10):813. https://doi.org/10.3390/diagnostics10100813
Chicago/Turabian StyleSoplinska, Aleksandra, Lukasz Zareba, Zofia Wicik, Ceren Eyileten, Daniel Jakubik, Jolanta M. Siller-Matula, Salvatore De Rosa, Lukasz A. Malek, and Marek Postula. 2020. "MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise—A Comprehensive Review" Diagnostics 10, no. 10: 813. https://doi.org/10.3390/diagnostics10100813