Postoperative Antibiotic Escalation After Major Free-Flap Reconstruction Requiring ICU Admission: Associations with Day-1 Procalcitonin, Shock, and Microbiological Positivity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Ethical Approval
2.2. Study Population and Data Source
2.3. Variables and Measurements
2.4. Exposure and Outcome Definitions
2.5. Statistical Analysis
2.6. Data and Code Availability
3. Results
3.1. Study Cohort and Frequency of Antibiotic Escalation
3.2. Perioperative Factors and Early Postoperative Signals
3.3. Microbiological Findings and ICU Outcomes
3.4. Multivariable Association and Discrimination
4. Discussion
4.1. Antibiotic Escalation as a Pragmatic, Clinically Meaningful Endpoint
4.2. Stewardship Tension in Surgical ICU Patients
4.3. Interpreting Pct in the Postoperative Setting
4.4. How Our Findings Fit with Pct-Guided Antibiotic Strategies
4.5. Why the Absolute Pct Signal May Be Modest in Free-Flap ICU Care
4.6. Shock as the Dominant Escalation Trigger and the Risk of Noninfectious Confounding
4.7. Microbiological Positivity: Supportive Signal with Important Caveats
4.8. Link to Respiratory Support Burden and Perioperative Complications
4.9. Implications for Risk Stratification and Model Development
4.10. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ICU | intensive care unit |
| PCT | procalcitonin |
| ROC | receiver operating characteristic |
| AUC | area under the curve |
| OR | odds ratio |
| IQR | interquartile range |
References
- Haidar, Y.M.; Tripathi, P.B.; Tjoa, T.; Walia, S.; Zhang, L.; Chen, Y.; Nguyen, D.V.; Mahboubi, H.; Armstrong, W.B.; Goddard, J.A. Antibiotic prophylaxis in clean-contaminated head and neck cases with microvascular free flap reconstruction: A systematic review and meta-analysis. Head Neck 2018, 40, 417–427. [Google Scholar] [CrossRef]
- Cannon, R.B.; Houlton, J.J.; Mendez, E.; Futran, N.D. Methods to reduce postoperative surgical site infections after head and neck oncology surgery. Lancet Oncol. 2017, 18, e405–e413. [Google Scholar] [CrossRef]
- Vander Poorten, V.; Uyttebroek, S.; Robbins, K.T.; Rodrigo, J.P.; de Bree, R.; Laenen, A.; Saba, N.F.; Suarez, C.; Mäkitie, A.; Rinaldo, A.; et al. Perioperative antibiotics in clean-contaminated head and neck surgery: A systematic review and meta-analysis. Adv. Ther. 2020, 37, 2073–2091. [Google Scholar] [CrossRef] [PubMed]
- Iocca, O.; Copelli, C.; Ramieri, G.; Zocchi, J.; Savo, M.; Di Maio, P. Antibiotic prophylaxis in major head and neck cancer surgery with flap reconstruction: A systematic review. Head Neck 2022, 44, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Syst. Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Cecconi, M.; De Backer, D.; Antonelli, M.; Beale, R.; Bakker, J.; Hofer, C.; Jaeschke, R.; Mebazaa, A.; Pinsky, M.R.; Teboul, J.L.; et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014, 40, 1795–1815. [Google Scholar] [CrossRef]
- Bouadma, L.; Luyt, C.E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef]
- Hochreiter, M.; Köhler, T.; Schweiger, A.M.; Keck, F.S.; Bein, B.; von Spiegel, T.; Schroeder, S. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: A randomized prospective controlled trial. Crit. Care 2009, 13, R83. [Google Scholar] [CrossRef]
- de Jong, E.; van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef]
- Mesolella, M.; Allosso, S.; Petruzzi, G.; Evangelista, A.; Motta, G.; Motta, G. Procalcitonin as an early prognostic biomarker for pharyngocutaneous fistula after total laryngectomy: A pilot study. Cancers 2024, 16, 768. [Google Scholar] [CrossRef]
- Sha, J.; Meng, C.; Sun, L.; Li, J.; Zhu, D. The value of postoperative procalcitonin in predicting pharyngocutaneous fistula after total laryngectomy: A systematic review and meta-analysis. Am. J. Otolaryngol. 2023, 44, 103846. [Google Scholar] [CrossRef]
- Mitchell, R.M.; Mendez, E.; Schmitt, N.C.; Bhrany, A.D.; Futran, N.D. Antibiotic prophylaxis in patients undergoing head and neck free flap reconstruction. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Koerdt, S.; Oezdogan, B.; Naujokat, H.; Czymmek, R.; Mücke, T.; Wolff, K.D. Perioperative serum procalcitonin and C-reactive protein concentrations in patients undergoing free flap surgery. Int. J. Oral Maxillofac. Surg. 2017, 46, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Gearing, P.F.; Daly, J.F.; Tang, N.S.J.; Singh, K.; Ramakrishnan, A. Risk factors for surgical site infection in free-flap reconstructive surgery for head and neck cancer: Retrospective Australian cohort study. Head Neck 2021, 43, 3417–3428. [Google Scholar] [CrossRef]
- Balamohan, S.M.; Sawhney, R.; Lang, D.M.; Cherabuddi, K.; Varadarajan, V.V.; Bernard, S.H.; Mackinnon, L.M.; Boyce, B.J.; Antonelli, P.J.; Efron, P.A.; et al. Antibiotic prophylaxis in head and neck free flap surgery: A national survey of practice patterns. Am. J. Otolaryngol. 2019, 40, 102276. [Google Scholar] [CrossRef]
- Daly, J.F.; Gearing, P.F.; Tang, N.S.J.; Ramakrishnan, A.; Singh, K.P. Appropriateness of antibiotic use and opportunities to improve prescribing in head and neck free flap reconstruction. Open Forum Infect. Dis. 2022, 9, ofab590. [Google Scholar] [CrossRef]
- Kaki, R.; Elligsen, M.; Walker, S.; Simor, A.; Palmay, L.; Daneman, N. Impact of antimicrobial stewardship in critical care: A systematic review. J. Antimicrob. Chemother. 2011, 66, 1248–1254. [Google Scholar] [CrossRef]
- Tabah, A.; Bassetti, M.; Kollef, M.H.; Zahar, J.R.; Paiva, J.A.; Timsit, J.F.; Roberts, J.A.; Schouten, J.; Giamarellou, H.; Rello, J.; et al. Antibiotic de-escalation in the ICU: An expert panel’s international perspective. Intensive Care Med. 2020, 46, 245–265. [Google Scholar] [CrossRef]
- De Bus, L.; Depuydt, P.; Steen, J.; Dhaese, S.; De Smet, K.; Tabah, A.; Akova, M.; Cotta, M.O.; De Pascale, G.; Dimopoulos, G.; et al. Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: The DIANA study. Intensive Care Med. 2020, 46, 1940–1949. [Google Scholar] [CrossRef]
- Trupka, T.; Fisher, K.; Micek, S.T.; Juang, P.; Kollef, M.H. Enhanced antimicrobial de-escalation for pneumonia in mechanically ventilated patients: A cross-over study. Crit. Care 2017, 21, 180. [Google Scholar] [CrossRef]
- Kollef, M.H. Optimizing antibiotic therapy in the intensive care unit setting. Crit. Care 2001, 5, 189–195. [Google Scholar] [CrossRef]
- Kollef, M.H. Hospital-acquired pneumonia and de-escalation of antimicrobial treatment. Crit. Care Med. 2001, 29, 1473–1475. [Google Scholar] [CrossRef] [PubMed]
- De Waele, J.J.; Akova, M.; Antonelli, M.; Canton, R.; Carlet, J.; De Backer, D.; Dimopoulos, G.; Garnacho-Montero, J.; Kesecioglu, J.; Lipman, J.; et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: Insistence and persistence in the fight against resistance. A position statement from the ESCMID/ESICM/WAAAR Round Table on Multi-drug Resistance. Intensive Care Med. 2018, 44, 189–196. [Google Scholar] [CrossRef]
- Pepper, D.J.; Sun, J.; Rhee, C.; Welsh, J.; Powers, J.H., 3rd; Danner, R.L.; Kadri, S.S. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults: A systematic review and meta-analysis. Chest 2019, 155, 1109–1118. [Google Scholar] [CrossRef]
- Huang, H.B.; Peng, J.M.; Weng, L.; Wang, C.Y.; Jiang, W.; Du, B. Procalcitonin-guided antibiotic therapy in intensive care unit patients: A systematic review and meta-analysis. Ann. Intensive Care 2017, 7, 114. [Google Scholar] [CrossRef]
- Papp, M.; Kiss, N.; Baka, M.; Trásy, D.; Zubek, L.; Fehérvári, P.; Harnos, A.; Turan, C.; Hegyi, P.; Molnár, Z. Procalcitonin-guided antibiotic therapy may shorten length of treatment and may improve survival-a systematic review and meta-analysis. Crit. Care 2023, 27, 394. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.; Suh, J.K.; Jang, E.J.; Cho, S.; Ryu, H.G.; Na, S.; Hong, S.B.; Lee, H.J.; Kim, J.Y.; Lee, S.M. Procalcitonin-guided treatment on duration of antibiotic therapy and cost in septic patients (PRODA): A multi-center randomized controlled trial. J. Korean Med. Sci. 2019, 34, e110. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Pollack, L.A.; Srinivasan, A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin. Infect. Dis. 2014, 59, S97–S100. [Google Scholar] [CrossRef]
- Kahlmeter, G.; Brown, D.F.J.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Odenholt, A.; Rodloff, A.; Soussy, C.J.; Steinbakk, M.; Soriano, F.; et al. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 2003, 52, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Sharland, M.; Zanichelli, V.; Ombajo, L.A.; Bazira, J.; Cappello, B.; Chitatanga, R.; Chuki, P.; Gandra, S.; Getahun, H.; Harbarth, S.; et al. The WHO essential medicines list AWaRe book: From a list to a quality improvement toolbox? Clin. Microbiol. Infect. 2022, 28, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]



| Variable | Overall (n = 119) | No Escalation (n = 34) | Escalation (n = 85) | p Value |
|---|---|---|---|---|
| Total operative time, min | 782 (699–892) | 766 (666–822) | 805 (705–914) | 0.028 |
| Intraoperative IV volume, mL | 5170 (4100–6500) | 4725 (3525–5650) | 5350 (4450–6650) | 0.014 |
| Intraoperative urine output, mL | 1500 (1055–2090) | 1280 (985–2000) | 1580 (1100–2100) | 0.412 |
| Estimated blood loss, mL | 350 (200–550) | 250 (200–488) | 400 (250–550) | 0.082 |
| Postoperative day-1 procalcitonin, ng/mL | 0.220 (0.100–0.530) | 0.135 (0.050–0.415) | 0.250 (0.130–0.540) | 0.033 |
| Postoperative shock, n (%) | 72 (60.5%) | 13 (38.2%) | 59 (69.4%) | 0.003 |
| Postoperative vasopressor use, n (%) | 23 (19.3%) | 1 (2.9%) | 22 (25.9%) | 0.009 |
| Variable | Overall (n = 119) | No Escalation (n = 34) | Escalation (n = 85) | p Value |
|---|---|---|---|---|
| Any positive culture (sputum, wound, or blood), n (%) | 62 (52.1%) | 8 (23.5%) | 54 (63.5%) | <0.001 |
| Sputum culture positive, n (%) | 46 (38.7%) | 7 (20.6%) | 39 (45.9%) | 0.019 |
| Wound culture positive, n (%) | 31 (26.1%) | 1 (2.9%) | 30 (35.3%) | <0.001 |
| Blood culture positive, n (%) | 6 (5.0%) | 0 (0.0%) | 6 (7.1%) | 0.181 |
| ICU mechanical ventilation duration, min | 3405 (2125–4808) | 2170 (1972–2557) | 3515 (3305–5610) | <0.001 |
| Predictor | Adjusted OR | 95% CI | p Value |
|---|---|---|---|
| Postoperative shock (yes vs. no) | 3.52 | 1.48–8.36 | 0.004 |
| Day-1 procalcitonin (log-transformed) | 1.24 | 0.88–1.76 | 0.224 |
| Total operative time (per hour) | 1.14 | 0.89–1.45 | 0.296 |
| Intraoperative IV volume (per 1 L) | 1.16 | 0.82–1.64 | 0.410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chang, W.-H.; Cheng, K.-H.; Hu, T.-Y.; Hsieh, H.-F.; Yu, K.-P. Postoperative Antibiotic Escalation After Major Free-Flap Reconstruction Requiring ICU Admission: Associations with Day-1 Procalcitonin, Shock, and Microbiological Positivity. Life 2026, 16, 204. https://doi.org/10.3390/life16020204
Chang W-H, Cheng K-H, Hu T-Y, Hsieh H-F, Yu K-P. Postoperative Antibiotic Escalation After Major Free-Flap Reconstruction Requiring ICU Admission: Associations with Day-1 Procalcitonin, Shock, and Microbiological Positivity. Life. 2026; 16(2):204. https://doi.org/10.3390/life16020204
Chicago/Turabian StyleChang, Wei-Hung, Kuang-Hua Cheng, Ting-Yu Hu, Hui-Fang Hsieh, and Kuan-Pen Yu. 2026. "Postoperative Antibiotic Escalation After Major Free-Flap Reconstruction Requiring ICU Admission: Associations with Day-1 Procalcitonin, Shock, and Microbiological Positivity" Life 16, no. 2: 204. https://doi.org/10.3390/life16020204
APA StyleChang, W.-H., Cheng, K.-H., Hu, T.-Y., Hsieh, H.-F., & Yu, K.-P. (2026). Postoperative Antibiotic Escalation After Major Free-Flap Reconstruction Requiring ICU Admission: Associations with Day-1 Procalcitonin, Shock, and Microbiological Positivity. Life, 16(2), 204. https://doi.org/10.3390/life16020204

