Inflammation, Autonomic Control, and Adiposity in Adolescents: Links to Early Cardiovascular Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Analysis
2.3.1. Blood Analysis
2.3.2. Heart Rate Variability Parameters
2.3.3. Anthropometric Parameters
2.3.4. Statistical Analysis
3. Results
3.1. Correlations Between Inflammatory Markers and HRV, Inflammatory Markers and Anthropometric Parameters, and Anthropometric Parameters and HRV
3.1.1. Whole Group
3.1.2. Female Group
3.1.3. Male Group
4. Discussion
4.1. Strengths and Limitations
4.2. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANS | Autonomic nervous system |
BMI | Body mass index |
CVDs | Cardiovascular diseases |
EGF | Epidermal growth factor |
HF-HRV | High frequency band of heart rate variability |
HR | Heart rate |
HRV | Heart rate variability |
IFN | Interferon |
IL | Interleukin |
LF-HRV | Low frequency band of heart rate variability |
LPS | Lipopolysaccharide |
LYM | Lymphocytes |
MCP1 | Monocyte chemotactic protein-1 |
MON | Monocytes |
NEU | Neutrophils |
pNN50 | Proportion of R-R50 divided by the total number of R-R |
PNS | Parasympathetic nervous system |
rMSSD | Root mean square of the successive differences in the R-R intervals duration |
SDNN | Standard deviation of R-R intervals |
SNS | Sympathetic nervous system |
TNF | Tumor necrosis factor |
VEGF | Vascular endothelial growth factor |
VLF-HRV | Very low frequency band of heart rate variability |
WBC | White blood cells |
WC | Waist circumference |
WHO | World Health Organization |
WHR | Waist-to-hip ratio |
References
- Scott, J.; Agarwala, A.; Baker-Smith, C.M.; Feinstein, M.J.; Jakubowski, K.; Kaar, J.; Parekh, N.; Patel, K.V.; Stephens, J. Cardiovascular Health in the Transition From Adolescence to Emerging Adulthood: A Scientific Statement From the American Heart Association. J. Am. Heart Assoc. 2025, 14, e039239. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Xie, Y.; Li, K.; Yuan, R.; Zhang, L. The global burden and risk factors of cardiovascular diseases in adolescent and young adults, 1990–2019. BMC Public Health 2024, 24, 1017. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nyaga, U.F. Cardiovascular disease prevention should start in early life. BMC Glob. Public Health 2023, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. Lancet Child Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Bonnie, R.J.; Backes, E.P. The Promise of Adolescence: Realizing Opportunity for All Youth; National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Thangiah, N.; Chinna, K.; Su, T.T.; Jalaludin, M.Y.; Al-Sadat, N.; Majid, H.A. Clustering and Tracking the Stability of Biological CVD Risk Factors in Adolescents: The Malaysian Health and Adolescents Longitudinal Research Team Study (MyHeARTs). Front. Public Health 2020, 8, 520346. [Google Scholar] [CrossRef]
- Viner, R.M.; Allen, N.B.; Patton, G.C. Puberty, Developmental Processes, and Health Interventions. In Child and Adolescent Health and Development, 3rd ed; Bundy, D.A.P., Silva, N.D., Horton, S., Jamison, D.T., Patton, G.C., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; Volume 8, pp. 107–118. [Google Scholar]
- De Blas-Zapata, A.; Sastre-Albiach, J.M.; Baixauli-López, L.; López-Ruiz, R.; Alvarez-Pitti, J. Emerging cardiovascular risk factors in childhood and adolescence: A narrative review. Eur. J. Pediatr. 2025, 184, 298. [Google Scholar] [CrossRef]
- Gautam, N.; Dessie, G.; Rahman, M.M.; Khanam, R. Socioeconomic status and health behavior in children and adolescents: A systematic literature review. Front. Public Health 2023, 11, 1228632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Brook, R.D.; Li, Y.; Rajagopalan, S.; Kim, J.B. Air Pollution, Built Environment, and Early Cardiovascular Disease. Circ. Res. 2023, 132, 1707–1724. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Sørensen, M.; Schmidt, F.; Schmidt, E.; Steven, S.; Kröller-Schön, S.; Daiber, A. The Adverse Effects of Environmental Noise Exposure on Oxidative Stress and Cardiovascular Risk. Antioxid. Redox Signal. 2018, 28, 873. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J.; Alvarez, C.; Szafraniec, R.; Koźlenia, D. Biological maturation determines the beneficial effects of high-intensity functional training on cardiorespiratory fitness in male adolescents. PeerJ 2025, 13, e19756. [Google Scholar] [CrossRef]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493173/ (accessed on 7 July 2025).
- Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Yakovlev, A.A.; Popov, M.; Zhigmitova, E.B.; Sukhorukov, V.N.; Orekhov, A.N. Atherosclerosis originating from childhood: Specific features. J. Biomed. Res. 2024, 38, 233. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.S.; de Ferranti, S. Atherosclerotic Cardiovascular Risk as an Emerging Priority in Pediatrics. Pediatrics 2022, 150, e2022057956. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, K.; Krupa, J.; Suchy, W.; Sopel, A.; Korkosz, M.; Nowakowski, J. Endothelial dysfunction and risk factors for atherosclerosis in psoriatic arthritis: Overview and comparison with rheumatoid arthritis. Rheumatol. Int. 2024, 44, 1587–1606. [Google Scholar] [CrossRef]
- Tabas, I.; Lichtman, A.H. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 2017, 47, 621. [Google Scholar] [CrossRef]
- Bora, R.; Kılıç, A.T.; Toprak, B. Atherosclerosis and Inflammation: Are the Rules of the Game Changing with Biological Therapies? J. Inflamm. Res. 2025, 18, 9811–9822. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in Atherosclerosis-No Longer a Theory. Clin. Chem. 2021, 67, 131–142. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Tracey, K.J. The cholinergic anti-inflammatory pathway. Brain. Behav. Immun. 2005, 19, 493–499. [Google Scholar] [CrossRef]
- Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Investig. 2007, 117, 289–296. [Google Scholar] [CrossRef]
- Kelly, M.J.; Breathnach, C.; Tracey, K.J.; Donnelly, S.C. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep. Med. 2022, 3, 100696. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, K. Mechanism and Applications of Vagus Nerve Stimulation. Curr. Issues Mol. Biol. 2025, 47, 122. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.W.P.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart rate variability and inflammation: A meta-analysis of human studies. Brain. Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef] [PubMed]
- McCraty, R.; Shaffer, F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Michels, N.; De Henauw, S.; Klosowska, J.; Wijnant, K.; Braet, C.; Giletta, M. Interpersonal stressors predicting inflammation in adolescents: Moderation by emotion regulation and heart rate variability? Biol. Psychol. 2024, 193, 108900. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 July 2025).
- Nagata, J.M.; Ganson, K.T.; Liu, J.; Gooding, H.C.; Garber, A.K.; Bibbins-Domingo, K. Adolescent Body Mass Index and Health Outcomes at 24-Year Follow-Up: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2021, 77, 3229–3231. [Google Scholar] [CrossRef]
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Ben-Ami Shor, D.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, e464–e465. [Google Scholar] [CrossRef]
- Juckett, W.T.; Evanoff, N.G.; Kelly, A.S.; Bomberg, E.M.; Dengel, D.R. Relationships Between Adiposity Measures and Heart Rate Variability in Children and Adolescents. Pediatr. Cardiol. 2025. [Google Scholar] [CrossRef]
- Kaufman, C.L.; Kaiser, D.R.; Steinberger, J.; Dengel, D.R. Relationships between heart rate variability, vascular function, and adiposity in children. Clin. Auton. Res. 2007, 17, 165–171. [Google Scholar] [CrossRef]
- Hoffmann, S.W.; Schierbauer, J.; Zimmermann, P.; Voit, T.; Grothoff, A.; Wachsmuth, N.; Rössler, A.; Niedrist, T.; Lackner, H.K.; Moser, O. Associations Between Clinical Inflammatory Risk Markers, Body Composition, Heart Rate Variability, and Accelerometer-Assessed Physical Activity in University Students with Overweight and Obesity. Sensors 2025, 25, 1510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Ma, R.W.; Bhandari, S.; Xie, J.; Zhang, X.Y.; Xie, C.; Duan, H.; Meng, J.; Wu, Q.Y.; Liu, K.; et al. Association between systemic immune inflammation index and adolescent obesity in a cross-sectional analysis. Sci. Rep. 2025, 15, 6439. [Google Scholar] [CrossRef] [PubMed]
- Skapino, E.; Gonzalez-Gayan, L.; Seral-Cortes, M.; Sabroso-Lasa, S.; Llorente-Cereza, M.T.; Leis, R.; Aguilera, C.M.; Gil-Campos, M.; Moreno, L.A.; Bueno-Lozano, G. Independent effect of body fat content on inflammatory biomarkers in children and adolescents: The GENOBOX study. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103811. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Ranta-aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Tonhajzerova, I.; Visnovcova, Z.; Ondrejka, I.; Funakova, D.; Hrtanek, I.; Ferencova, N. Major depressive disorder at adolescent age is associated with impaired cardiovascular autonomic regulation and vasculature functioning. Int. J. Psychophysiol. 2022, 181, 14–22. [Google Scholar] [CrossRef]
- Thayer, J.F.; Sollers, J.J.; Ruiz-Padial, E.; Vila, J. Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Eng. Med. Biol. Mag. 2002, 21, 41–45. [Google Scholar] [CrossRef]
- Kember, G.C.; Fenton, G.A.; Armour, J.A.; Kalyaniwalla, N. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 2001, 63, 041911. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.M.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Shaffer, F.; Mccraty, R.; Zerr, C.L.; Kemp, A. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Grossman, P.; Taylor, E.W. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 2007, 74, 263–285. [Google Scholar] [CrossRef]
- Montgomery, M.M.; Marttinen, R.H.; Galpin, A.J. Comparison of Body Fat Results from 4 Bioelectrical Impedance Analysis Devices vs. Air Displacement Plethysmography in American Adolescent Wrestlers. Int. J. Kinesiol. Sport. Sci. 2017, 5, 18–25. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Yang, D.; Oppenheim, J.J. Interleukin-8: An evolving chemokine. Cytokine 2022, 153, 155828. [Google Scholar] [CrossRef] [PubMed]
- Wiley, C.R.; Pourmand, V.; Stevens, S.K.; Jarczok, M.N.; Fischer, J.E.; Boschiero, D.; Poggiogalle, E.; Koenig, J.; Thayer, J.F.; Williams, D.W.P. The interplay between heart rate variability, inflammation, and lipid accumulation: Implications for cardiometabolic risk. Physiol. Rep. 2025, 13, e70313. [Google Scholar] [CrossRef]
- Alen, N.V.; Parenteau, A.M.; Sloan, R.P.; Hostinar, C.E. Heart Rate Variability and Circulating Inflammatory Markers in Midlife. Brain Behav. Immun. Health 2021, 15, 100273. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Biscetti, L.; Pimpini, L.; Pelliccioni, G.; Sabbatinelli, J.; Giunta, S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res. Rev. 2024, 101, 102521. [Google Scholar] [CrossRef]
- Parish, R.C.; Todman, S.; Jain, S.K. Resting Heart Rate Variability, Inflammation, and Insulin Resistance in Overweight and Obese Adolescents. Metab. Syndr. Relat. Disord. 2016, 14, 291. [Google Scholar] [CrossRef]
- León-Ariza, H.H.; Botero-Rosas, D.A.; Acero-Mondragón, E.J.; Reyes-Cruz, D. Soluble interleukin-6 receptor in young adults and its relationship with body composition and autonomic nervous system. Physiol. Rep. 2019, 7, e14315. [Google Scholar] [CrossRef]
- Sloan, R.P.; McCreath, H.; Tracey, K.J.; Sidney, S.; Liu, K.; Seeman, T. RR Interval Variability Is Inversely Related to Inflammatory Markers: The CARDIA Study. Mol. Med. 2007, 13, 178. [Google Scholar] [CrossRef] [PubMed]
- Mosser, D.M.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Osborne, B.F.; Turano, A.; Schwarz, J.M. Sex differences in the neuroimmune system. Curr. Opin. Behav. Sci. 2018, 23, 118–123. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef]
- Bibi, S.; Naeem, M.; Bahls, M.; Dörr, M.; Friedrich, N.; Nauck, M.; Bülow, R.; Völzke, H.; Paulista Markus, M.R.; Ittermann, T. Body composition markers from classic anthropometry, bioelectrical impedance analysis, and magnetic resonance imaging are associated with inflammatory markers in the general population. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1899–1906. [Google Scholar] [CrossRef]
- Bibi, S.; Naeem, M.; Mahmoud Mousa, M.F.; Bahls, M.; Dörr, M.; Friedrich, N.; Nauck, M.; Bülow, R.; Völzke, H.; Markus, M.R.; et al. Body composition markers are associated with changes in inflammatory markers but not vice versa: A bi-directional longitudinal analysis in a population-based sample. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1166–1174. [Google Scholar] [CrossRef]
- Abu Ghazza, B.S.; El Bilbeisi, A.H.; El Afifi, A. Uncovering the inflammatory profile of obese children: Examining the link between body mass index for age and insulin resistance in the Gaza Strip. Front. Pediatr. 2025, 13, 1570803. [Google Scholar] [CrossRef]
- Bobjer, J.; Katrinaki, M.; Tsatsanis, C.; Lundberg Giwercman, Y.; Giwercman, A. Negative Association between Testosterone Concentration and Inflammatory Markers in Young Men: A Nested Cross-Sectional Study. PLoS ONE 2013, 8, e61466. [Google Scholar] [CrossRef]
- Malkin, C.J.; Pugh, P.J.; Jones, R.D.; Kapoor, D.; Channer, K.S.; Jones, T.H. The Effect of Testosterone Replacement on Endogenous Inflammatory Cytokines and Lipid Profiles in Hypogonadal Men. J. Clin. Endocrinol. Metab. 2004, 89, 3313–3318. [Google Scholar] [CrossRef]
- Tong, L.; Chen, G. Correlation between pan immune inflammation value and testosterone deficiency risk increase. Sci. Rep. 2025, 15, 13632. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.V.; Wong, S.K.; Wan Hasan, W.N.; Jolly, J.J.; Nur-Farhana, M.F.; Ima-Nirwana, S.; Chin, K.Y. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019, 22, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, S.D.; da Silva Aguiar, S.; Barbosa, L.P.; Santos, P.A.; Maciel, L.A.; de Araújo Leite, P.L.; dos Santos Rosa, T.; de Deus, L.A.; Lewis, J.E.; Simões, H.G. Is lifelong endurance training associated with maintaining levels of testosterone, interleukin-10, and body fat in middle-aged males? J. Clin. Transl. Res. 2021, 7, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.V.; Pervanidou, P.; Papassotiriou, I.; Bastaki, D.; Valavani, E.; Mantzou, A.; Giannakakis, G.; Boschiero, D.; Chrousos, G.P. Stress, Inflammation and Metabolic Biomarkers Are Associated with Body Composition Measures in Lean, Overweight, and Obese Children and Adolescents. Children 2022, 9, 291. [Google Scholar] [CrossRef]
- Plaza-Florido, A.; Migueles, J.H.; Mora-Gonzalez, J.; Molina-Garcia, P.; Rodriguez-Ayllon, M.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Navarrete, S.; Lozano, R.M.; Michels, N.; et al. The role of heart rate on the associations between body composition and heart rate variability in children with overweight/Obesity: The active brains project. Front. Physiol. 2019, 10, 452533. [Google Scholar] [CrossRef]
- Yadav, R.L.; Yadav, P.K.; Yadav, L.K.; Agrawal, K.; Sah, S.K.; Islam, M.N. Association between obesity and heart rate variability indices: An intuition toward cardiac autonomic alteration – a risk of CVD. Diabetes Metab. Syndr. Obes. 2017, 10, 57–64. [Google Scholar] [CrossRef]
- Soares-Miranda, L.; Alves, A.J.; Vale, S.; Aires, L.; Santos, R.; Oliveira, J.; Mota, J. Central fat influences cardiac autonomic function in obese and overweight girls. Pediatr. Cardiol. 2011, 32, 924–928. [Google Scholar] [CrossRef]
- Windham, B.G.; Fumagalli, S.; Ble, A.; Sollers, J.J.; Thayer, J.F.; Najjar, S.S.; Griswold, M.E.; Ferrucci, L. The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity. J. Obes. 2012, 2012, 149516. [Google Scholar] [CrossRef]
- Lapice, E.; Maione, S.; Patti, L.; Cipriano, P.; Rivellese, A.A.; Riccardi, G.; Vaccaro, O. Abdominal Adiposity Is Associated With Elevated C-Reactive Protein Independent of BMI in Healthy Nonobese People. Diabetes Care 2009, 32, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef] [PubMed]
- Viana das Neves, T.A.F.; de Moraes, R.C.S.; Duarte, D.B.; Pereira, J.K.G.; da Costa, P.C.T.; Silva-Luis, C.C.; de Oliveira Júnior, F.A.; de Souza, J.R.; de Brito Alves, J.L.; Baccin Martins, V.J. Is low heart rate variability associated with cardiometabolic dysfunction in children with obesity? A cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 2025, 104116. [Google Scholar] [CrossRef] [PubMed]
Parameters | Whole Group | Females | Males |
---|---|---|---|
n | 90 | 55 | 35 |
Age (years) | 15.8 ± 1.5 | 15.9 ± 1.3 | 15.6 ± 1.7 |
BMI (kg/m2) | 21.4 ± 3.3 | 21.3 ± 3.2 | 21.6 ± 3.6 |
HR (bpm) | 63.3 ± 11.5 | 64.6 ± 10.9 | 62.0 ± 12.4 |
SBP (mmHg) | 112.0 ± 15.8 | 115.0 ± 16.6 | 109.0 ± 14.0 |
DBP (mmHg) | 69.2 ± 9.8 | 70.3 ± 9.8 | 67.4 ± 9.6 |
Students of primary school (aged from 10 to 15 years) | 35 | 20 | 15 |
Students of secondary school (aged from 16 to 19 years) | 55 | 35 | 20 |
Correlations WHOLE GROUP | r-Spearman’s Rank-Order Coefficient | 95% Confidence Interval | p-Value | pBH-Value | |
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Inflammatory markers and HRV | |||||
WBC–HR | 0.285 | 0.083 | 0.46 | 0.007 | 0.0313 |
NEU–HR | 0.322 | 0.12 | 0.50 | 0.002 | 0.0125 |
NEU–SDNN | −0.266 | −0.45 | −0.062 | 0.012 | 0.0500 |
NEU–lnVLF-HRV | −0.395 | −0.56 | −0.20 | 0.009 | 0.0375 |
IL-8–lnVLF-HRV | 0.353 | 0.16 | 0.52 | 0.005 | 0.0250 |
Inflammatory markers and anthropometric parameters | |||||
NEU—Visceral fat | 0.338 | 0.14 | 0.51 | 0.002 | 0.0063 |
NEU—Overall fat | 0.316 | 0.12 | 0.49 | 0.003 | 0.0188 |
IL-10—BMI | −0.298 | −0.48 | −0.097 | 0.012 | 0.0438 |
Correlations FEMALE GROUP | r-Spearman’s Rank-Order Coefficient | 95% Confidence Interval | p-Value | pBH-Value | |
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Inflammatory markers and HRV | |||||
WBC–HR | 0.373 | 0.12 | 0.58 | 0.005 | 0.0136 |
TNF-α–HR | 0.389 | 0.14 | 0.59 | 0.011 | 0.0455 |
MCP1–rMSSD | 0.404 | 0.16 | 0.60 | 0.007 | 0.0182 |
MCP1–lnLF-HRV | 0.401 | 0.15 | 0.60 | 0.008 | 0.0227 |
MCP1–lnHF-HRV | 0.396 | 0.15 | 0.60 | 0.009 | 0.0272 |
Inflammatory markers and anthropometric parameters | |||||
WBC—Overall fat | 0.342 | 0.084 | 0.56 | 0.011 | 0.0409 |
IL-6—WHR | 0.485 | 0.25 | 0.66 | 0.001 | 0.0045 |
IL-6—WC | 0.392 | 0.14 | 0.60 | 0.010 | 0.0318 |
IL-6—Visceral fat | 0.462 | 0.22 | 0.65 | 0.003 | 0.0091 |
IL-6—Overall fat | 0.392 | 0.14 | 0.60 | 0.010 | 0.0364 |
IL-1α—Overall fat | −0.374 | −0.58 | −0.12 | 0.015 | 0.0500 |
Correlations MALE GROUP | r-Spearman’s Rank-Order Coefficient | 95% Confidence Interval | p-Value | pBH-Value | |
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Inflammatory markers and HRV | |||||
WBC–lnLF-HRV | −0.386 | −0.64 | −0.061 | 0.024 | 0.0375 |
NEU–SDNN | −0.391 | −0.64 | −0.066 | 0.022 | 0.0250 |
IL-10–pNN50 | −0.421 | −0.66 | −0.10 | 0.023 | 0.0333 |
IL-10–lnHF-HRV | −0.438 | −0.67 | −0.12 | 0.018 | 0.0208 |
Inflammatory markers and anthropometric parameters | |||||
IL-1β—BMI | −0.464 | −0.69 | −0.15 | 0.011 | 0.0125 |
IL-1β—WHR | −0.421 | −0.66 | −0.10 | 0.023 | 0.0292 |
IL-2—BMI | −0.450 | −0.68 | −0.14 | 0.014 | 0.0167 |
IL-6—WHR | −0.421 | −0.66 | −0.10 | 0.026 | 0.0417 |
IL-10—BMI | −0.497 | −0.71 | −0.20 | 0.006 | 0.0083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micieta, V.; Tonhajzerova, I.; Ferencova, N.; Visnovcova, Z. Inflammation, Autonomic Control, and Adiposity in Adolescents: Links to Early Cardiovascular Risk. Life 2025, 15, 1450. https://doi.org/10.3390/life15091450
Micieta V, Tonhajzerova I, Ferencova N, Visnovcova Z. Inflammation, Autonomic Control, and Adiposity in Adolescents: Links to Early Cardiovascular Risk. Life. 2025; 15(9):1450. https://doi.org/10.3390/life15091450
Chicago/Turabian StyleMicieta, Vladimir, Ingrid Tonhajzerova, Nikola Ferencova, and Zuzana Visnovcova. 2025. "Inflammation, Autonomic Control, and Adiposity in Adolescents: Links to Early Cardiovascular Risk" Life 15, no. 9: 1450. https://doi.org/10.3390/life15091450
APA StyleMicieta, V., Tonhajzerova, I., Ferencova, N., & Visnovcova, Z. (2025). Inflammation, Autonomic Control, and Adiposity in Adolescents: Links to Early Cardiovascular Risk. Life, 15(9), 1450. https://doi.org/10.3390/life15091450