Microplastics and Nanoplastics in Health Concerning Cellular Toxicity Mechanisms, Exposure Pathways, and Global Mitigation Strategies
Abstract
1. Introduction
2. Sources and Pathways of Exposure to MPs/NPs
2.1. Consumer Product-Related Sources: Oral Healthcare Products and Dental Materials
2.2. Dental Procedures and Clinical Material Degradation
Exposure Source | Polymer Type(s) | Particle Size Range | Reported Release Quantity |
---|---|---|---|
Toothpaste | PE, PP | 1–500 µm | Up to 5000 particles/g product [8,14] |
Mouthwash | PE fragments | 10–200 µm | ~74 billion particles/day (population estimate) [15] |
Toothbrush bristles | Nylon-6, PE | 10–500 µm | 30–120 particles per brushing [15] |
Dental floss | Nylon, polytetrafluoroethylene (PTFE) | 1–100 µm | Release during flossing detected [11] |
Orthodontic rubber bands | Polystyrene (PS), Elastomers | 100 nm–10 µm | Detectable MPs/NPs release [17] |
Dental resin composites | Methacrylate-based polymers | 0.5–20 µm | Resin microparticles during polishing [20] |
Denture wear/procedures | Acrylic resins (PMMA) | 1–50 µm | Release observed in clinical simulations [16] |
Dental aerosols (procedures) | Mixed polymeric debris | <1 µm to >10 µm | High concentrations in aerosols [18,19] |
2.3. Environmental Contamination Pathways
3. Cellular and Molecular Mechanisms of Toxicity
3.1. Cellular Uptake Mechanisms and Barrier Dysfunction
3.2. Oxidative Stress and Mitochondrial Dysfunction
3.3. Inflammatory Response and Immune System Dysregulation
3.4. Genotoxicity and DNA Damage Mechanisms
3.5. Endoplasmic Reticulum (ER) Stress and Protein Homeostasis
3.6. Cellular Senescence and Aging Pathways
Impact Category | Affected Systems | Representative Clinical/Biological Manifestations | Useful Biomarkers/Indicators | Representative References |
---|---|---|---|---|
Acute local effects | Intestinal epithelial barrier | Irritation, barrier disruption, transient inflammation | TEER change; local ROS; cytokines (IL-1β/IL-6) | [30,31,32,33,34,35,36,41,42,43] |
Chronic oral effects | Renal/hepatic/intestinal tissues | Chronic inflammation, remodeling/fibrosis, dysbiosis | SASP factors; MMPs; microbiome shifts | [29,43,44,45,46,59,60,61,62,63] |
Systemic distribution | Blood/lymph; organ deposition | Translocation/bioaccumulation; low-grade inflammation | Blood/tissue MPs; systemic cytokines: IL-1β, IL-6, TNF-α, IL-18 | [9,28,30,31,32,36,41,64,65,66,67,68,69,70,71,72,73] |
Immunological effects | Innate/adaptive immunity | Immune dysregulation; chronic activation | IL-1β; IL-18; TNF-α; NF-κB | [39,40,41,42,43,44] |
4. Global Policy Responses and Regulatory Frameworks
4.1. European Union Leadership in Comprehensive Regulation
4.2. Taiwan’s Integrated Approach to Plastic Pollution
4.3. North American Regulatory Approaches
4.4. G7 Countries’ Policies and Commitments
5. Technological Solutions and Future Directions
5.1. Advanced Detection and Removal Technologies
5.2. Biological and Enzymatic Degradation
5.3. Prevention and Source Reduction Technologies
6. Clinical and Public Health Implications
6.1. Healthcare Professional Education and Training
6.2. Public Health Surveillance and Intervention
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, A.; Sarkar, A.; Yadav, O.P.; Achari, G.; Slobodnik, J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Sci. Total Environ. 2021, 757, 143872. [Google Scholar] [CrossRef]
- ISO/TS 80004-1:2015; Nanotechnologies—Vocabulary, Part 1: Core Terms. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en (accessed on 19 September 2016).
- Wang, S.; Zheng, N.; Peng, L.; An, Q.; Chen, C.; Wei, Y. Patterns and risks of microplastic release during primary oral care in Chinese residents. Ecotoxicol. Environ. Saf. 2025, 302, 118694. [Google Scholar] [CrossRef]
- Saha, U.; Jena, S.; Simnani, F.Z.; Singh, D.; Choudhury, A.; Naser, S.S.; Lenka, S.S.; Kirti, A.; Nandi, A.; Sinha, A.; et al. The unseen perils of oral-care products generated micro/nanoplastics on human health. Ecotoxicol. Environ. Saf. 2025, 290, 117526. [Google Scholar] [CrossRef]
- Tanna, D.A.; Bhandary, S. The hidden hazards: The silent invasion of microplastics in dentistry (Review). World Acad. Sci. J. 2025, 7, 35. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Madhumitha, C.T.; Karmegam, N.; Biruntha, M.; Arun, A.; Al Kheraif, A.A.; Kim, W.; Kumar, P. Extraction, identification, and environmental risk assessment of microplastics in commercial toothpaste. Chemosphere 2022, 296, 133976. [Google Scholar] [CrossRef]
- Qian, N.; Gao, X.; Lang, X.; Deng, H.; Bratu, T.M.; Chen, Q.; Stapleton, P.; Yan, B.; Min, W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2300582121. [Google Scholar] [CrossRef]
- American Chemical Society. Chewing Gum Releases Thousands of Microplastic Particles into Saliva: Pilot Study Findings. Press Release. 2025. Available online: https://www.acs.org/pressroom/presspacs/2025/march/chewing-gum-can-shed-microplastics-into-saliva-pilot-study-finds.html (accessed on 13 September 2025).
- Jiao, Y.; Fu, Z.; Ni, X. Association Between Serum Levels of Perfluoroalkyl and Polyfluoroalkyl Substances and Dental Floss Use: The Double-Edged Sword of Dental Floss Use-A Cross-Sectional Study. J. Clin. Periodontol. 2025, 52, 877–887. [Google Scholar] [CrossRef]
- Sultan, A. Life Cycle Assessment of Dental Floss: A Comparison of Nylon-Based and Silk-Based Dental Floss; GreenDelta GmbH: Berlin, Germany, 2021; Available online: https://openlca.org/wp-content/uploads/2025/01/Report_Dental_Floss_LCA.pdf (accessed on 13 September 2025).
- Kutralam-Muniasamy, G.; Shruti, V.C.; Pérez-Guevara, F.; Roy, P.D. Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Sci. Total Environ. 2023, 856 Pt 2, 159164. [Google Scholar] [CrossRef]
- McConnell, M.S.; Varsha, A. Quantification and characterization of microplastics in five popular Indian toothpaste brands—A comprehensive analysis. Int. J. Curr. Sci. Res. Rev. 2025, 8, 4134–4143. [Google Scholar] [CrossRef]
- Protyusha, G.B.; Kavitha, B.; Robin, R.S.; Nithin, A.; Ineyathendral, T.R.; Shivani, S.S.; Anandavelu, I.; Sivasamy, S.; Samuel, V.D.; Purvaja, R. Microplastics in oral healthcare products (OHPs) and their environmental health risks and mitigation measures. Environ. Pollut. 2024, 343, 123118. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Guo, J.; Yao, M.; Liu, Y.; Qian, J.; Ma, Q. Release of microplastics during dental procedures and denture wear: Impact on dental personnel and patients. J. Hazard. Mater. 2025, 494, 138463. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Awoyemi, O.S.; Luo, Y.; Naidu, R. Investigating Microplastics and Nanoplastics Released from a Rubber Band Used for Orthodontic Treatment with Improved Raman Imaging Algorithms. Environ. Health 2023, 1, 63–71. [Google Scholar] [CrossRef]
- Kim, M.J.; Kuroda, M.; Kobayashi, Y.; Yamamoto, T.; Aizawa, T.; Satoh, K. Visualization of airborne droplets generated with dental handpieces and verification of the efficacy of high-volume evacuators: An in vitro study. BMC Oral Health 2023, 23, 976. [Google Scholar] [CrossRef]
- Akhtar, N.; Tahir, A.; Qadir, A.; Masood, R.; Gulzar, Z.; Arshad, M. Profusion of microplastics in dental healthcare units; morphological, polymer, and seasonal trends with hazardous consequences for humans. J. Hazard. Mater. 2024, 479, 135563. [Google Scholar] [CrossRef]
- Mulligan, S.; Ojeda, J.J.; Kakonyi, G.; Thornton, S.F.; Moharamzadeh, K.; Martin, N. Characterisation of Microparticle Waste from Dental Resin-Based Composites. Materials 2021, 14, 4440. [Google Scholar] [CrossRef]
- Peixoto, D.; Pinheiro, C.; Amorim, J.; Oliva-Teles, L.; Guilhermino, L.; Vieira, M.N. Microplastic pollution in commercial salt for human consumption: A review. Estuar. Coast. Shelf Sci. 2019, 219, 161–168. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Süssmann, J.; Krause, T.; Fischer, E.K.; Walz, E.; Greiner, R.; Rohn, S.; Fritsche, J. Microplastics in fresh and processed seafood—A survey of products sold in Germany. Food Control 2026, 179, 111565. [Google Scholar] [CrossRef]
- Koongolla, J.B.; Lin, L.; Yang, C.-P.; Pan, Y.-F.; Li, H.-X.; Liu, S.; Xu, X.-R. Microplastic prevalence in marine fish from onshore Beibu Gulf, South China Sea. Front. Mar. Sci. 2022, 9, 964461. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Lin, Y.-C.; Liu, W.-C.; Lee, Y.-H.; Chiu, H.-W. Air pollution and its impacts on health: Focus on microplastics and nanoplastics. Ecotoxicol. Environ. Saf. 2025, 299, 118402. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Liu, J.; Wu, H.; Zhang, Q.; Tang, X.R.; Li, D.; Li, C.S.; Liu, Y.; Cao, A.; Wang, H. Endocytosis, Distribution, and Exocytosis of Polystyrene Nanoparticles in Human Lung Cells. Nanomaterials 2022, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.; Iachetta, G.; Tussellino, M.; Carotenuto, R.; Prisco, M.; De Falco, M.; Laforgia, V.; Valiante, S. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2016, 31, 126–136. [Google Scholar] [CrossRef]
- Liu, L.; Xu, K.; Zhang, B.; Ye, Y.; Zhang, Q.; Jiang, W. Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci. Total Environ. 2021, 779, 146523. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, M.; Xin, Q.; Tang, J.; Liu, Y.; Bian, Z.; Zheng, X. Cellular uptake of polystyrene nanoplastics with surface Functionalization: An AIE-based quantitative approach. Anal. Chim. Acta 2025, 1362, 344184. [Google Scholar] [CrossRef]
- Jia, R.; Han, J.; Liu, X.; Li, K.; Lai, W.; Bian, L.; Yan, J.; Xi, Z. Exposure to Polypropylene Microplastics via Oral Ingestion Induces Colonic Apoptosis and Intestinal Barrier Damage through Oxidative Stress and Inflammation in Mice. Toxics 2023, 11, 127. [Google Scholar] [CrossRef]
- Su, Q.-L.; Wu, J.; Tan, S.-W.; Guo, X.-Y.; Zou, D.-Z.; Kang, K. The impact of microplastics polystyrene on the microscopic structure of mouse intestine, tight junction genes and gut microbiota. PLoS ONE 2024, 19, e0304686. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Ośko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants 2024, 13, 579. [Google Scholar] [CrossRef]
- Halimu, G.; Zhang, Q.; Liu, L.; Zhang, Z.; Wang, X.; Gu, W.; Zhang, B.; Dai, Y.; Zhang, H.; Zhang, C.; et al. Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential toxicological mechanism. J. Hazard. Mater. 2022, 430, 128485. [Google Scholar] [CrossRef]
- Wu, H.; Xu, T.; Chen, T.; Liu, J.; Xu, S. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice. Sci. Total Environ. 2022, 838, 155825. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, Y.; Zhang, T.; Qiao, Y.; Klobučar, G.; Li, M. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environ. Pollut. 2020, 259, 113896. [Google Scholar] [CrossRef] [PubMed]
- Dal Yöntem, F.; Aydoğan Ahbab, M. Mitochondria as a target of micro- and nanoplastic toxicity. Camb. Prism. Plast. 2024, 2, e6. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Hirt, N.; Body-Malapel, M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part. Fibre Toxicol. 2020, 17, 57. [Google Scholar] [CrossRef]
- Stock, V.; Laurisch, C.; Franke, J.; Dönmez, M.H.; Voss, L.; Böhmert, L.; Braeuning, A.; Sieg, H. Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2021, 70, 105021. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Qiao, R.; Bonilla, M.M.; Yang, X.; Ren, H.; Lemos, B. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). J. Hazard. Mater. 2018, 357, 348–354. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Zhao, P.; Yu, Z.; Yang, L.; Ding, X.; Lv, H.; Yi, S.; Sheng, Q.; Zhang, L.; et al. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). Aquat. Toxicol. 2024, 270, 106903. [Google Scholar] [CrossRef]
- Rubio, L.; Marcos, R.; Hernández, A. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J. Toxicol. Environ. Health Part B Crit. Rev. 2020, 23, 51–68. [Google Scholar] [CrossRef]
- Alijagic, A.; Hedbrant, A.; Persson, A.; Larsson, M.; Engwall, M.; Särndahl, E. NLRP3 inflammasome as a sensor of micro- and nanoplastics immunotoxicity. Front. Immunol. 2023, 14, 1178434. [Google Scholar] [CrossRef]
- Yang, W.; Jannatun, N.; Zeng, Y.; Liu, T.; Zhang, G.; Chen, C.; Li, Y. Impacts of microplastics on immunity. Front. Toxicol. 2022, 4, 956885. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Sana, S.S.; Dogiparthi, L.K.; Gangadhar, L.; Chakravorty, A.; Abhishek, N. Effects of microplastics and nanoplastics on marine environment and human health. Environ. Sci. Pollut. Res. Int. 2020, 27, 44743–44756. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Hollman, P.C.H.; Peters, R.J.B. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, T.R.; Chi, R.J.; Parrow, M.W.; Ringwood, A.H. Cellular Bioreactivity of Micro- and Nano-Plastic Particles in Oysters. Front. Mar. Sci. 2018, 5, 345. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Y.; Shi, X.; Li, Y.; Yu, Y.; Sun, Z.; Duan, J. Size-dependent toxicity of polystyrene microplastics on the gastrointestinal tract: Oxidative stress related-DNA damage and potential carcinogenicity. Sci. Total Environ. 2024, 912, 169514. [Google Scholar] [CrossRef]
- Sincihu, Y.; Lusno, M.F.D.; Mulyasari, T.M.; Elias, S.M.; Sudiana, I.K.; Kusumastuti, K.; Sulistyorini, L.; Keman, S. Wistar Rats Hippocampal Neurons Response to Blood Low-Density Polyethylene Microplastics: A Pathway Analysis of SOD, CAT, MDA, 8-OHdG Expression in Hippocampal Neurons and Blood Serum Aβ42 Levels. Neuropsychiatr. Dis. Treat. 2023, 19, 73–83. [Google Scholar] [CrossRef]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021, 449, 152665. [Google Scholar] [CrossRef]
- Kopatz, V.; Wen, K.; Kovács, T.; Keimowitz, A.S.; Pichler, V.; Widder, J.; Vethaak, A.D.; Hollóczki, O.; Kenner, L. Micro- and Nanoplastics Breach the Blood-Brain Barrier (BBB): Biomolecular Corona’s Role Revealed. Nanomaterials 2023, 13, 1404. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guan, J.; Feng, Y.; Nie, L.; Xu, Y.; Xu, H.; Fu, F. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats. Front. Nutr. 2023, 9, 1059660. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhu, M.; Sun, X.; Yang, J.; Guo, M. Microplastics induced endoplasmic reticulum stress to format an inflammation and cell death in hepatocytes of carp (Cyprinus carpio). Aquat. Toxicol. 2024, 269, 106870. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.; Liu, D.; Wang, Y.; Qi, H.; Liu, X.; Zhang, Y.; Chen, H.; Zeng, Y.; Li, J. Polystyrene nanoplastics-induced lung apoptosis and ferroptosis via ROS-dependent endoplasmic reticulum stress. Sci. Total Environ. 2024, 912, 169260. [Google Scholar] [CrossRef]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Huang, H.; Hou, J.; Yu, C.; Wei, F.; Xi, B. Microplastics exacerbate tissue damage and promote carcinogenesis following liver infection in mice. Ecotoxicol. Environ. Saf. 2024, 286, 117217. [Google Scholar] [CrossRef]
- Kumari, R.; Jat, P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol. 2021, 9, 645593. [Google Scholar] [CrossRef]
- Mahmud, F.; Sarker, D.B.; Jocelyn, J.A.; Sang, Q.A. Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells 2024, 13, 1788. [Google Scholar] [CrossRef]
- Primpke, S.; Wirth, M.; Lorenz, C.; Gerdts, G. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5131–5141. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Khosravi, F.; Saedi Ardahaei, A.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S.; De Falco, F. Microfibers: Environmental Problems and Textile Solutions. Microplastics 2022, 1, 626–639. [Google Scholar] [CrossRef]
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our plastic age. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651 Pt 2, 3253–3268. [Google Scholar] [CrossRef]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- World Health Organization. Microplastics in Drinking-Water; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241516198 (accessed on 13 September 2025).
- European Commission. A European Strategy for Plastics in a Circular Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- EUDirective (EU). 2019/904 of the European Parliament of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment. Off. J. Eur. Union 2019, L155, 1–19. [Google Scholar]
- EUCommission Regulation (EU). 2023/2055 of 25 September 2023 amending Annex XVIIto Regulation (EC) No 1907/2006 of the European Parliament of the Council concerning the Registration Evaluation Authorisation Restriction of Chemicals (REACH) as regards synthetic polymer microparticles. Off. J. Eur. Union 2023, L238, 11–35. [Google Scholar]
- Thornton Hampton, L.M.; Bouwmeester, H.; Brander, S.M.; Coffin, S.; Cole, M.; Hermabessiere, L.; Weisberg, S.B. Research recommendations to better understand the potential health impacts of microplastics to humans and aquatic ecosystems. Microplast. Nanoplast. 2022, 2, 18. [Google Scholar] [CrossRef]
- European Commission. Call for evidence for an impact assessment: Measures aiming to reduce the presence in the environment of unintentionally released microplastics from tyres, textiles and plastic pellets. Ref. Ares 2021, 29, 7346796. Available online: https://www.wko.at/oe/news/roadmap-entwurf-mikroplastik.pdf (accessed on 13 September 2025).
- Environmental Protection Administration, Executive Yuan. Taiwan Marine Waste Management Platform. 2017. Available online: https://www.ema.gov.tw/en/affairs/env-sanitation/taiwan-marine-waste/1779.html (accessed on 13 September 2025).
- Ministry of Environment Taiwan. Press Release: Taiwan’s Action on Marine Waste and Plastic Pollution. 2023. Available online: https://www.moenv.gov.tw/en/news/press-releases/11049.html (accessed on 13 September 2025).
- Environmental Protection Administration (EPA), Executive Yuan. Policy Results of Plastic Shopping Bag Restriction in Taiwan. Press Release. 2007. Available online: https://www.moenv.gov.tw/en/news/press-releases/11784.html (accessed on 13 September 2025).
- Tsai, W.-T. Environmental Policy for the Restriction on the Use of Plastic Products in Taiwan: Regulatory Measures, Implementation Status and COVID-19’s Impacts on Plastic Products Recycling. Environments 2022, 9, 7. [Google Scholar] [CrossRef]
- No-Burn. Taiwan Soon to Be Plastic-Free. 2018. Available online: https://www.no-burn.org/taiwan-soon-to-be-plastic-free/ (accessed on 13 September 2025).
- McDevitt, J.P.; Criddle, C.S.; Morse, M.; Hale, R.C.; Bott, C.B.; Rochman, C.M. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act—A New Standard Can Facilitate Improved Policy. Environ. Sci. Technol. 2017, 51, 6611–6617. [Google Scholar] [CrossRef]
- Rochman, C.M.; Kross, S.M.; Armstrong, J.B.; Bogan, M.T.; Darling, E.S.; Green, S.J.; Smyth, A.R.; Veríssimo, D. Scientific Evidence Supports a Ban on Microbeads. Environ. Sci. Technol. 2015, 49, 10759–10761. [Google Scholar] [CrossRef]
- Geyer, R.; Gavigan, J.; Jackson, A.M.; Saccomanno, V.R.; Suh, S.; Gleason, M.G. Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction. Environ. Pollut. 2022, 298, 118835. [Google Scholar] [CrossRef]
- Government of Canada. Single-Use Plastics Prohibition Regulations: Overview; Environment and Climate Change Canada: Gatineau, QC, Canada, 2023; Available online: https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/reduce-plastic-waste/single-use-plastic-overview.html (accessed on 13 September 2025).
- Klean Industries. Canada to Ban Single-Use Plastics by the End of 2023. 2023. Available online: https://kleanindustries.com/insights/market-analysis-reports/canada-to-ban-single-use-plastics-by-the-end-of-2023/ (accessed on 13 September 2025).
- Plastics News. G7 Commits to Ending Plastics Pollution by 2040. 2023. Available online: https://www.plasticsnews.com/news/g7-commits-ending-plastics-pollution-2040 (accessed on 13 September 2025).
- Global Cosmetics News. Japan Passes Bill to Reduce Microplastics in Order to Combat Pollution. 2018. Available online: https://www.globalcosmeticsnews.com/japan-passes-bill-to-reduce-microplastics-in-order-to-combat-pollution/ (accessed on 13 September 2025).
- Phys.org. Japan Passes Anti-Plastic Law, but No Sanctions for Polluters. 2018. Available online: https://phys.org/news/2018-06-japan-anti-plastic-law-sanctions-polluters.html (accessed on 13 September 2025).
- Kanehiro, H.; Kameyama, S.; Isobe, A.; Uchida, K.; Kameda, Y.; Kataoka, T.; Yamaguchi, A.; Watanabe, Y.; Tsuchiya, M. Atlas of Ocean Microplastics (AOMI): A global platform for microplastic monitoring. Front. Mar. Sci. 2023, 10, 1323748. [Google Scholar] [CrossRef]
- Choi, E.C.; Lee, J.S. The willingness to pay for removing the microplastics in the ocean—The case of Seoul metropolitan area, South Korea. Mar. Policy 2018, 93, 93–100. [Google Scholar] [CrossRef]
- Fu, D.; Chen, C.M.; Qi, H.; Fan, Z.; Wang, Z.; Peng, L.; Li, B. Occurrences and distribution of microplastic pollution and the control measures in China. Mar. Pollut. Bull. 2020, 153, 110963. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Yang, X.; Wang, J.; Lin, H.; Yang, Y. Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Sci. Total Environ. 2021, 773, 145643. [Google Scholar] [CrossRef] [PubMed]
- The Moscow Times. Russia to Fully Ban Single-Use Plastic Products by 2024—Minister. 2021. Available online: https://www.themoscowtimes.com/2021/09/02/russia-to-fully-ban-single-use-plastic-products-by-2024-minister-a74960 (accessed on 13 September 2025).
- UNI EN 13432:2000; Requirements for Packaging Recoverable Through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. European Committee for Standardization (CEN): Brussels, Belgium, 2000.
- UNI EN 14995:2006; Plastics—Evaluation of Compostability—Test Scheme and Specifications. European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- ClientEarth. Italy Reported to EU over Plastics Law Failure. 2021. Available online: https://www.clientearth.org/latest/press-office/press-releases/italy-reported-to-eu-over-plastics-law-failure/ (accessed on 13 September 2025).
- MICROPLASMA—National Research Council, Water Research Institute, Bari, Italy. MICROPLASMA—Monitoring Micro- and Macro-Plastic Pollution with Advanced Technologies. 2018. Available online: https://www.plastic-network.org/national-research-council-water-research-institute-bari-italy/ (accessed on 13 September 2025).
- Ecosistant. Plastic Tax in Italy 2026: Delay and Details. 2024. Available online: https://www.ecosistant.eu/en/plastic-tax-in-italy-2026/ (accessed on 13 September 2025).
- Food Packaging Forum. Spain Plans to Collect 70% of Plastic Bottles by 2023, Rising to 90% by 2029; Deposit-Return System If Targets Not Met. 2022. Available online: https://foodpackagingforum.org/news/spain-passes-comprehensive-waste-reduction-regulation-eases-the-way-for-reuse (accessed on 13 September 2025).
- Government of Canada. Ocean Plastics Charter. 2018. Available online: https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/international-commitments/ocean-plastics-charter.html (accessed on 13 September 2025).
- European Commission. G7 Climate, Energy and Environment Ministers’ Communiqué, Sapporo, Japan. 2023. Available online: https://www.meti.go.jp/press/2023/04/20230417004/20230417004-1.pdf (accessed on 13 September 2025).
- Cabernard, L.; Roscher, L.; Lorenz, C.; Gerdts, G.; Primpke, S. Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2018, 52, 13279–13288. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Dümichen, E.; Barthel, A.-K.; Braun, U.; Bannick, C.G.; Brand, K.; Jekel, M.; Senz, R. Analysis of polyethylene microplastics in environmental samples using a thermal decomposition method. Water Res. 2017, 116, 112–119. [Google Scholar] [CrossRef]
- Meyers, N.; De Witte, B.; Schmidt, N.; Herzke, D.; Fuda, J.-L.; Vanavermaete, D.; Janssen, C.R.; Everaert, G. From microplastics to pixels: Testing the robustness of two machine learning approaches for automated, Nile red-based marine microplastic identification. Environ. Sci. Pollut. Res. 2024, 31, 61860–61875. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Pedrero, D.; Edo, C.; Fernández-Piñas, F.; Rosal, R.; Aguado, S. Efficient removal of nanoplastics from water using mesoporous metal–organic frameworks. Sep. Purif. Technol. 2024, 333, 125816. [Google Scholar] [CrossRef]
- Pawak, V.S.; Loganathan, V.A.; Sabapathy, M. Efficient Removal of Nanoplastics from Synthetic Wastewater Using Electrocoagulation: Influence of Operational Parameters. arXiv 2023, arXiv:2302.08451. Available online: https://arxiv.org/abs/2302.08451 (accessed on 13 September 2025).
- Fu, J.; Liu, N.; Peng, Y.; Wang, G.; Wang, X.; Wang, Q.; Lv, M.; Chen, L. An ultra-light sustainable sponge for elimination of microplastics and nanoplastics. J. Hazard. Mater. 2023, 456, 131685. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, G.; Kumar, A.; Dhiman, P.; Mola, G.T.; Shan, A.; Si, C. Microplastic Pollutants in Water: A Comprehensive Review on Their Remediation by Adsorption Using Various Adsorbents. Chemosphere 2024, 352, 141365. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streit, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chen, Y.; Liu, X.; Dong, S.; Tian Ye Qiao, Y.; Mitra, R.; Han, J.; Li, C.; Han, X. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 2021, 11, 1340–1350. [Google Scholar] [CrossRef]
- Knott, B.C.; Erickson, E.; Allen, M.D.; Gado, J.E.; Graham, R.; Kearns, F.L.; Pardo, I.; Topuzlu, E.; Anderson, J.J.; Austin, H.P.; et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. USA 2020, 117, 25476–25485. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Diaz, D.J.; Czarnecki, N.J.; Zhu, C.; Kim, W.; Shroff, R.; Acosta, D.J.; Alexander, B.R.; Cole, H.O.; Zhang, Y.; et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 2022, 604, 662–667. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Uekert, T.; DesVeaux, J.S.; Singh, A.; Nicholson, S.R.; Lamers, P.; Ghosh, T.; McGeehan, J.E.; Carpenter, A.C.; Beckham, G.T. Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling. Green Chem. 2022, 24, 6531–6543. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Erdle, L.M.; Nouri Parto, D.; Sweetnam, D.; Rochman, C.M. Washing Machine Filters Reduce Microfiber Emissions: Evidence From a Community-Scale Pilot in Parry Sound, Ontario. Front. Mar. Sci. 2021, 8, 777865. [Google Scholar] [CrossRef]
- Textiles, M. Towards a Circular Economy for Textiles in Europe. European Environment Agency. 2022. Available online: https://www.eea.europa.eu/en/analysis/publications/microplastics-from-textiles-towards-a-circular-economy-for-textiles-in-europe (accessed on 13 September 2025).
- Loi n° 2020-105 du 10 Février 2020 Relative à la Lutte Contre le Gaspillage et à L’économie Circulaire (AGEC), Article 79 (Microfibre Filters for Washing Machines from 1 January 2025). Journal Officiel de laRépublique Française. 2020. Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000041553759/2022-05-05 (accessed on 13 September 2025).
- Allen, E.; Henninger, C.E.; Garforth, A.; Asuquo, E. Microfiber Pollution: A Systematic Literature Review to Overcome the Complexities in Knit Design to Create Solutions for Knit Fabrics. Environ. Sci. Technol. 2024, 58, 4031–4045. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef]
- De Falco, F.; Cocca, M.; Guarino, V.; Gentile, G.; Ambrogi, V.; Ambrosio, L.; Avella, M. Novel finishing treatments of polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings. Polym. Degrad. Stab. 2019, 165, 110–116. [Google Scholar] [CrossRef]
- Kang, H.; Park, S.; Lee, B.; Ahn, J.; Kim, S. Impact of Chitosan Pretreatment to Reduce Microfibers Released from Synthetic Garments during Laundering. Water 2021, 13, 2480. [Google Scholar] [CrossRef]
- Qian, Y.; Cui, P.; Zhang, J.; Wang, S.; Duan, X.; Li, G. Modified polyamide fibers with low surface friction coefficient to reduce microplastics emission during domestic laundry. Environ. Pollut. 2023, 335, 122356. [Google Scholar] [CrossRef]
- Park, S.B.; Kwak, H.; Lee, D.; Shin, G.; Jang, M.; Jung, H.; Jeon, H.; Kim, H.J.; Park, J.; Oh, D.X. Development of Marine-Degradable Poly(Ester Amide)s with Strong, Up-Scalable, and Up-Cyclable Performance. Adv. Mater. 2025, 37, 2417266. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, N.; Gan, H.; Ilangovan, M.; Kimura, S.; Kasuya, K.-I.; Isobe, N.; Iwata, T. Coastal and deep-sea biodegradation of polyhydroxyalkanoate microbeads. Sci. Rep. 2024, 14, 10302. [Google Scholar] [CrossRef]
- Pellengahr, F.; Corella-Puertas, E.; Mattelin, V.; Saadi, N.; Bertella, F.; Boulay, A.-M.; van der Meer, Y. Modeling marine microplastic emissions in Life Cycle Assessment: Characterization factors for biodegradable polymers and their application in a textile case study. Front. Toxicol. 2025, 7, 1494220. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Ramsperger, A.F.R.M.; Bergamaschi, E.; Panizzolo, M.; Fenoglio, I.; Barbero, F.; Peters, R.; Undas, A.; Purker, S.; Giese, B.; Lalyer, C.R.; et al. Nano- and microplastics: A comprehensive review on their exposure routes, translocation, and fate in humans. NanoImpact 2023, 29, 100441. [Google Scholar] [CrossRef]
Policy Approach | Scope | Implementation | Strengths | Limitations | Examples |
---|---|---|---|---|---|
Comprehensive frameworks | Entire plastic lifecycle | Phased, multi-year | Holistic approach Long-term vision Stakeholder engagement | Complex implementation High costs Requires coordination | EU, Taiwan |
Product-specific bans | Single products/categories | Rapid deployment | Clear targets Easy enforcement Quick results | Limited scope May shift to alternatives Narrow impact | US (microbeads) |
Extended producer responsibility | Production to disposal | Market-based | Economic incentives Industry innovation Self-sustaining | Enforcement challenges Cost pass-through Variable compliance | Germany, Republic of Korea |
Voluntary measures | Industry self-regulation | Flexible timeline | Low resistance Industry cooperation Flexible approach | Limited effectiveness No enforcement Inconsistent adoption | Japan, Industry initiatives |
Economic instruments | Taxes, fees, subsidies | Immediate | Revenue generation Behavior change Market signals | Regressive effects Administrative burden Avoidance potential | Spain (plastic tax), Taiwan (fees) |
Technology Type | Principle | Advantages | Limitations | Development Stage | Applications |
---|---|---|---|---|---|
Spectroscopic methods | FTIR, raman analysis | Chemical identification Non-destructive Established protocols | Time-intensive Size limitations Equipment cost | Commercial | Research, monitoring |
Magnetic separation | Ferrofluid attraction | High efficiency Scalable Low energy | Polymer-specific Ferrofluid recovery Initial costs | Pilot scale | Water treatment |
Biodegradable filters | Biomimetic capture | Sustainable High capture rate Biodegradable | Replacement frequency Production scale Flow rate limits | Development | Point-of-use filtration |
Enzymatic degradation | Biological breakdown | Complete degradation Environmentally safe Self-sustaining | Slow process Polymer specificity Temperature sensitive | Research | Waste treatment |
Machine filters | Physical retention | Immediate impact Consumer-friendly Proven technology | Maintenance required Partial capture Retrofit costs | Commercial | Washing machines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, R.-H.; Chen, H.-T.; Lee, I.-T.; Vo, T.-T.-T.; Wang, Y.-L. Microplastics and Nanoplastics in Health Concerning Cellular Toxicity Mechanisms, Exposure Pathways, and Global Mitigation Strategies. Life 2025, 15, 1449. https://doi.org/10.3390/life15091449
Lin R-H, Chen H-T, Lee I-T, Vo T-T-T, Wang Y-L. Microplastics and Nanoplastics in Health Concerning Cellular Toxicity Mechanisms, Exposure Pathways, and Global Mitigation Strategies. Life. 2025; 15(9):1449. https://doi.org/10.3390/life15091449
Chicago/Turabian StyleLin, Ruei-Hong, Hao-Ting Chen, I-Ta Lee, Thi-Thuy-Tien Vo, and Yung-Li Wang. 2025. "Microplastics and Nanoplastics in Health Concerning Cellular Toxicity Mechanisms, Exposure Pathways, and Global Mitigation Strategies" Life 15, no. 9: 1449. https://doi.org/10.3390/life15091449
APA StyleLin, R.-H., Chen, H.-T., Lee, I.-T., Vo, T.-T.-T., & Wang, Y.-L. (2025). Microplastics and Nanoplastics in Health Concerning Cellular Toxicity Mechanisms, Exposure Pathways, and Global Mitigation Strategies. Life, 15(9), 1449. https://doi.org/10.3390/life15091449