Biomarkers for Early Detection of Cisplatin-Induced Nephrotoxicity
Abstract
1. Introduction
2. Aim
3. Materials and Methods
3.1. Study Design and Participants
- High-risk group for nephrotoxicity: patients treated with cisplatin;
- Low-to-moderate risk group for nephrotoxicity: patients treated with oxaliplatin/carboplatin.
3.2. Eligibility Criteria
3.2.1. Inclusion Criteria
3.2.2. Exclusion Criteria
3.3. Sample Collection and Follow-Up
- Human Nephrin ELISA kit, 96 tests, Mybiosource, catalog number: MBS265927;
- Human Kim-1 ELISA kit, 96 tests, Mybiosource, catalog number: MBS454373;
- Clusterin Human ELISA, 96 tests, Biovendor, catalog number: RD194034200R.
3.4. Definitions and Terminology; Outcome Assessment
- eGFR decline >10 mL/min/1.73 m2—patients with developed nephrotoxicity;
- No eGFR decline or eGFR decline ≤10 mL/min/1.73 m2—patients with stable kidney function.
3.5. Statistical Analysis
4. Results
4.1. Participants Characteristics
4.2. Tumor Localization and Chemotherapy Regimens
4.3. Group Differences in Renal Biomarkers at Baseline
4.4. Renal Biomarker Dynamic Across Chemotherapy Timepoints (T0–T3)
4.4.1. Within Group Analysis: Cisplatin Group
4.4.2. Within Group Analysis: Carboplatin/Oxaliplatin Group
4.4.3. Between-Group Comparisons
4.5. Nephrotoxicity Assessment
5. Discussion
5.1. Nephrotoxicity—Nephrotoxicity in Platinum-Based Therapy
5.2. Renal Biomarkers in Cancer Patients
5.3. Renal Biomarkers for Early Detection of Platinum-Induced Nephrotoxicity
6. Conclusions
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global disparities of cancer and its projected burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.E.; Sullivan, R.; Peto, R.; Abubakar, B.; Booth, C.; Werutsky, G.; Adams, C.; Saint-Raymond, A.; Fleming, T.R.; Lyerly, K.; et al. Global Cancer Drug Development—A report from the 2022 Accelerating Anticancer Agent Development and Validation Meeting. JCO Glob. Oncol. 2023, 9, e2300294. [Google Scholar] [CrossRef]
- Shang, J.; Zhou, L.; Huang, L.; Yang, F.; Liu, Y.; Zhang, C.; Zu, L.; Fan, R.; Zhang, X.; Liu, Y.; et al. Trends in antineoplastic drug use, cost and prescribing patterns among patients with lung cancer in nine major cities of China, 2016–2020: A retrospective observational study based on inpatient and outpatient hospital data. BMJ Open 2023, 13, e069645. [Google Scholar] [CrossRef]
- Yao, D.; Yu, L.; He, W.; Hu, Y.; Xu, H.; Yuan, Y.; Dai, H. Antineoplastic prescription among patients with colorectal cancer in eight major cities of China, 2015–2019: An observational retrospective database analysis. BMJ Open 2021, 11, e046166. [Google Scholar] [CrossRef]
- Launay-Vacher, V.; Oudard, S.; Janus, N.; Gligorov, J.; Pourrat, X.; Rixe, O.; Morere, J.; Beuzeboc, P.; Deray, G. Prevalence of Renal Insufficiency in cancer patients and implications for anticancer drug management. Cancer 2007, 110, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar] [CrossRef]
- Naganuma, M.; Motooka, Y.; Sasaoka, S.; Hatahira, H.; Hasegawa, S.; Fukuda, A.; Nakao, S.; Shimada, K.; Hirade, K.; Mori, T.; et al. Analysis of adverse events of renal impairment related to platinum-based compounds using the Japanese Adverse Drug Event Report database. SAGE Open Med. 2018, 6, 2050312118772475. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. Correction: The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 7848. [Google Scholar] [CrossRef]
- Małyszko, J.; Kozłowska, K.; Kozłowski, L.; Małyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant. 2017, 32, 924–936. [Google Scholar] [CrossRef]
- Oh, G.-S.; Kim, H.-J.; Shen, A.; Lee, S.B.; Khadka, D.; Pandit, A.; So, H.-S. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolytes Blood Press. 2014, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Sales, G.T.M.; Foresto, R.D. Drug-induced nephrotoxicity. Rev. Assoc. Médica Bras. 2020, 66 (Suppl. S1), s82–s90. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.C.; Hewitt, P. Biomarkers for Drug-Induced Renal Damage and Nephrotoxicity—An Overview for Applied Toxicology. AAPS J. 2011, 13, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Chebotareva, N.; Grechukhina, K.; Mcdonnell, V.; Zhukova, L.; Krasnova, T. Early biomarkers of nephrotoxicity associated with the use of anti-VEGF drugs. Biomed. Rep. 2022, 16, 46. [Google Scholar] [CrossRef]
- Kar, S.; Paglialunga, S.; Islam, R. Cystatin C is a more reliable biomarker for determining EGFR to support drug development studies. J. Clin. Pharmacol. 2018, 58, 1239–1247. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Radu, S.; Costea, C.F.; Ciocoiu, M.; Carauleanu, A.; Lacatusu, C.M.; Maranduca, M.A.; Floria, M.; Rezus, C. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) Cisplatin-Induced nephrotoxicity. Int. J. Mol. Sci. 2019, 20, 5238. [Google Scholar] [CrossRef]
- Griffin, B.R.; Faubel, S.; Edelstein, C.L. Biomarkers of Drug-Induced Kidney toxicity. Ther. Drug Monit. 2018, 41, 213–226. [Google Scholar] [CrossRef]
- McMahon, G.M.; Waikar, S.S. Biomarkers in Nephrology: Core Curriculum 2013. Am. J. Kidney Dis. 2013, 62, 165–178. [Google Scholar] [CrossRef]
- Kalamkar, P.; Gadgoli, C.; Girase, G.; Dalvi, R.; Dadrekar, P.; Karulkar, N.; Deshmukh, S.; Kalamkar, V. Novel biomarkers for detection of nephrotoxicity. J. Ren. Inj. Prev. 2024, 13, e33294. [Google Scholar] [CrossRef]
- George, B.; Joy, M.S.; Aleksunes, L.M. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp. Biol. Med. 2017, 243, 272–282. [Google Scholar] [CrossRef]
- Yu, A.S.; Chertow, G.M.; Luyckx, V.A.; Marsden, P.A.; Skorecki, K.; Taal, M.W. Inherited Disorders of the Glomerulus. In Brenner and Rector’s The Kidney; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Mesfine, B.B.; Vojisavljevic, D.; Kapoor, R.; Watson, D.; Kandasamy, Y.; Rudd, D. Urinary nephrin—A potential marker of early glomerular injury: A systematic review and meta-analysis. J. Nephrol. 2023, 37, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Van Der Gaag, S.; Labots, M.; Swart, E.L.; Crul, M. Reducing renal function assessment prior to platinum-based chemotherapy: A real-world evaluation. Acta Oncol. 2024, 63, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Shirali, A.; Pazhayattil, G.S. Drug-induced impairment of renal function. Int. J. Nephrol. Renov. Dis. 2014, 2014, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, D.W.; Visser, S.; Cornelissen, R.; Van Gelder, T.; Vansteenkiste, J.; Von Der Thusen, J.; Aerts, J.G.J.V. Renal toxicity from pemetrexed and pembrolizumab in the era of combination therapy in patients with metastatic nonsquamous cell NSCLC. J. Thorac. Oncol. 2020, 15, 1472–1483. [Google Scholar] [CrossRef]
- Vestergaard, A.H.S.; Jensen, S.K.; Heide-Jørgensen, U.; Frederiksen, L.E.; Birn, H.; Jarbøl, D.E.; Søndergaard, J.; Persson, F.; Thomsen, R.W.; Christiansen, C.F. Risk factor analysis for a rapid progression of chronic kidney disease. Nephrol. Dial. Transplant. 2024, 39, 1150–1158. [Google Scholar] [CrossRef]
- Isiiko, J.; Atwiine, B.; Oloro, J. Prevalence and risk factors of nephrotoxicity among adult cancer patients at Mbarara Regional Referral Hospital. Cancer Manag. Res. 2021, 13, 7677–7684. [Google Scholar] [CrossRef]
- Mohri, J.; Katada, C.; Ueda, M.; Sugawara, M.; Yamashita, K.; Moriya, H.; Komori, S.; Hayakawa, K.; Koizumi, W.; Atsuda, K. Predisposing factors for chemotherapy-induced nephrotoxicity in patients with advanced esophageal cancer who received combination chemotherapy with docetaxel, cisplatin, and 5-fluorouracil. J. Transl. Intern. Med. 2018, 6, 32–37. [Google Scholar] [CrossRef]
- Prasaja, Y.; Sutandyo, N.; Andrajati, R. Incidence of Cisplatin-Induced Nephrotoxicity and Associated Factors among Cancer Patients in Indonesia. Asian Pac. J. Cancer Prev. 2015, 16, 1117–1122. [Google Scholar] [CrossRef]
- Sleijfer, D.T.; Smit, E.; Meijer, S.; Mulder, N.; Postmus, P. Acute and cumulative effects of carboplatin on renal function. Br. J. Cancer 1989, 60, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Hałka, J.; Spaleniak, S.; Kade, G.; Antosiewicz, S.; Sigorski, D. The nephrotoxicity of drugs used in causal oncological therapies. Curr. Oncol. 2022, 29, 9681–9694. [Google Scholar] [CrossRef]
- Jones, M.; Denieffe, S.; Griffin, C.; Tinago, W.; Fitzgibbon, M.C. Evaluation of cystatin C in malignancy and comparability of estimates of GFR in oncology patients. Pract. Lab. Med. 2017, 8, 95–104. [Google Scholar] [CrossRef]
- Maeda, A.; Ando, H.; Ura, T.; Muro, K.; Aoki, M.; Saito, K.; Kondo, E.; Takahashi, S.; Ito, Y.; Mizuno, Y.; et al. Differences in Urinary Renal Failure Biomarkers in Cancer Patients Initially Treated with Cisplatin. Anticancer Res. 2017, 37, 5235–5239. [Google Scholar] [CrossRef] [PubMed]
- Puia, D.; Ivănuță, M.; Pricop, C. Kidney Injury Molecule-1 as a biomarker for renal cancer: Current Insights and Future Perspectives—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 3431. [Google Scholar] [CrossRef]
- Peng, S.; Liu, N.; Wei, K.; Li, G.; Zou, Z.; Liu, T.; Shi, M.; Lv, Y.; Lin, Y. The predicted value of kidney injury molecule-1 (KIM-1) in healthy people. Int. J. Gen. Med. 2022, 15, 4495–4503. [Google Scholar] [CrossRef]
- Kadioglu, T.; Uzunlulu, M.; Yigit Kaya, S.; Oguz, A.; Ggonenli, G.; Isbilen, B.; Isman, F. Urinary kidney injury molecule-1 levels as a marker of early kidney injury in hypertensive patients. Minerva Urol. E Nefrol. = Ital. J. Urol. Nephrol. 2016, 68, 456–461. [Google Scholar] [PubMed]
- Kim, S.-Y.; Moon, A.-R. Drug-Induced nephrotoxicity and its biomarkers. Biomol. Ther. 2012, 20, 268–272. [Google Scholar] [CrossRef]
- Dobrek, L. A synopsis of Current theories on Drug-Induced Nephrotoxicity. Life 2023, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Moeani, B. The Efficacy of Serum Cystatin C and Creatinine to Diagnose Impaired Renal Function in Cancer Patients Under Treatment with Cisplatin. Int. J. Hematol. Oncol. 2015, 25, 51–59. [Google Scholar] [CrossRef]
- Li, W.-H.; Yu, X.-J.; Lin, Q.-J.; Cheng, X. Clinical significance of serum cystatin C in early evaluation of renal impairment caused by chemotherapy in elderly patients. Transl. Cancer Res. 2020, 9, 2191–2199. [Google Scholar] [CrossRef]
- Tekce, B.K.; Uyeturk, U.; Tekce, H.; Uyeturk, U.; Aktas, G.; Akkaya, A. Does the kidney injury molecule-1 predict cisplatin-induced kidney injury in early stage? Ann. Clin. Biochem. Int. J. Lab. Med. 2014, 52, 88–94. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Wen, X.; Mercke, N.; Gomez, M.; O’Bryant, C.; Bowles, D.W.; Hu, Y.; Hogan, S.L.; Joy, M.S.; Aleksunes, L.M. Time-dependent changes in kidney injury biomarkers in patients receiving multiple cycles of cisplatin chemotherapy. Toxicol. Rep. 2020, 7, 571–576. [Google Scholar] [CrossRef]
- Jana, S.; Mitra, P.; Dutta, A.; Khatun, A.; Das, T.K.; Pradhan, S.; Nandi, D.K.; Roy, S. Early diagnostic biomarkers for acute kidney injury using cisplatin-induced nephrotoxicity in rat model. Curr. Res. Toxicol. 2023, 5, 100135. [Google Scholar] [CrossRef]
- Perše, M. Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines 2021, 9, 1406. [Google Scholar] [CrossRef]
- Vinken, P.; Starckx, S.; Barale-Thomas, E.; Looszova, A.; Sonee, M.; Goeminne, N.; Versmissen, L.; Buyens, K.; Lampo, A. Tissue KIM-1 and urinary clusterin as early indicators of Cisplatin-Induced acute kidney injury in rats. Toxicol. Pathol. 2012, 40, 1049–1062. [Google Scholar] [CrossRef]
- Waikar, S.S.; Mogg, R.; Baker, A.F.; Frendl, G.; Topper, M.; Adler, S.; Sultana, S.; Zhao, R.; King, N.M.P.; Piccoli, S.P.; et al. Urinary kidney injury biomarker profiles in healthy individuals and after nephrotoxic and ischemic injury. Clin. Pharmacol. Ther. 2025, 117, 1272–1283. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Chang, C.; Hu, Y.; Hogan, S.L.; Mercke, N.; Gomez, M.; O’Bryant, C.L.; Bowles, D.W.; George, B.; Wen, X.; et al. Pharmacokinetic determinants of cisplatin-induced subclinical kidney injury in oncology patients. Eur. J. Clin. Pharmacol. 2018, 75, 51–57. [Google Scholar] [CrossRef]
- George, B.; Wen, X.; Mercke, N.; Gomez, M.; O’Bryant, C.; Bowles, D.; Hu, Y.; Hogan, S.; Joy; Aleksunes, L. Profiling of kidney injury biomarkers in patients receiving cisplatin: Time-dependent changes in the absence of clinical nephrotoxicity. Clin. Pharmacol. Ther. 2016, 101, 510–518. [Google Scholar] [CrossRef]
Characteristic | Cisplatin (n = 24) | Carboplatin/Oxaliplatin (n = 19) | Control (n = 23) |
---|---|---|---|
Age (Mean ± SD) | |||
male | 58.9 ± 13.5 | 60.8 ± 9.2 | 34.4 ± 10.2 |
female | 64.0 ± 8.3 | 62.5 ± 11.1 | 33.0 ± 8.5 |
Sex | % (n) | ||
male | 79.2% (19) | 31.6% (6) | 39.1% (9) |
female | 20.8% (5) | 68.4% (13) | 60.9% (14) |
ECOG PS | |||
≥2 | 37.5% (9) | 0.0% (0) | — |
<2 | 62.5% (15) | 100% (19) | — |
Comorbidities | |||
Hypertension | |||
Yes | 66.7% (16) | 63.2% (12) | — |
No | 33.3% (8) | 36.8% (7) | — |
Anemia | |||
Yes | 45.8% (11) | 42.1% (8) | — |
No | 54.2% (13) | 57.9% (11) | — |
Ischemic Heart Disease | |||
Yes | 29.2% (7) | 5.3% (1) | — |
No | 70.8% (17) | 94.7% (18) | — |
Diabetes | |||
Yes | 12.5% (3) | 15.8% (3) | — |
No | 87.5% (21) | 84.2% (16) | — |
Chronic obstructive pulmonary disease | |||
Yes | 12.5% (3) | 15.8% (3) | — |
No | 87.5% (21) | 84.2% (16) | — |
Body Location/System | Number of Patients (%) |
---|---|
Gastrointestinal | 16 (37.2%) |
Genitourinary | 9 (20.9%) |
Respiratory/Thoracic | 8 (18.6%) |
Gynecologic | 5 (11.6%) |
Head and Neck | 3 (7.0%) |
Non site specific | 2 (4.7%) |
Biomarker (Reference Range) | Cisplatin Group, (n = 24) | Carboplatin/ Oxaliplatin, (n = 19) | Control Group, (n = 23) | p | Pairwise Significance (2-Tailed) |
---|---|---|---|---|---|
Creatinine, µmol/L Male: 74–134 Female: 44–96 | 80.0 (66.5–95.5) 84.0 (77.0–102.0) 67.0 (58.0–80.0) | 68.0 (65.0–77.0) 84.5 (77.0–88.0) 67.0 (65.0–68.0)) | – | 0.058 | - |
eGFR (mL/min/1.73 m2) | 90.5 (71.5–100.5) | 87.0 (84.0–94.0) | – | 0.807 | - |
Cystatin C, mg/L (0.51–1.09) | 1.42 (1.02–1.88) | 1.51 (1.05–1.87) | – | 0.854 | - |
uACR, mg/mmol (0.0–3.0) | 3.30 (1.45–3.00) | 1.10 (0.60–3.00) | 0.730 | ||
uKIM-1 (pg/mL) | 672.5 (335.3–1393.1) | 511.5 (108.6–1073.1) | 198.1 (65.1–417.1) | <0.001 | Cis vs. Control, p < 0.001; Carbo/Oxa vs. Control, p = 0.024; Cis vs. Carbo/Oxa, p = 0.130; |
uNephrin (ng/mL) | 0.20 (0.00–0.30) | 0.00 (0.00–0.30) | 0.10 (0.00–0.30) | 0.710 | NS |
uClusterin (μg/mL) | 1.10 (0.35–2.00) | 0.70 (0.30–3.70) | 1.40 (0.30–2.60) | 0.985 | NS |
Biomarker | T0 | T1 | T2 | T3 |
---|---|---|---|---|
Creatinine (µmol/L) | 84.00 ± 22.49 | 91.08 ± 24.24 | 93.71 ± 23.12 | 97.29 ± 30.06 |
eGFR (mL/min/1.73 m2) | 86.71 ± 16.97 | 81.25 ± 18.14 | 79.29 ± 19.85 | 77.71 ± 20.22 |
Cystatin C (mg/L) | 1.46 ± 0.60 | 1.96 ± 0.86 | 2.13 ± 0.88 | 2.40 ± 0.92 |
uACR (mg/mmol) | 2.30 ± 1.07 | 2.32 ± 1.04 | 2.60 ± 1.28 | 5.54 ± 10.95 |
uKIM-1 (pg/mL) | 900.05 ± 672.13 | 1422.48 ± 633.64 | 1488.21 ± 703.13 | 1459.78 ± 712.37 |
uNephrin (ng/mL) | 0.26 ± 0.47 | 0.75 ± 1.28 | 1.00 ± 1.31 | 0.79 ± 1.04 |
uClusterin (μg/mL) | 1.96 ± 2.68 | 6.73 ± 9.42 | 9.01 ± 14.99 | 15.95 ± 19.91 |
Biomarker | n | Mean Rank | χ2 | df | p | Significant Pairwise Comparisons (Wilcoxon z, p) | |||
---|---|---|---|---|---|---|---|---|---|
t0 | t1 | t2 | t3 | ||||||
uACR | 24 | 2.08 | 2.19 | 2.56 | 3.17 | 15.16 | 3 | 0.002 | t0–t3: z = −2.907, p = 0.022 |
Cystatin C | 24 | 1.42 | 2.5 | 2.79 | 3.29 | 27.15 | 3 | <0.001 | t0–t1: z = −2.91, p = 0.022 t0–t2: z = −3.69, p = 0.001 t0–t3: z = −5.03, p < 0.001 |
uKIM-1 | 24 | 1.77 | 2.71 | 2.65 | 2.88 | 12.67 | 3 | 0.005 | t0–t3: z = −2.96, p = 0.018 |
uNephrin | 24 | 1.73 | 2.52 | 3.0 | 2.75 | 14.19 | 3 | 0.003 | t0–t2: z = −3.41, p = 0.004 t0–t3: z = −2.74, p = 0.037 |
uClusterin | 24 | 1.77 | 2.35 | 2.69 | 3.19 | 15.67 | 3 | 0.001 | t0–t3: z = −3.80, p = 0.001 |
Biomarker (Fold Change) | n | Mean ± SD |
---|---|---|
Cystatin C t0–T1 | 24 | 1.41 ± 0.42 |
Cystatin C t0–T2 | 24 | 1.63 ± 0.76 |
Cystatin C t0–T3 | 24 | 1.95 ± 1.38 |
uKIM-1 t0–T1 | 24 | 3.51 ± 4.17 |
uKIM-1 t0–T2 | 24 | 3.79 ± 5.08 |
uKIM-1 t0–T3 | 24 | 3.78 ± 4.99 |
uClusterin t0–T1 | 24 | 9.35 ± 18.2 |
uClusterin t0–T2 | 24 | 10.42 ± 24.64 |
uClusterin t0–T3 | 24 | 21.6 ± 38.24 |
uNephrin t0–T1 | 24 | 3.46 ± 4.3 |
uNephrin t0–T2 | 24 | 4.94 ± 5.41 |
uNephrin t0–T3 | 24 | 3.83 ± 4.17 |
Biomarker | n | Mean Rank | χ2 | df | p | ||
---|---|---|---|---|---|---|---|
T0–T1 | T0–T2 | T0–T3 | |||||
Cystatin C | 24 | 1.63 | 1.96 | 2.42 | 7.583 | 2 | 0.023 |
uKIM-1 | 24 | 2.02 | 1.85 | 2.13 | 1.229 | 2 | 0.541 |
uNephrin | 24 | 1.79 | 2.23 | 1.98 | 2.494 | 2 | 0.287 |
uClusterin | 24 | 1.69 | 1.94 | 2.38 | 5.936 | 2 | 0.051 |
Biomarker | T0 | T1 | T2 | T3 |
---|---|---|---|---|
Creatinine (µmol/L) | 70.95 ± 10.81 | 72.58 ± 8.75 | 71.53 ± 10.54 | 68.79 ± 9.11 |
Cystatin C (mg/L) | 1.46 ± 0.63 | 1.68 ± 0.85 | 1.65 ± 0.88 | 1.65 ± 0.50 |
eGFR (mL/min/1.73 m2) | 90.11 ± 8.83 | 88.00 ± 11.66 | 89.05 ± 11.02 | 92.58 ± 9.62 |
uACR (mg/mmol) | 1.58 ± 1.19 | 1.87 ± 1.12 | 2.13 ± 1.22 | 3.60 ± 3.79 |
uKIM-1 (pg/mL) | 645.43 ± 626.96 | 796.64 ± 529.23 | 838.07 ± 676.84 | 844.79 ± 582.86 |
uNephrin (ng/mL) | 0.28 ± 0.59 | 0.37 ± 0.60 | 0.29 ± 0.40 | 0.57 ± 1.20 |
uClusterin (μg/mL) | 2.64 ± 3.73 | 2.07 ± 2.15 | 7.08 ± 15.44 | 4.93 ± 6.22 |
Biomarker | n | χ2 | df | p |
---|---|---|---|---|
Creatinine (within reference range) | 19 | - | - | N/A |
eGFR | 19 | 3.33 | 3 | 0.344 |
uACR | 19 | 16.07 | 3 | 0.001 |
Cystatin C | 19 | 1.80 | 3 | 0.615 |
uKIM-1 | 19 | 2.90 | 3 | 0.407 |
uNephrin | 19 | 1.97 | 3 | 0.580 |
uClusterin | 19 | 2.10 | 3 | 0.552 |
Biomarker (Fold Change) | n | Mean ± SD |
---|---|---|
Cystatin C t0–T1 | 19 | 1.39 ± 1.05 |
Cystatin C t0–T2 | 19 | 1.38 ± 1.26 |
Cystatin C t0–T3 | 19 | 1.27 ± 0.51 |
uKIM-1 t0–T1 | 19 | 3.13 ± 3.6 |
uKIM-1 t0–T2 | 19 | 3.56 ± 5.62 |
uKIM-1 t0–T3 | 19 | 8.57 ± 21.82 |
uClusterin t0–T1 | 19 | 2.74 ± 3.84 |
uClusterin t0–T2 | 19 | 13.16 ± 38.99 |
uClusterin t0–T3 | 19 | 11.32 ± 24.82 |
uNephrin t0–T1 | 19 | 2.54 ± 4.61 |
uNephrin t0–T2 | 19 | 1.93 ± 2.1 |
uNephrin t0–T3 | 19 | 2.43 ± 3.09 |
Biomarker (Fold Change) | n | Mean Rank | χ2 | df | p | ||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
Cystatin C | 19 | 2.05 | 1.84 | 2.11 | 0.737 | 2 | 0.069 |
uKIM-1 | 19 | 1.87 | 2.08 | 2.05 | 0.535 | 2 | 0.765 |
uClusterin | 19 | 1.68 | 2.24 | 2.08 | 3.12 | 2 | 0.210 |
uNephrin | 19 | 1.87 | 2.05 | 2.08 | 0.826 | 2 | 0.662 |
Biomarker | Time Point | Cisplatin Mean Rank | Carbo/Oxali Mean Rank | U | Z | p-Value |
---|---|---|---|---|---|---|
eGFR | T3 | 17.63 | 27.53 | 123.0 | −2.57 | 0.01 |
Cystatin C | T3 | 26.77 | 15.97 | 113.5 | −2.8 | 0.005 |
uKIM-1 | T1 | 26.9 | 15.82 | 110.5 | −2.905 | 0.004 |
T2 | 26.44 | 16.39 | 121.5 | −2.674 | 0.007 | |
T3 | 26.42 | 16.42 | 122.0 | −2.629 | 0.009 | |
uNephrin | T2 | 26.31 | 16.55 | 124.5 | −2.553 | 0.011 |
Biomarker | Group | Median (25th–75th Percentile) | ||||||
---|---|---|---|---|---|---|---|---|
t0 | t1 | t2 | t3 | χ2 | df | p-Value | ||
Creatinine | Decline > 10 mL/min | 78.0 (63.5–84.5) | 81.0 (65.5–100.0) | 79.0 (70.0–103.0) | 87.0 (71.0–101.5) | 14.573 | 3 | 0.002 |
No Decline or decline < 10 mL/min | 73.0 (65.8–88.8) | 78.0 (67.8–84.5) | 73.0 (68.8–86.3) | 70.5 (64.5–82.3) | 3.157 | 3 | 0.368 | |
Cystatin C | Decline > 10 mL/min | 1.29 (0.87–1.83) | 1.96 (1.30–2.72) | 2.08 (1.51–2.72) | 2.25 (1.56–2.85) | 26.904 | 3 | <0.001 |
No Decline or decline < 10 mL/min | 1.63 (1.22–1.87) | 1.48 (0.87–1.87) | 1.27 (1.18–2.17) | 1.75 (1.34–2.24) | 4.733 | 3 | 0.192 | |
uACR | Decline > 10 mL/min | 3.00 (1.15–3.00) | 3.00 (1.35–3.00) | 2.80 (1.60–3.00) | 3.00 (2.10–4.35) | 10.976 | 3 | 0.012 |
No Decline or decline < 10 mL/min | 1.15 (0.60–3.00) | 1.80 (0.75–3.00) | 1.90 (1.48–3.00) | 3.00 (1.55–3.55) | 23.0 | 3 | <0.001 | |
uKIM-1 | Decline > 10 mL/min | 596.5 (248.8–1126.8) | 1249.1 (600.5–2000.0) | 1521.1 (592.5–2000.0) | 1649.1 (752.5–2000.0) | 14.516 | 3 | 0.002 |
No Decline or decline < 10 mL/min | 554.0 (164.9–1880.8) | 965.5 (559.5–1364.8) | 704.5 (266.3–2000.0) | 647.6 (370.3–1634.8) | 3.0 | 3 | 0.392 | |
uNephrin | Decline > 10 mL/min | 0.00 (0.00–0.30) | 0.10 (0.00–0.75) | 0.30 (0.10–1.00) | 0.40 (0.05–0.95) | 9.786 | 3 | 0.02 |
No Decline or decline < 10 mL/min | 0.10 (0.00–0.33) | 0.15 (0.00–0.83) | 0.40 (0.00–0.98) | 0.10 (0.00–0.70) | 6.605 | 3 | 0.086 | |
uClusterin | Decline > 10 mL/min | 0.90 (0.30–2.25) | 1.59 (0.50–8.70) | 4.20 (1.15–6.45) | 5.60 (0.75–25.5) | 16.131 | 3 | 0.001 |
No Decline or decline < 10 mL/min | 0.85 (0.38–3.55) | 2.20 (0.50–4.48) | 2.30 (0.25–6.68) | 3.20 (0.85–9.18) | 1.034 | 3 | 0.793 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimov, N.; Yaneva, A.; Valcheva, E.; Raycheva, G.; Popov, V.; Delipavlova, R.; Nikolov, D.; Grudeva-Popova, Z. Biomarkers for Early Detection of Cisplatin-Induced Nephrotoxicity. Life 2025, 15, 1432. https://doi.org/10.3390/life15091432
Dimov N, Yaneva A, Valcheva E, Raycheva G, Popov V, Delipavlova R, Nikolov D, Grudeva-Popova Z. Biomarkers for Early Detection of Cisplatin-Induced Nephrotoxicity. Life. 2025; 15(9):1432. https://doi.org/10.3390/life15091432
Chicago/Turabian StyleDimov, Nikolay, Antoniya Yaneva, Evelina Valcheva, Gabriela Raycheva, Veselin Popov, Raya Delipavlova, Dimitar Nikolov, and Zhanet Grudeva-Popova. 2025. "Biomarkers for Early Detection of Cisplatin-Induced Nephrotoxicity" Life 15, no. 9: 1432. https://doi.org/10.3390/life15091432
APA StyleDimov, N., Yaneva, A., Valcheva, E., Raycheva, G., Popov, V., Delipavlova, R., Nikolov, D., & Grudeva-Popova, Z. (2025). Biomarkers for Early Detection of Cisplatin-Induced Nephrotoxicity. Life, 15(9), 1432. https://doi.org/10.3390/life15091432