Effects of Exercise Snack Program on Quality of Life, Cardiorespiratory Fitness, and Metabolic Flexibility in Elderly Cancer Survivors: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Quality of Life Assessment
2.3. Cardiorespiratory Fitness and Metabolic Flexibility
2.4. Blood Lipid–Cardiovascular Disease Risk Factors
2.5. Exercise Interventions
2.5.1. Exercise Snack Program
2.5.2. Traditional Exercise Program
2.5.3. Comparison of Exercise Protocols
2.6. Data Analysis
3. Results
3.1. General Characteristics
3.2. Quality of Life Change
3.3. Cardiorespiratory Fitness
3.4. Metabolic Flexibility
3.5. Cardiovascular Disease Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Ngai, C.H.; Deng, Y.; Tin, M.S.; Lok, V.; Zhang, L.; Yuan, J.; Xu, W.; Zheng, Z.-J.; Wong, M.C. Cancer incidence and mortality in Asian countries: A trend analysis. Cancer Control 2022, 29, 10732748221095955. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Qin, K.; Li, F.; Chen, W. Comparative study of cancer profiles between 2020 and 2022 using global cancer statistics (GLOBOCAN). J. Natl. Cancer Cent. 2024, 4, 128–134. [Google Scholar] [CrossRef]
- Lortet-Tieulent, J.; Georges, D.; Bray, F.; Vaccarella, S. Profiling global cancer incidence and mortality by socioeconomic development. Int. J. Cancer 2020, 147, 3029–3036. [Google Scholar] [CrossRef]
- Tran, T.X.M.; Jung, S.-Y.; Lee, E.-G.; Cho, H.; Kim, N.Y.; Shim, S.; Kim, H.Y.; Kang, D.; Cho, J.; Lee, E. Fear of cancer recurrence and its negative impact on health-related quality of life in long-term breast cancer survivors. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 1065–1073. [Google Scholar] [CrossRef]
- Wang, F.H.; Zhang, X.T.; Li, Y.F.; Tang, L.; Qu, X.J.; Ying, J.E.; Zhang, J.; Sun, L.Y.; Lin, R.B.; Qiu, H. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2021. Cancer Commun. 2021, 41, 747–795. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.; Choi, M.; Hyung, W.J. Factors affecting the quality of life of gastric cancer survivors. Support. Care Cancer 2022, 30, 3215–3224. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Alizadeh-Tabari, S. Anxiety and depression prevalence in digestive cancers: A systematic review and meta-analysis. BMJ Support. Palliat. Care 2023, 13, e235–e243. [Google Scholar] [CrossRef]
- Juez, L.D.; Priego, P.; Bajawi, M.; Cuadrado, M.; Blázquez, L.A.; Sánchez-Picot, S.; Galindo, J.; Blázquez, J.; Fernández-Cebrián, J.M.; Botella-Carretero, J.I. Impact of sarcopenic obesity on long-term cancer outcomes and postoperative complications after gastrectomy for gastric cancer. J. Gastrointest. Surg. 2023, 27, 35–46. [Google Scholar] [CrossRef]
- Zalina, A.; Lee, V.; Kandiah, M. Relationship between nutritional status, physical activity and quality of life among gastrointestinal cancer survivors. Malays. J. Nutr. 2012, 18, 255–264. [Google Scholar] [PubMed]
- Komori, K.; Abiko, F.; Ichikawa, T.; Ando, K.; Shigeeda, R.; Yamaguchi, T.; Kurusu, K.; Arai, M.; Misawa, K.; Ando, S. Impact of Perioperative Rehabilitation on Postoperative Length of Hospital Stay for Patients with Gastric Cancer. Anticancer Res. 2025, 45, 817–822. [Google Scholar] [CrossRef]
- Bausys, A.; Luksta, M.; Anglickiene, G.; Maneikiene, V.V.; Kryzauskas, M.; Rybakovas, A.; Dulskas, A.; Kuliavas, J.; Stratilatovas, E.; Macijauskiene, L. Effect of home-based prehabilitation on postoperative complications after surgery for gastric cancer: Randomized clinical trial. Br. J. Surg. 2023, 110, 1800–1807. [Google Scholar] [CrossRef]
- Kim, I.; Lim, J.Y.; Kim, J.K.; Lee, J.H.; Sohn, T.S.; Park, S.; Kang, S.H.; Lee, J.Y.; Hwang, J.H. Effectiveness of a personalized digital exercise and nutrition-based rehab program for patients with gastric cancer after surgery: Study protocol for a randomized controlled trial. Digit. Health 2023, 9, 20552076231187602. [Google Scholar] [CrossRef]
- Lee, L.; Heckman, G.; Molnar, F.J. Frailty: Identifying elderly patients at high risk of poor outcomes. Can. Fam. Physician 2015, 61, 227–231. [Google Scholar] [PubMed]
- Shaikh, A.A.; Dandekar, S.P. Perceived benefits and barriers to exercise among physically active and non-active elderly people. Disabil. CBR Incl. Dev. 2019, 30, 73–83. [Google Scholar] [CrossRef]
- Ascondo, J.; Martín-López, A.; Iturricastillo, A.; Granados, C.; Garate, I.; Romaratezabala, E.; Martínez-Aldama, I.; Romero, S.; Yanci, J. Analysis of the barriers and motives for practicing physical activity and sport for people with a disability: Differences according to gender and type of disability. Int. J. Environ. Res. Public Health 2023, 20, 1320. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Gibala, M.J.; Little, J.P. Exercise snacks: A novel strategy to improve cardiometabolic health. Exerc. Sport Sci. Rev. 2022, 50, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Weston, K.L.; Little, J.P.; Weston, M.; McCreary, S.; Kitchin, V.; Gill, A.; Niven, A.; McNarry, M.A.; Mackintosh, K.A. Application of exercise snacks across youth, adult and clinical populations: A scoping review. Sports Med. Open 2025, 11, 27–45. [Google Scholar] [CrossRef]
- Fyfe, J.J.; Dalla Via, J.; Jansons, P.; Scott, D.; Daly, R.M. Feasibility and acceptability of a remotely delivered, home-based, pragmatic resistance ‘exercise snacking’intervention in community-dwelling older adults: A pilot randomised controlled trial. BMC Geriatr. 2022, 22, 521. [Google Scholar] [CrossRef]
- Fardman, A.; Banschick, G.D.; Rabia, R.; Percik, R.; Fourey, D.; Segev, S.; Klempfner, R.; Grossman, E.; Maor, E. Cardiorespiratory fitness and survival following cancer diagnosis. Eur. J. Prev. Cardiol. 2021, 28, 1242–1249. [Google Scholar] [CrossRef]
- Ezzatvar, Y.; Ramírez-Vélez, R.; Saez de Asteasu, M.L.; Martínez-Velilla, N.; Zambom-Ferraresi, F.; Lobelo, F.; Izquierdo, M.; García-Hermoso, A. Cardiorespiratory fitness and all-cause mortality in adults diagnosed with cancer systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1745–1752. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.H.; Park, S.W. Aerobic capacity correlates with health-related quality of life after breast cancer surgery. Eur. J. Cancer Care 2019, 28, e13050–e13061. [Google Scholar] [CrossRef]
- Mambrini, S.; Grillo, A.; Colosimo, S.; Zarpellon, F.; Pozzi, G.; Furlan, D.; Amodeo, G.; Bertoli, S. Diet and physical exercise as key players to tackle MASLD through improvement of insulin resistance and metabolic flexibility. Front Nutr. 2024, 11, 1426551. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; Lunetti, P.; Capobianco, L.; Marsigliante, S. The regulation of fat metabolism during aerobic exercise. Biomolecules 2020, 10, 1699. [Google Scholar] [CrossRef]
- Curtis, A.R.; Livingstone, K.M.; Daly, R.M.; Brayner, B.; Abbott, G.; Kiss, N. Dietary patterns, malnutrition, muscle loss and sarcopenia in cancer survivors: Findings from the UK Biobank. J. Cancer Surviv. 2024, 18, 1889–1902. [Google Scholar] [CrossRef]
- Ribas, G.S.; Vargas, C.R. Evidence that oxidative disbalance and mitochondrial dysfunction are involved in the pathophysiology of fatty acid oxidation disorders. Cell. Mol. Neurobiol. 2022, 42, 521–532. [Google Scholar] [CrossRef]
- Shoemaker, M.E.; Gillen, Z.M.; Fukuda, D.H.; Cramer, J.T. Metabolic flexibility and inflexibility: Pathology underlying metabolism dysfunction. J. Clin. Med. 2023, 12, 4453. [Google Scholar] [CrossRef]
- Lundby, C.; Jacobs, R.A. Adaptations of skeletal muscle mitochondria to exercise training. Exp. Physiol. 2016, 101, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Handforth, C.; Clegg, A.; Young, C.; Simpkins, S.; Seymour, M.; Selby, P.; Young, J. The prevalence and outcomes of frailty in older cancer patients: A systematic review. Ann. Oncol. 2015, 26, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Canzone, A.; Roggio, F.; Patti, A.; Giustino, V.; Mannucci, C.; Di Mauro, D.; Musumeci, G.; Bianco, A.; Trimarchi, F. Classification of physical activity programs based on the Kellgren & Lawrence Scale for knee osteoarthritis: A systematic review. Musculoskelet. Care 2024, 22, e70019–e70031. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A.; Thompson, P.D.; Al-Zaiti, S.S.; Albert, C.M.; Hivert, M.-F.; Levine, B.D.; Lobelo, F.; Madan, K.; Sharrief, A.Z.; Eijsvogels, T.M. Exercise-related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: Placing the risks into perspective–an update: A scientific statement from the American Heart Association. Circulation 2020, 141, e705–e736. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination for repeated measures design using G Power software. Anesth. Pain Med. 2015, 10, 6–15. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, M.-W.; Lee, S.-I. Psychometric properties of the Korean short form-36 health survey version 2 for assessing the general population. Asian Nurs. Res. 2013, 7, 61–66. [Google Scholar] [CrossRef]
- Bayles, M.P. ACSM’s Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2023. [Google Scholar]
- Yang, W.-H.; Park, J.-H.; Park, S.-Y.; Park, Y. Energetic contributions including gender differences and metabolic flexibility in the general population and athletes. Metabolites 2022, 12, 965. [Google Scholar] [CrossRef]
- Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Lernmark, Å.; Metzger, B.E.; Nathan, D.M.; Kirkman, M.S. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem. 2023, 69, 808–868. [Google Scholar] [CrossRef]
- Hurst, C.; Weston, K.L.; Weston, M. The effect of 12 weeks of combined upper-and lower-body high-intensity interval training on muscular and cardiorespiratory fitness in older adults. Aging Clin. Exp. Res. 2019, 31, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, E.J.; Mora-Gonzalez, J.; Ducharme, S.W.; Moore, C.C.; Gould, Z.R.; Chase, C.J.; Amalbert-Birriel, M.A.; Chipkin, S.R.; Staudenmayer, J.; Zheng, P. Cadence-based classification of moderate-intensity overground walking in 41- to 85-year-old adults. Scand. J. Med. Sci. Sports 2023, 33, 433–443. [Google Scholar] [CrossRef]
- Liguori, G. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Liu, X.; Zhang, Y.; Han, B.; Li, L.; Li, Y.; Ma, Y.; Kang, S.; Li, Q.; Kong, L.; Huang, K. Postprandial exercise regulates tissue-specific triglyceride uptake through angiopoietin-like proteins. JCI Insight 2024, 9, e181553–e181567. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, B.; Hesselink, M.K.; Schrauwen, P.; Schrauwen-Hinderling, V.B. Effects of exercise training on intrahepatic lipid content in humans. Diabetologia 2016, 59, 2068–2079. [Google Scholar] [CrossRef]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The impact of aerobic exercise on HDL quantity and quality: A narrative review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef]
- Sylow, L.; Kleinert, M.; Richter, E.A.; Jensen, T.E. Exercise-stimulated glucose uptake—Regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 2017, 13, 133–148. [Google Scholar] [CrossRef]
- Smart, N.A.; Downes, D.; Van Der Touw, T.; Hada, S.; Dieberg, G.; Pearson, M.J.; Wolden, M.; King, N.; Goodman, S.P. The effect of exercise training on blood lipids: A systematic review and meta-analysis. Sports Med. 2024, 55, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Chen, C.; Zhang, Y.; Zhang, S.; Zhang, Y.; Zhou, L.; Hu, X. Effects of exercise interventions on cancer-related fatigue and quality of life among cancer patients: A meta-analysis. BMC Nurs. 2023, 22, 200. [Google Scholar] [CrossRef]
- Martínez-Vizcaíno, V.; Cavero-Redondo, I.; Reina-Gutiérrez, S.; Gracia-Marco, L.; Gil-Cosano, J.J.; Bizzozero-Peroni, B.; Rodriguez-Artalejo, F.; Ubago-Guisado, E. Comparative effects of different types of exercise on health-related quality of life during and after active cancer treatment: A systematic review and network meta-analysis. J. Sport Health Sci. 2023, 12, 726–738. [Google Scholar] [CrossRef]
- Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast. 2016, 2, 127–152. [Google Scholar] [CrossRef]
- Yao, L.; Fang, H.; Leng, W.; Li, J.; Chang, J. Effect of aerobic exercise on mental health in older adults: A meta-analysis of randomized controlled trials. Front. Psychiatry 2021, 12, 748257–748266. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Beauchamp, M.R.; Crawford, K.L.; Jackson, B. Social cognitive theory and physical activity: Mechanisms of behavior change, critique, and legacy. Psychol. Sport Exerc. 2019, 42, 110–117. [Google Scholar] [CrossRef]
- Grabenbauer, A.; Grabenbauer, A.J.; Lengenfelder, R.; Grabenbauer, G.G.; Distel, L.V. Feasibility of a 12-month-exercise intervention during and after radiation and chemotherapy in cancer patients: Impact on quality of life, peak oxygen consumption, and body composition. Radiat. Oncol. 2016, 11, 42. [Google Scholar] [CrossRef]
- Squires, R.W.; Shultz, A.M.; Herrmann, J. Exercise training and cardiovascular health in cancer patients. Curr. Oncol. Rep. 2018, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, E.M.; Nairn, L.N.; Skelly, L.E.; Little, J.P.; Gibala, M.J. Do stair climbing exercise “snacks” improve cardiorespiratory fitness? Appl. Physiol. Nutr. Metab. 2019, 44, 681–684. [Google Scholar] [CrossRef]
- Yin, M.; Deng, S.; Chen, Z.; Zhang, B.; Zheng, H.; Bai, M.; Li, H.; Zhang, X.; Deng, J.; Liu, Q. Exercise snacks are a time-efficient alternative to moderate-intensity continuous training for improving cardiorespiratory fitness but not maximal fat oxidation in inactive adults: A randomized controlled trial. Appl. Physiol. Nutr. Metab. 2024, 49, 920–932. [Google Scholar] [CrossRef]
- Goncalves, C.; Raimundo, A.; Abreu, A.; Bravo, J. Exercise intensity in patients with cardiovascular diseases: Systematic review with meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 3574. [Google Scholar] [CrossRef]
- Giallauria, F.; Lorenzo, A.D.; Pilerci, F.; Manakos, A.; Lucci, R.; Psaroudaki, M.; D’Agostino, M.; Forno, D.D.; Vigorito, C. Long-term effects of cardiac rehabilitation on end-exercise heart rate recovery after myocardial infarction. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 544–550. [Google Scholar] [CrossRef]
- Zeng, C.-M.; Zhao, Y.-M.; Li, Y.-Y.; Gan, R.-R.; Ling, Z.; Li, P. The effects of rate pressure product at admission on cardiopulmonary function during hospitalization in patients with acute myocardial infarction. Postgrad. Med. 2023, 135, 803–808. [Google Scholar] [CrossRef] [PubMed]
- San-Millán, I.; Brooks, G.A. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med. 2018, 48, 467–479. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Spriet, L.L. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014, 44, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.; Howden, E.J.; Williams, A.D.; Fell, J.W.; Johnson, N.A. Postexercise fat oxidation: Effect of exercise duration, intensity, and modality. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 607–623. [Google Scholar] [CrossRef]
Variables | TEG (n = 17) | ESG (n = 17) | t or χ2 | Effect Size | p-Value |
---|---|---|---|---|---|
Age, years | 69.3 ± 3.2 | 68.5 ± 3.1 | 0.762 | 0.253 | 0.452 |
Height, cm | 165.6 ± 6.7 | 165.0 ± 6.1 | 0.275 | 0.009 | 0.785 |
Weight, kg | 69.2 ± 8.1 | 67.6 ± 6.9 | 0.611 | 0.212 | 0.545 |
Body mass index, kg/m2 | 25.2 ± 2.2 | 24.8 ± 2.8 | 0.269 | 0.595 | 0.267 |
Resting systolic BP, mmHg | 121.3 ± 4.1 | 122.1 ± 4.3 | 1.324 | 0.285 | 0.687 |
Resting diastolic BP, mmHg | 80.6 ± 5.0 | 81.3 ± 3.2 | −0.278 | 0.166 | 0.781 |
Resting heart rate, beat | 64.7 ± 3.9 | 66.9 ± 3.7 | −0.496 | 0.578 | 0.620 |
Post-cancer, year | 4.5 ± 2.5 | 6.8 ± 3.9 | −2.120 | 0.726 | 0.042 |
Exercise adherence, % | 94.1 ± 3.2 | 92.6 ± 3.0 | 0.348 | 0.483 | 0.385 |
Recurrence or metastasis, n (%) | |||||
No | 13 (76.5%) | 15 (88.2%) | 0.810 | 0.154 | 0.656 |
Yes | 4 (23.5%) | 2 (11.8%) | |||
Education, n (%) | |||||
to middle | 11 (64.7%) | 12 (70.6%) | 0.186 | 0.074 | 0.911 |
to high | 4 (23.5%) | 3 (17.6%) | |||
above college | 2 (11.8%) | 2 (11.8%) | |||
Occupation, n (%) | |||||
No | 11 (64.7%) | 13 (76.5%) | 0.567 | 0.452 | 0.708 |
Yes | 6 (35.3%) | 4 (23.5%) |
Variables | Group | Pre | Post | Df, % | Pre-Post p-Value | p-Value |
---|---|---|---|---|---|---|
TC, mg/dL | TEG | 169.2 ± 10.3 | 153.9 ± 18.8 | −9.0 | 0.332 | G: 0.303, T: 0.067 G × T: 0.507 |
ESG | 157.9 ± 18.8 | 152.4 ± 17.7 | −3.5 | 0.425 | ||
HDLC, mg/dL | TEG | 42.6 ± 9.7 | 44.6 ± 8.4 | 4.7 | 0.213 | G: 0.011, T: 0.006 G × T: 0.018 |
ESG | 43.1 ± 4.7 | 49.9 ± 5.9 | 15.8 | <0.001 | ||
LDLC, mg/dL | TEG | 133.6 ± 29.1 | 125.6 ± 27.3 | −6.1 | 0.180 | G: 0.653, T: 0.201 G × T: 0.685 |
ESG | 130.9 ± 21.1 | 123.1 ± 64.8 | −6.0 | 0.241 | ||
TG, mg/dL | TEG | 168.6 ± 19.6 | 136.6 ± 16.7 | −19.0 | 0.003 | G: 0.05, T: <0.001 G × T: 0.012 |
ESG | 164.4 ± 13.5 | 147.3 ± 10.6 | −10.4 | 0.018 | ||
Glucose, mg/dL | TEG | 121.9 ± 18.8 | 110.3 ± 16.6 | −9.5 | <0.001 | G: 0.621, T: 0.013 G × T: 0.165 |
ESG | 125.6± 16.2 | 109.1 ± 11.1 | −13.1 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Hu, Z.; Kim, T.; Kim, Y.; Leng, Z.; Choi, M. Effects of Exercise Snack Program on Quality of Life, Cardiorespiratory Fitness, and Metabolic Flexibility in Elderly Cancer Survivors: A Preliminary Study. Life 2025, 15, 1401. https://doi.org/10.3390/life15091401
Zhou P, Hu Z, Kim T, Kim Y, Leng Z, Choi M. Effects of Exercise Snack Program on Quality of Life, Cardiorespiratory Fitness, and Metabolic Flexibility in Elderly Cancer Survivors: A Preliminary Study. Life. 2025; 15(9):1401. https://doi.org/10.3390/life15091401
Chicago/Turabian StyleZhou, Peng, Zimei Hu, Taesung Kim, Yonghwan Kim, Zhengqing Leng, and Moonyoung Choi. 2025. "Effects of Exercise Snack Program on Quality of Life, Cardiorespiratory Fitness, and Metabolic Flexibility in Elderly Cancer Survivors: A Preliminary Study" Life 15, no. 9: 1401. https://doi.org/10.3390/life15091401
APA StyleZhou, P., Hu, Z., Kim, T., Kim, Y., Leng, Z., & Choi, M. (2025). Effects of Exercise Snack Program on Quality of Life, Cardiorespiratory Fitness, and Metabolic Flexibility in Elderly Cancer Survivors: A Preliminary Study. Life, 15(9), 1401. https://doi.org/10.3390/life15091401