Preconditioning with Low-Dose Radiation Improves Antitumor Immunity and Survival in DC-Vaccinated Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Mouse Tumor Model
2.2. Irradiation
2.3. Chemotherapy
2.4. Dendritic Cell Culture
2.5. Submental Vein Blood Collection
2.6. Flow Cytometry
2.7. Statistics and Data
3. Results
3.1. DC Vaccine Added to LD RT Significantly Improves Efficacy over LD RT Alone
3.2. LD RT Added to DC Vaccine Significantly Improves Efficacy over DC Vaccine Alone
3.3. Whole-Body LD RT and Tumor-Directed LD RT Significantly Improve DC Vaccine Efficacy
3.4. Whole-Body LD RT Results in Significant Increases in Tumor-Specific CD8+ T Cell Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LD RT | Low-dose radiation therapy |
DC | Dendritic cell |
cDC1 | Conventional type 1 dendritic cell |
Ova DCs | Ovalbumin-loaded cDC1s |
KP | Kras;Trp53 |
Flt3L | Fms-like tyrosine kinase 3 ligand |
Gy | Gray (unit of radiation dose) |
MHC | Major Histocompatibility Complex |
SEM | Standard Error of the Mean |
TCR | T cell receptor |
SIINFEKL | Peptide epitope from ovalbumin that is presented on MHC-I |
References
- Saadeldin, M.K.; Abdel-Aziz, A.K.; Abdellatif, A. Dendritic Cell Vaccine Immunotherapy; the Beginning of the End of Cancer and Covid-19. A Hypothesis. Med. Hypotheses 2021, 146, 110365. [Google Scholar] [CrossRef]
- Zanna, M.Y.; Yasmin, A.R.; Omar, A.R.; Arshad, S.S.; Mariatulqabtiah, A.R.; Nur-Fazila, S.H.; Mahiza, M.I.N. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int. J. Mol. Sci. 2021, 22, 8044. [Google Scholar] [CrossRef] [PubMed]
- Palucka, K.; Banchereau, J. Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Ferris, S.T.; Ohara, R.A.; Ou, F.; Wu, R.; Huang, X.; Kim, S.; Chen, J.; Liu, T.T.; Schreiber, R.D.; Murphy, T.L.; et al. Cdc1 Vaccines Drive Tumor Rejection by Direct Presentation Independently of Host Cdc1. Cancer Immunol. Res. 2022, 10, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Hudecek, M.; Pender, B.; Robinson, E.; Hawkins, R.; Chaney, C.; Cherian, S.; Chen, X.; et al. Immunotherapy of Non-Hodgkin’s Lymphoma with a Defined Ratio of Cd8+ and Cd4+ Cd19-Specific Chimeric Antigen Receptor-Modified T Cells. Sci. Transl. Med. 2016, 8, 355ra116. [Google Scholar] [CrossRef]
- Lickefett, B.; Chu, L.; Ortiz-Maldonado, V.; Warmuth, L.; Barba, P.; Doglio, M.; Henderson, D.; Hudecek, M.; Kremer, A.; Markman, J.; et al. Lymphodepletion—An Essential but Undervalued Part of the Chimeric Antigen Receptor T-Cell Therapy Cycle. Front. Immunol. 2023, 14, 1303935. [Google Scholar] [CrossRef]
- Ju, A.; Choi, S.; Jeon, Y.; Kim, K. Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors. Brain Tumor Res. Treat. 2024, 12, 208–220. [Google Scholar] [CrossRef]
- Kim, A.B.; Chou, S.Y.; Kang, S.; Kwon, E.; Inkman, M.; Szymanski, J.; Andruska, N.; Colgan, C.; Zhang, J.; Yang, J.C.; et al. Intrinsic Tumor Resistance to Car T Cells Is a Dynamic Transcriptional State That Is Exploitable with Low-Dose Radiation. Blood Adv. 2023, 7, 5396–5408. [Google Scholar] [CrossRef]
- DeSelm, C.; Palomba, M.L.; Yahalom, J.; Hamieh, M.; Eyquem, J.; Rajasekhar, V.K.; Sadelain, M. Low-Dose Radiation Conditioning Enables Car T Cells to Mitigate Antigen Escape. Mol. Ther. 2018, 26, 2542–2552. [Google Scholar] [CrossRef]
- Hsu, F.T.; Chen, T.C.; Chuang, H.Y.; Chang, Y.F.; Hwang, J.J. Enhancement of Adoptive T Cell Transfer with Single Low Dose Pretreatment of Doxorubicin or Paclitaxel in Mice. Oncotarget 2015, 6, 44134–44150. [Google Scholar] [CrossRef]
- Zhong, H.; Han, B.; Tourkova, I.L.; Lokshin, A.; Rosenbloom, A.; Shurin, M.R.; Shurin, G.V. Low-Dose Paclitaxel Prior to Intratumoral Dendritic Cell Vaccine Modulates Intratumoral Cytokine Network and Lung Cancer Growth. Clin. Cancer Res. 2007, 13 Pt 1, 5455–5462. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Jiang, A. Dendritic Cells and Cd8 T Cell Immunity in Tumor Microenvironment. Front. Immunol. 2018, 9, 3059. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, H.; Cao, W.; Song, Y.; Jiang, Z. Research Progress on Dendritic Cell Vaccines in Cancer Immunotherapy. Exp. Hematol. Oncol. 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Sethna, Z.; Guasp, P.; Reiche, C.; Milighetti, M.; Ceglia, N.; Patterson, E.; Lihm, J.; Payne, G.; Lyudovyk, O.; Rojas, L.A.; et al. Rna Neoantigen Vaccines Prime Long-Lived Cd8+ T Cells in Pancreatic Cancer. Nature 2025, 639, 1042–1051. [Google Scholar] [CrossRef]
- Ma, Y.T.; Zuo, J.; Kirkham, A.; Curbishley, S.; Blahova, M.; Rowe, A.L.; Bathurst, C.; Mehrzad, H.; Karkhanis, S.; Punia, P.; et al. Addition of Dendritic Cell Vaccination to Conditioning Cyclophosphamide and Chemoembolization in Patients with Hepatocellular Carcinoma: The Immunotace Trial. Clin. Cancer Res. 2025, 31, 3412–3423. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Fischer, T.T.; Ehrlich, B.E. Pharmacological Rescue of Cognitive Function in a Mouse Model of Chemobrain. Mol. Neurodegener. 2021, 16, 41. [Google Scholar] [CrossRef]
- Ou, F.; Ferris, S.T.; Kim, S.; Wu, R.; Anderson, D.A., 3rd; Liu, T.T.; Jo, S.; Chen, M.Y.; Gillanders, W.E.; Murphy, T.L.; et al. Enhanced in Vitro Type 1 Conventional Dendritic Cell Generation Via the Recruitment of Hematopoietic Stem Cells and Early Progenitors by Kit Ligand. Eur. J. Immunol. 2023, 53, e2250201. [Google Scholar] [CrossRef]
- Hegde, S.; Krisnawan, V.E.; Herzog, B.H.; Zuo, C.; Breden, M.A.; Knolhoff, B.L.; Hogg, G.D.; Tang, J.P.; Baer, J.M.; Mpoy, C.; et al. Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell 2020, 37, 289–307.e289. [Google Scholar] [CrossRef]
- Khan, M.G.M.; Wang, Y. Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells 2022, 11, 356. [Google Scholar] [CrossRef]
- Burnette, B.C.; Liang, H.; Lee, Y.; Chlewicki, L.; Khodarev, N.N.; Weichselbaum, R.R.; Fu, Y.X.; Auh, S.L. The Efficacy of Radiotherapy Relies Upon Induction of Type I Interferon-Dependent Innate and Adaptive Immunity. Cancer Res. 2011, 71, 2488–2496. [Google Scholar] [CrossRef]
- Zebertavage, L.K.; Alice, A.; Crittenden, M.R.; Gough, M.J. Transcriptional Upregulation of Nlrc5 by Radiation Drives Sting- and Interferon-Independent Mhc-I Expression on Cancer Cells and T Cell Cytotoxicity. Sci. Rep. 2020, 10, 7376. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Wang, T.E.; Liu, C.Y.; Lin, C.P.; Liu, T.P.; Chen, M.J.; Chang, W.H.; Lin, J.C.; Chang, K.M.; Chu, C.H.; et al. Potentiation of the Immunotherapeutic Effect of Autologous Dendritic Cells by Pretreating Hepatocellular Carcinoma with Low-Dose Radiation. Clin. Investig. Med. 2008, 31, E150–E159. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, A. Low-Dose Radiotherapy Effects the Progression of Anti-Tumor Response. Transl. Oncol. 2023, 35, 101710. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.X. Irradiation and Anti-Pd-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef]
- Matsumura, S.; Wang, B.; Kawashima, N.; Braunstein, S.; Badura, M.; Cameron, T.O.; Babb, J.S.; Schneider, R.J.; Formenti, S.C.; Dustin, M.L.; et al. Radiation-Induced Cxcl16 Release by Breast Cancer Cells Attracts Effector T Cells. J. Immunol. 2008, 181, 3099–3107. [Google Scholar] [CrossRef]
- Reits, E.A.; Hodge, J.W.; Herberts, C.A.; Groothuis, T.A.; Chakraborty, M.; Wansley, E.K.; Camphausen, K.; Luiten, R.M.; de Ru, A.H.; Neijssen, J.; et al. Radiation Modulates the Peptide Repertoire, Enhances Mhc Class I Expression, and Induces Successful Antitumor Immunotherapy. J. Exp. Med. 2006, 203, 1259–1271. [Google Scholar] [CrossRef]
- Schaue, D.; Ratikan, J.A.; Iwamoto, K.S.; McBride, W.H. Maximizing Tumor Immunity with Fractionated Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1306–1310. [Google Scholar] [CrossRef]
- Klug, F.; Prakash, H.; Huber, P.E.; Seibel, T.; Bender, N.; Halama, N.; Pfirschke, C.; Voss, R.H.; Timke, C.; Umansky, L.; et al. Low-Dose Irradiation Programs Macrophage Differentiation to an Inos+/M1 Phenotype That Orchestrates Effective T Cell Immunotherapy. Cancer Cell 2013, 24, 589–602. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Derer, A.; Spiljar, M.; Baumler, M.; Hecht, M.; Fietkau, R.; Frey, B.; Gaipl, U.S. Chemoradiation Increases Pd-L1 Expression in Certain Melanoma and Glioblastoma Cells. Front. Immunol. 2016, 7, 610. [Google Scholar] [CrossRef]
- Wan, X.; Fang, M.; Chen, T.; Wang, H.; Zhou, Q.; Wei, Y.; Zheng, L.; Zhou, Y.; Chen, K. Corrigendum to “the Mechanism of Low-Dose Radiation-Induced Upregulation of Immune Checkpoint Molecule Expression in Lung Cancer Cells”. Biochem. Biophys. Res. Commun. 2022, 608, 102–107, Epub 2022 Apr 2. Erratum in Biochem. Biophys. Res. Commun. 2023, 683, 149132. https://doi.org/10.1016/j.bbrc.2023.149132. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Chen, W.C.; Chang, Y.H.; Lin, W.Y.; Chen, M.F. The Role of Pd-L1 in the Radiation Response and Clinical Outcome for Bladder Cancer. Sci. Rep. 2016, 6, 19740. [Google Scholar] [CrossRef]
- Azad, A.; Yin Lim, S.; D’Costa, Z.; Jones, K.; Diana, A.; Sansom, O.J.; Kruger, P.; Liu, S.; McKenna, W.G.; Dushek, O.; et al. Pd-L1 Blockade Enhances Response of Pancreatic Ductal Adenocarcinoma to Radiotherapy. EMBO Mol. Med. 2017, 9, 167–180. [Google Scholar] [CrossRef]
- Spiotto, M.; Fu, Y.X.; Weichselbaum, R.R. The Intersection of Radiotherapy and Immunotherapy: Mechanisms and Clinical Implications. Sci. Immunol. 2016, 1, eaag1266. [Google Scholar] [CrossRef]
- Donlon, N.E.; Power, R.; Hayes, C.; Reynolds, J.V.; Lysaght, J. Radiotherapy, Immunotherapy, and the Tumour Microenvironment: Turning an Immunosuppressive Milieu into a Therapeutic Opportunity. Cancer Lett. 2021, 502, 84–96. [Google Scholar] [CrossRef]
- Wang, L.; Lynch, C.; Pitroda, S.P.; Piffko, A.; Yang, K.; Huser, A.K.; Liang, H.L.; Weichselbaum, R.R. Radiotherapy and Immunology. J. Exp. Med. 2024, 221, e20232101. [Google Scholar] [CrossRef]
- Wang, S.; Yu, H.; He, R.; Song, X.; Chen, S.; Yu, N.; Li, W.; Li, F.; Jiang, Q. Exposure to Low-Dose Radiation Enhanced the Antitumor Effect of a Dendritic Cell Vaccine. Dose Response 2019, 17, 1559325819832144. [Google Scholar] [CrossRef]
- Machiels, J.P.; Reilly, R.T.; Emens, L.A.; Ercolini, A.M.; Lei, R.Y.; Weintraub, D.; Okoye, F.I.; Jaffee, E.M. Cyclophosphamide, Doxorubicin, and Paclitaxel Enhance the Antitumor Immune Response of Granulocyte/Macrophage-Colony Stimulating Factor-Secreting Whole-Cell Vaccines in Her-2/Neu Tolerized Mice. Cancer Res. 2001, 61, 3689–3697. [Google Scholar] [PubMed]
- Ghiringhelli, F.; Menard, C.; Puig, P.E.; Ladoire, S.; Roux, S.; Martin, F.; Solary, E.; Le Cesne, A.; Zitvogel, L.; Chauffert, B. Metronomic Cyclophosphamide Regimen Selectively Depletes Cd4+Cd25+ Regulatory T Cells and Restores T and Nk Effector Functions in End Stage Cancer Patients. Cancer Immunol. Immunother. 2007, 56, 641–648. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, E.; Namen, S.; Willoughby, C.J.; Kang, S.; Pandey, G.; Kim, A.B.; DeSelm, C.J. Preconditioning with Low-Dose Radiation Improves Antitumor Immunity and Survival in DC-Vaccinated Mice. Life 2025, 15, 1402. https://doi.org/10.3390/life15091402
Kwon E, Namen S, Willoughby CJ, Kang S, Pandey G, Kim AB, DeSelm CJ. Preconditioning with Low-Dose Radiation Improves Antitumor Immunity and Survival in DC-Vaccinated Mice. Life. 2025; 15(9):1402. https://doi.org/10.3390/life15091402
Chicago/Turabian StyleKwon, Eric, Shelby Namen, Colin J. Willoughby, Solomon Kang, Gaurav Pandey, Alexander B. Kim, and Carl J. DeSelm. 2025. "Preconditioning with Low-Dose Radiation Improves Antitumor Immunity and Survival in DC-Vaccinated Mice" Life 15, no. 9: 1402. https://doi.org/10.3390/life15091402
APA StyleKwon, E., Namen, S., Willoughby, C. J., Kang, S., Pandey, G., Kim, A. B., & DeSelm, C. J. (2025). Preconditioning with Low-Dose Radiation Improves Antitumor Immunity and Survival in DC-Vaccinated Mice. Life, 15(9), 1402. https://doi.org/10.3390/life15091402