Multi-Omics Profiling of Individuals Sustaining Extreme Physical Stressors
Abstract
1. Introduction
2. Extreme Phenotypes
2.1. Astronauts
2.2. Scuba Divers
2.3. Long-Haul Airplane Passengers
2.4. Bodybuilders
2.5. Simulation Racers
2.6. Acute Alcohol Consumption
3. Cross-Phenotype Analysis and Integrated Insights: Shared Adaptations and Unique Challenges
4. Integrating Insights for Translational Applications and Spaceflight
- (1)
- Shared Stress Adaptation Mechanisms: Understanding shared adaptations, such as the generalized stress response and metabolic reprogramming, can inform the development of countermeasures applicable to multiple stressors encountered during spaceflight. For instance, targeted nutritional interventions or pharmacological agents that modulate inflammation and oxidative stress could benefit astronauts coping with the combined effects of radiation, microgravity, and confinement.
- (2)
- Personalized Risk Stratification and Countermeasures: As with terrestrial extreme activities, individual variability in physiological and molecular responses is also evident amongst astronauts, highlighted by differences in their susceptibility to spaceflight-related health risks. Moving beyond population averages to a truly personalized risk assessment requires a sophisticated framework for integrating multi-omics data across platforms. The process begins with data harmonization, using standardized protocols and ontologies to ensure that genomic, transcriptomic, proteomic, and metabolomic datasets are comparable. Then, integrative analytical tools, such as machine learning algorithms and network-based modeling, can identify predictive signatures by correlating, for example, specific genetic variants with downstream changes in protein expression and metabolite levels under stress. Rather than relying on a single biomarker, this integrated method allows for the creation of multi-dimensional, composite risk scores. For example, an astronaut’s susceptibility to spaceflight-associated neuro-ocular syndrome (SANS) might be predicted by a score that combines genetic predispositions for fluid shifts, transcriptomic markers of inflammation in the blood, and metabolomic indicators of oxidative stress. These omics profiles are additionally not static and can be monitored longitudinally throughout a mission. Tracking an individual’s molecular response over time provides a dynamic assessment of their health status and allows for the real-time adjustment of countermeasures. This multi-omics approach enables a shift from reactive to predictive health management, allowing for the development of personalized countermeasures tailored to an individual astronaut’s unique biological response to the spaceflight environment. Integrating omics profiling with physiological monitoring could enable the development of personalized countermeasures tailored to individual astronaut needs.
- (3)
- Longitudinal Models for Health Risk Prediction: Longitudinal omics studies in other extreme phenotypes, such as long-haul pilots or deep-sea divers, can provide valuable insights into the potential long-term health consequences of exposure to stressors relevant to spaceflight, such as radiation, hypoxia, and circadian rhythm disruption.
5. Future Directions for Integrated Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA Twins Study: A Multidimensional Analysis of a Year-Long Human Spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef]
- Overbey, E.G.; Kim, J.; Tierney, B.T.; Park, J.; Houerbi, N.; Lucaci, A.G.; Medina, S.G.; Damle, N.; Najjar, D.; Grigorev, K.; et al. The Space Omics and Medical Atlas (SOMA) and International Astronaut Biobank. Nature 2024, 632, 1145–1154. [Google Scholar] [CrossRef]
- Jones, C.W.; Overbey, E.G.; Lacombe, J.; Ecker, A.J.; Meydan, C.; Ryon, K.; Tierney, B.; Damle, N.; MacKay, M.; Afshin, E.E.; et al. Molecular and Physiologic Changes in the SpaceX Inspiration4 Civilian Crew. Nature 2024, 632, 1155–1164. [Google Scholar] [CrossRef]
- Kim, J.; Tierney, B.T.; Overbey, E.G.; Dantas, E.; Fuentealba, M.; Park, J.; Narayanan, S.A.; Wu, F.; Najjar, D.; Chin, C.R.; et al. Single-Cell Multi-Ome and Immune Profiles of the Inspiration4 Crew Reveal Conserved, Cell-Type, and Sex-Specific Responses to Spaceflight. Nat. Commun. 2024, 15, 4954. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Overbey, E.G.; Narayanan, S.A.; Kim, J.; Tierney, B.T.; Damle, N.; Najjar, D.; Ryon, K.A.; Proszynski, J.; Kleinman, A.; et al. Spatial Multi-Omics of Human Skin Reveals KRAS and Inflammatory Responses to Spaceflight. Nat. Commun. 2024, 15, 4773. [Google Scholar] [CrossRef]
- Luxton, J.J.; McKenna, M.J.; Lewis, A.; Taylor, L.E.; George, K.A.; Dixit, S.M.; Moniz, M.; Benegas, W.; Mackay, M.J.; Mozsary, C.; et al. Telomere Length Dynamics and DNA Damage Responses Associated with Long-Duration Spaceflight. Cell Rep. 2020, 33, 108457. [Google Scholar] [CrossRef]
- Houerbi, N.; Kim, J.; Overbey, E.G.; Batra, R.; Schweickart, A.; Patras, L.; Lucotti, S.; Ryon, K.A.; Najjar, D.; Meydan, C.; et al. Secretome Profiling Reveals Acute Changes in Oxidative Stress, Brain Homeostasis, and Coagulation Following Short-Duration Spaceflight. Nat. Commun. 2024, 15, 4862. [Google Scholar] [CrossRef] [PubMed]
- Rooney, B.V.; Crucian, B.E.; Pierson, D.L.; Laudenslager, M.L.; Mehta, S.K. Herpes Virus Reactivation in Astronauts during Spaceflight and Its Application on Earth. Front. Microbiol. 2019, 10, 16. [Google Scholar] [CrossRef]
- Chancellor, J.C.; Blue, R.S.; Cengel, K.A.; Auñón-Chancellor, S.M.; Rubins, K.H.; Katzgraber, H.G.; Kennedy, A.R. Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts. npj Microgravity 2018, 4, 8. [Google Scholar] [CrossRef]
- English, K.L.; Downs, M.; Goetchius, E.; Buxton, R.; Ryder, J.W.; Ploutz-Snyder, R.; Guilliams, M.; Scott, J.M.; Ploutz-Snyder, L.L. High Intensity Training during Spaceflight: Results from the NASA Sprint Study. npj Microgravity 2020, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Husna, N.; Aiba, T.; Fujita, S.-I.; Saito, Y.; Shiba, D.; Kudo, T.; Takahashi, S.; Furukawa, S.; Muratani, M. Release of CD36-Associated Cell-Free Mitochondrial DNA and RNA as a Hallmark of Space Environment Response. Nat. Commun. 2024, 15, 4814. [Google Scholar] [CrossRef]
- Grigorev, K.; Nelson, T.M.; Overbey, E.G.; Houerbi, N.; Kim, J.; Najjar, D.; Damle, N.; Afshin, E.E.; Ryon, K.A.; Thierry-Mieg, J.; et al. Direct RNA Sequencing of Astronaut Blood Reveals Spaceflight-Associated M6A Increases and Hematopoietic Transcriptional Responses. Nat. Commun. 2024, 15, 4950. [Google Scholar] [CrossRef]
- Kimura, Y.; Nakai, Y.; Ino, Y.; Akiyama, T.; Moriyama, K.; Aiba, T.; Ohira, T.; Egashira, K.; Yamamoto, Y.; Takeda, Y.; et al. Changes in the Astronaut Serum Proteome during Prolonged Spaceflight. Proteomics 2024, 24, 2300328. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, W.A.; Fazelinia, H.; Rosenthal, S.B.; Laiakis, E.C.; Kim, M.S.; Meydan, C.; Kidane, Y.; Rathi, K.S.; Smith, S.M.; Stear, B.; et al. Comprehensive Multi-Omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2020, 183, 1185–1201.e20. [Google Scholar] [CrossRef]
- Murgia, M.; Rittweger, J.; Reggiani, C.; Bottinelli, R.; Mann, M.; Schiaffino, S.; Narici, M.V. Spaceflight on the ISS Changed the Skeletal Muscle Proteome of Two Astronauts. npj Microgravity 2024, 10, 60. [Google Scholar] [CrossRef]
- Tierney, B.T.; Kim, J.; Overbey, E.G.; Ryon, K.A.; Foox, J.; Sierra, M.A.; Bhattacharya, C.; Damle, N.; Najjar, D.; Park, J.; et al. Longitudinal Multi-Omics Analysis of Host Microbiome Architecture and Immune Responses during Short-Term Spaceflight. Nat. Microbiol. 2024, 9, 1661–1675. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.D.; O’Rourke, A.; Lorenzi, H.; Bebout, B.M.; Dupont, C.L.; Everroad, R.C. Reference-Guided Metagenomics Reveals Genome-Level Evidence of Potential Microbial Transmission from the ISS Environment to an Astronaut’s Microbiome. iScience 2021, 24, 102114. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.G.; Mader, T.H.; Gibson, C.R.; Tarver, W.; Rabiei, P.; Riascos, R.F.; Galdamez, L.A.; Brunstetter, T. Spaceflight Associated Neuro-Ocular Syndrome (SANS) and the Neuro-Ophthalmologic Effects of Microgravity: A Review and an Update. npj Microgravity 2020, 6, 7. [Google Scholar] [CrossRef]
- Voorhies, A.A.; Mark Ott, C.; Mehta, S.; Pierson, D.L.; Crucian, B.E.; Feiveson, A.; Oubre, C.M.; Torralba, M.; Moncera, K.; Zhang, Y.; et al. Study of the Impact of Long-Duration Space Missions at the International Space Station on the Astronaut Microbiome. Sci. Rep. 2019, 9, 9911. [Google Scholar] [CrossRef]
- Žarak, M.; Perović, A.; Njire Bratičević, M.; Šupraha Goreta, S.; Dumić, J. Adaptive Response Triggered by the Repeated SCUBA Diving Is Reflected in Cardiovascular, Muscular, and Immune Biomarkers. Physiol. Rep. 2021, 9, e14691. [Google Scholar] [CrossRef]
- Eftedal, I.; Ljubkovic, M.; Flatberg, A.; Jørgensen, A.; Brubakk, A.O.; Dujic, Z. Acute and Potentially Persistent Effects of Scuba Diving on the Blood Transcriptome of Experienced Divers. Physiol. Genom. 2013, 45, 965–972. [Google Scholar] [CrossRef]
- Magri, K.; Eftedal, I.; Petroni Magri, V.; Matity, L.; Azzopardi, C.P.; Muscat, S.; Pace, N.P. Acute Effects on the Human Peripheral Blood Transcriptome of Decompression Sickness Secondary to Scuba Diving. Front. Physiol. 2021, 12, 660402. [Google Scholar] [CrossRef]
- Sureda, A.; Batle, J.M.; Capó, X.; Martorell, M.; Córdova, A.; Tur, J.A.; Pons, A. Scuba Diving Induces Nitric Oxide Synthesis and the Expression of Inflammatory and Regulatory Genes of the Immune Response in Neutrophils. Physiol. Genom. 2014, 46, 647–654. [Google Scholar] [CrossRef]
- Lautridou, J.; Pichereau, V.; Artigaud, S.; Bernay, B.; Barak, O.; Hoiland, R.; Lovering, A.T.; Eftedal, I.; Dujic, Z.; Guerrero, F. Evolution of the Plasma Proteome of Divers before and after a Single SCUBA Dive. Proteom. Clin. Appl. 2017, 11, 1700016. [Google Scholar] [CrossRef] [PubMed]
- Vann, R.D.; Butler, F.K.; Mitchell, S.J.; Moon, R.E. Decompression Illness. Lancet 2011, 377, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Rosén, A.; Gennser, M.; Oscarsson, N.; Kvarnström, A.; Sandström, G.; Seeman-Lodding, H.; Simrén, J.; Zetterberg, H. Protein Tau Concentration in Blood Increases after SCUBA Diving: An Observational Study. Eur. J. Appl. Physiol. 2022, 122, 993–1005. [Google Scholar] [CrossRef]
- Ciborowski, M.; Rupérez, F.J.; Martínez-Alcázar, M.P.; Angulo, S.; Radziwon, P.; Olszanski, R.; Kloczko, J.; Barbas, C. Metabolomic Approach with LC−MS Reveals Significant Effect of Pressure on Diver’s Plasma. J. Proteome Res. 2010, 9, 4131–4137. [Google Scholar] [CrossRef] [PubMed]
- Perović, A.; Sobočanec, S.; Dabelić, S.; Balog, T.; Dumić, J. Effect of Scuba Diving on the Oxidant/Antioxidant Status, SIRT1 and SIRT3 Expression in Recreational Divers after a Winter Nondive Period. Free. Radic. Res. 2018, 52, 188–197. [Google Scholar] [CrossRef]
- Monnoyer, R.; Eftedal, I.; Hjelde, A.; Deb, S.; Haugum, K.; Lautridou, J. Functional Profiling Reveals Altered Metabolic Activity in Divers’ Oral Microbiota during Commercial Heliox Saturation Diving. Front. Physiol. 2021, 12, 702634. [Google Scholar] [CrossRef]
- Monnoyer, R.; Haugum, K.; Lautridou, J.; Flatberg, A.; Hjelde, A.; Eftedal, I. Shifts in the Oral Microbiota during a Four-Week Commercial Saturation Dive to 200 Meters. Front. Physiol. 2021, 12, 669355. [Google Scholar] [CrossRef]
- Zubac, D.; Buoite Stella, A.; Morrison, S.A. Up in the Air: Evidence of Dehydration Risk and Long-Haul Flight on Athletic Performance. Nutrients 2020, 12, 2574. [Google Scholar] [CrossRef] [PubMed]
- Schreijer, A.; Cannegieter, S.; Meijers, J.; Middeldorp, S.; Büller, H.; Rosendaal, F. Activation of Coagulation System during Air Travel: A Crossover Study. Lancet 2006, 367, 832–838. [Google Scholar] [CrossRef]
- World Health Organization. WHO Research into Global Hazards of Travel (WRIGHT) Project Final Report of Phase I; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Silverman, D.; Gendreau, M. Medical Issues Associated with Commercial Flights. Lancet 2009, 373, 2067–2077. [Google Scholar] [CrossRef]
- Roach, G.D.; Sargent, C. Interventions to Minimize Jet Lag after Westward and Eastward Flight. Front. Physiol. 2019, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Ambesh, P.; Shetty, V.; Ambesh, S.; Gupta, S.S.; Kamholz, S.; Wolf, L. Jet Lag: Heuristics and Therapeutics. J. Fam. Med. Prim. Care 2018, 7, 507–510. [Google Scholar] [CrossRef]
- Humphreys, S.; Deyermond, R.; Bali, I.; Stevenson, M.; Fee, J.P.H. The Effect of High Altitude Commercial Air Travel on Oxygen Saturation. Anaesthesia 2005, 60, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Singh, A.; Marzo, R.R. “Airplane Ear”—A Neglected yet Preventable Problem. AIMS Public Health 2019, 6, 320–325. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, K.-Y. Exposure Assessment of Airborne Bacteria and Fungi in the Aircraft. Saf. Health Work 2022, 13, 487–492. [Google Scholar] [CrossRef]
- Minoretti, P.; Riera, M.L.; Sáez, A.S.; Serrano, M.G.; Martín, Á.G.; Sáez Sr, A.S. Increased Peripheral Blood DNA Damage and Elevated Serum Levels of Melanoma Inhibitory Activity Protein: Clues to Excess Skin Cancer Risk in Airline Pilots? Cureus 2023, 15, e51077. [Google Scholar] [CrossRef]
- Becerril-Villanueva, E.; Olvera-Alvarez, M.I.; Alvarez-Herrera, S.; Maldonado-García, J.L.; López-Torres, A.; Ramírez-Marroquín, O.A.; González-Ruiz, O.; Nogueira-Fernández, J.M.; Mendoza-Contreras, J.M.; Sánchez-García, H.O.; et al. Screening of SERT and P11 MRNA Levels in Airline Pilots: A Translational Approach. Front. Psychiatry 2022, 13, 859768. [Google Scholar] [CrossRef]
- Regev, A.; Teichmann, S.A.; Lander, E.S.; Amit, I.; Benoist, C.; Birney, E.; Bodenmiller, B.; Campbell, P.; Carninci, P.; Clatworthy, M.; et al. The Human Cell Atlas. eLife 2017, 6, e27041. [Google Scholar] [CrossRef]
- Hu, B.C. The Human Body at Cellular Resolution: The NIH Human Biomolecular Atlas Program. Nature 2019, 574, 187–192. [Google Scholar] [CrossRef]
- Roth, S.M. Genetic Aspects of Skeletal Muscle Strength and Mass with Relevance to Sarcopenia. BoneKEy Rep. 2012, 1, 58. [Google Scholar] [CrossRef]
- Verbrugge, S.A.J.; Schönfelder, M.; Becker, L.; Yaghoob Nezhad, F.; Hrabě de Angelis, M.; Wackerhage, H. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review. Front. Physiol. 2018, 9, 553. [Google Scholar] [CrossRef] [PubMed]
- Venckunas, T.; Degens, H. Genetic Polymorphisms of Muscular Fitness in Young Healthy Men. PLoS ONE 2022, 17, e0275179. [Google Scholar] [CrossRef] [PubMed]
- Raue, U.; Trappe, T.A.; Estrem, S.T.; Qian, H.-R.; Helvering, L.M.; Smith, R.C.; Trappe, S. Transcriptome Signature of Resistance Exercise Adaptations: Mixed Muscle and Fiber Type Specific Profiles in Young and Old Adults. J. Appl. Physiol. 2012, 112, 1625–1636. [Google Scholar] [CrossRef]
- Russell, A.P.; Lamon, S.; Boon, H.; Wada, S.; Güller, I.; Brown, E.L.; Chibalin, A.V.; Zierath, J.R.; Snow, R.J.; Stepto, N.; et al. Regulation of MiRNAs in Human Skeletal Muscle Following Acute Endurance Exercise and Short-Term Endurance Training. J. Physiol. 2013, 591, 4637–4653. [Google Scholar] [CrossRef]
- Thalacker-Mercer, A.; Stec, M.; Cui, X.; Cross, J.; Windham, S.; Bamman, M. Cluster Analysis Reveals Differential Transcript Profiles Associated with Resistance Training-Induced Human Skeletal Muscle Hypertrophy. Physiol. Genom. 2013, 45, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Schönke, M.; Björnholm, M.; Chibalin, A.V.; Zierath, J.R.; Deshmukh, A.S. Proteomics Analysis of Skeletal Muscle from Leptin-Deficient Ob/Ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition. Proteomics 2018, 18, e1700375. [Google Scholar] [CrossRef]
- Vann, C.G.; Osburn, S.C.; Mumford, P.W.; Roberson, P.A.; Fox, C.D.; Sexton, C.L.; Johnson, M.-R.; Johnson, J.S.; Shake, J.; Moore, J.H.; et al. Skeletal Muscle Protein Composition Adaptations to 10 Weeks of High-Load Resistance Training in Previously-Trained Males. Front. Physiol. 2020, 11, 259. [Google Scholar] [CrossRef]
- Tibana, R.A.; Franco, O.L.; Cunha, G.V.; Sousa, N.M.F.; Sousa Neto, I.V.; Carvalho, M.M.; de Almeida, J.A.; Navalta, J.W.; Lobo, M.O.; Voltarelli, F.A.; et al. The Effects of Resistance Training Volume on Skeletal Muscle Proteome. Int. J. Exerc. Sci. 2017, 10, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Paquin, J.; Tremblay, R.; Islam, H.; Riesco, E.; Marcotte-Chénard, A.; Dionne, I.J. Resistance Training, Skeletal Muscle Hypertrophy, and Glucose Homeostasis: How Related Are They? A Systematic Review and Meta-Analysis. Appl. Physiol. Nutr. Metab. 2024, 49, 1622–1635. [Google Scholar] [CrossRef] [PubMed]
- Schranner, D.; Schönfelder, M.; Römisch-Margl, W.; Scherr, J.; Schlegel, J.; Zelger, O.; Riermeier, A.; Kaps, S.; Prehn, C.; Adamski, J.; et al. Physiological Extremes of the Human Blood Metabolome: A Metabolomics Analysis of Highly Glycolytic, Oxidative, and Anabolic Athletes. Physiol. Rep. 2021, 9, e14885. [Google Scholar] [CrossRef] [PubMed]
- Parstorfer, M.; Poschet, G.; Kronsteiner, D.; Brüning, K.; Friedmann-Bette, B. Targeted Metabolomics in High Performance Sports: Differences between the Resting Metabolic Profile of Endurance- and Strength-Trained Athletes in Comparison with Sedentary Subjects over the Course of a Training Year. Metabolites 2023, 13, 833. [Google Scholar] [CrossRef]
- Fontana, F.; Longhi, G.; Tarracchini, C.; Mancabelli, L.; Lugli, G.A.; Alessandri, G.; Turroni, F.; Milani, C.; Ventura, M. The Human Gut Microbiome of Athletes: Metagenomic and Metabolic Insights. Microbiome 2023, 11, 27. [Google Scholar] [CrossRef]
- Byerley, L.O.; Gallivan, K.M.; Christopher, C.J.; Taylor, C.M.; Luo, M.; Dowd, S.E.; Davis, G.F.; Castro, H.F.; Campagna, S.R.; Ondrak, K.S. Gut Microbiome and Metabolome Variations in Self-Identified Muscle Builders Who Report Using Protein Supplements. Nutrients 2022, 14, 533. [Google Scholar] [CrossRef]
- Sales, K.M.; Reimer, R.A. Unlocking a Novel Determinant of Athletic Performance: The Role of the Gut Microbiota, Short-Chain Fatty Acids, and “Biotics” in Exercise. J. Sport Health Sci. 2022, 12, 36–44. [Google Scholar] [CrossRef]
- Lv, W.-Q.; Lin, X.; Shen, H.; Liu, H.-M.; Qiu, X.; Li, B.-Y.; Shen, W.-D.; Ge, C.-L.; Lv, F.-Y.; Shen, J.; et al. Human Gut Microbiome Impacts Skeletal Muscle Mass via Gut Microbial Synthesis of the Short-Chain Fatty Acid Butyrate among Healthy Menopausal Women. J. Cachexia Sarcopenia Muscle 2021, 12, 1860–1870. [Google Scholar] [CrossRef]
- Reid, M.B.; Lighfoot, J.T. The Physiology of Auto Racing. Med. Sci. Sports Exerc. 2019, 51, 2548–2562. [Google Scholar] [CrossRef]
- Georgiou, T.; Demiris, Y. Adaptive User Modelling in Car Racing Games Using Behavioural and Physiological Data. User Model. User-Adapt. Interact. 2017, 27, 267–311. [Google Scholar] [CrossRef]
- Johnson, M.J.; Chahal, T.; Stinchcombe, A.; Mullen, N.; Weaver, B.; Bédard, M. Physiological Responses to Simulated and On-Road Driving. Int. J. Psychophysiol. 2011, 81, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Filho, E.; Di Fronso, S.; Mazzoni, C.; Robazza, C.; Bortoli, L.; Bertollo, M. My Heart Is Racing! Psychophysiological Dynamics of Skilled Racecar Drivers. J. Sports Sci. 2015, 33, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Edenberg, H.J.; Gelernter, J.; Agrawal, A. Genetics of Alcoholism. Curr. Psychiatry Rep. 2019, 21, 26. [Google Scholar] [CrossRef]
- Bierut, L.J.; Goate, A.M.; Breslau, N.; Johnson, E.O.; Bertelsen, S.; Fox, L.; Agrawal, A.; Bucholz, K.K.; Grucza, R.; Hesselbrock, V.; et al. ADH1B Is Associated with Alcohol Dependence and Alcohol Consumption in Populations of European and African Ancestry. Mol. Psychiatry 2011, 17, 445–450. [Google Scholar] [CrossRef]
- Starkman, B.G.; Sakharkar, A.J.; Pandey, S.C. Epigenetics-beyond the Genome in Alcoholism. Alcohol Res. 2012, 34, 293–305. [Google Scholar]
- MacDonald, M.; Fonseca, P.A.S.; Johnson, K.R.; Murray, E.M.; Kember, R.L.; Kranzler, H.R.; Mayfield, R.D.; Silva, D. Divergent Gene Expression Patterns in Alcohol and Opioid Use Disorders Lead to Consistent Alterations in Functional Networks within the Dorsolateral Prefrontal Cortex. Transl. Psychiatry 2024, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Coleman, L.G.; Macht, V.A.; Vetreno, R.P. Alcohol, HMGB1, and Innate Immune Signaling in the Brain. Alcohol Res. Curr. Rev. 2024, 44, 04. [Google Scholar] [CrossRef]
- Shetty, A.C.; Sivinski, J.; Cornell, J.; McCracken, C.; Sadzewicz, L.; Mahurkar, A.; Wang, X.-Q.; Colloca, L.; Lin, W.; Pilli, N.; et al. Peripheral Blood Transcriptomic Profiling of Molecular Mechanisms Commonly Regulated by Binge Drinking and Placebo Effects. Sci. Rep. 2024, 14, 10733. [Google Scholar] [CrossRef]
- Ohashi, K.; Pimienta, M.; Seki, E. Alcoholic Liver Disease: A Current Molecular and Clinical Perspective. Liver Res. 2018, 2, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, P.; Szabo, G. Signalling Pathways in Alcohol-Induced Liver Inflammation. J. Hepatol. 2009, 50, 1258–1266. [Google Scholar] [CrossRef]
- Gorini, G.; Adron Harris, R.; Dayne Mayfield, R. Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism. Neuropsychopharmacology 2014, 39, 104–130. [Google Scholar] [CrossRef] [PubMed]
- Gramenzi, A.; Caputo, F.; Biselli, M.; Kuria, F.; Loggi, E.; Andreone, P.; Bernardi, M. Review Article: Alcoholic Liver Disease? Pathophysiological Aspects and Risk Factors. Aliment. Pharmacol. Ther. 2006, 24, 1151–1161. [Google Scholar] [CrossRef]
- Beyoğlu, D.; Idle, J.R. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, M.W.; Sévin, D.C.; Klee, M.L.; Dieter, S.; Sauer, U.; Sommer, W. The Neurometabolic Fingerprint of Excessive Alcohol Drinking. Neuropsychopharmacology 2014, 40, 1259–1268. [Google Scholar] [CrossRef]
- Leclercq, S.; Matamoros, S.; Cani, P.D.; Neyrinck, A.M.; Jamar, F.; Stärkel, P.; Windey, K.; Tremaroli, V.; Bäckhed, F.; Verbeke, K.; et al. Intestinal Permeability, Gut-Bacterial Dysbiosis, and Behavioral Markers of Alcohol-Dependence Severity. Proc. Natl. Acad. Sci. USA 2014, 111, E4485–E4493. [Google Scholar] [CrossRef]
- Ferrere, G.; Wrzosek, L.; Cailleux, F.; Turpin, W.; Puchois, V.; Spatz, M.; Ciocan, D.; Rainteau, D.; Humbert, L.; Hugot, C.; et al. Fecal Microbiota Manipulation Prevents Dysbiosis and Alcohol-Induced Liver Injury in Mice. J. Hepatol. 2017, 66, 806–815. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat Shock Proteins: Biological Functions, Pathological Roles, and Therapeutic Opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbach, E.; Niess, A.M. Role of Heat Shock Proteins in the Exercise Response. Exerc. Immunol. Rev. 1999, 5, 57–77. [Google Scholar]
- Belity, T.; Horowitz, M.; Hoffman, J.R.; Epstein, Y.; Bruchim, Y.; Todder, D.; Cohen, H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int. J. Mol. Sci. 2022, 23, 4129. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Alto, A.; Grgic, J.; Tinsley, G.; Haun, C.T.; Campbell, B.I.; Escalante, G.; Sonmez, G.T.; Cote, G.; Francis, A.; et al. Alterations in Body Composition, Resting Metabolic Rate, Muscular Strength, and Eating Behavior in Response to Natural Bodybuilding Competition Preparation: A Case Study. J. Strength Cond. Res. 2020, 34, 3124–3138. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhang, J.; Fang, B.; Tian, X.; Feng, Y.; Cheng, Z.; Fu, Z.; Zhang, J.; Wu, J. Runners’ Metabolomic Changes Following Marathon. Nutr. Metab. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.; Reidy, P.T.; Bhattarai, N.; Sidossis, L.S.; Rasmussen, B.B. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med. Sci. Sports Exerc. 2015, 47, 1922–1931. [Google Scholar] [CrossRef]
- Hoppel, F.; Calabria, E.; Pesta, D.H.; Kantner-Rumplmair, W.; Gnaiger, E.; Burtscher, M. Effects of Ultramarathon Running on Mitochondrial Function of Platelets and Oxidative Stress Parameters: A Pilot Study. Front. Physiol. 2021, 12, 632664. [Google Scholar] [CrossRef]
- Hood, D.A.; Terjung, R.L. Amino Acid Metabolism during Exercise and Following Endurance Training. Sports Med. 1990, 9, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Schader, J.F.; Haid, M.; Cecil, A.; Schoenfeld, J.; Halle, M.; Pfeufer, A.; Prehn, C.; Adamski, J.; Nieman, D.C.; Scherr, J. Metabolite Shifts Induced by Marathon Race Competition Differ between Athletes Based on Level of Fitness and Performance: A Substudy of the Enzy-MagIC Study. Metabolites 2020, 10, 87. [Google Scholar] [CrossRef] [PubMed]
Phenotype | Key Stressors | Genomic/Epigenetic Findings | Transcriptomic Findings | Proteomic /Metabolomic Findings | Metagenomic Findings | Key Phenotype-Specific Adaptations |
---|---|---|---|---|---|---|
Astronauts | Microgravity, radiation, confinement, altered day/night cycle, psychological stress. | Telomere elongation, DNA damage responses, alterations in genes related to immune function and cytokine shifts. | Cell-free RNA (cfRNA) profiles show systemic physiological shifts; direct RNA sequencing reveals m6A modifications linked to radiation/telomere response. | Upregulation of pathways for immune function, bone metabolism, mitochondrial dysfunction, and extracellular matrix remodeling. | Shifts in both gut and skin microbiome composition due to altered diet, stress, and confinement. | Telomere elongation in response to spaceflight; development of Spaceflight-Associated Neuro-Ocular Syndrome (SANS). |
Scuba Divers | Hyperbaric pressure, altered respiratory gas mixtures, cold temperatures, physical exertion. | Not widely studied, but some variants are linked to cold water tolerance in specific populations (e.g., Haenyeo divers). | Persistent upregulation of genes for inflammation, apoptosis, and innate immunity. Acute changes affecting T cells, NK cells, and neutrophils. | Transient increases in markers for cardiac/muscle damage (NT-proBNP, CK-MB) and inflammation (CRP, IL-6). Upregulation of complement system proteins. | Reduced diversity and shifts in the oral microbiota, with an increase in aerobic metabolic pathways. | Upregulation of the complement system in response to hyperbaric stress is a notable adaptation. |
Long-Haul Airplane Passengers | Prolonged immobility, low humidity, cabin hypoxia, circadian rhythm disruption (jet lag), pressure changes. | Limited studies; potential for increased DNA damage and elevated stress-related mRNA levels (SERT, p11) noted in airline pilots. | Largely unexplored but can be mapped against known human disease atlases. | Largely unexplored; some evidence in pilots suggests effects on plasma neurotrophin levels. | No direct studies available; dysbiosis is hypothesized due to environmental and circadian factors. | Increased risk of Deep Vein Thrombosis (DVT) due to prolonged immobility and a hypoxic, pro-coagulant state. |
Bodybuilders | Rigorous resistance training, cyclical high-protein and calorie-restricted diets (bulking/cutting). | Genetic variability in genes regulating muscle growth and mass, such as MSTN (myostatin). | Distinct gene expression patterns in skeletal muscle related to training status and response to exercise; specific microRNAs regulate muscle adaptation. | Alterations in proteins related to mitochondrial metabolism, calcium signaling, and nutrient metabolism; distinct blood metabolite profiles. | Unique gut microbial compositions, characterized by a reduced abundance of short-chain fatty acid producers. | Extreme muscle hypertrophy driven by the interplay of resistance training and nutrition; gut microbiome shifts potentially related to high-protein diets. |
Simulation Racers | Prolonged and intense mental concentration, localized muscle fatigue, potential repetitive strain injuries. | No known multi-omics studies have been conducted. This represents a significant research gap. | No known multi-omics studies have been conducted. | No known multi-omics studies have been conducted. | No known multi-omics studies have been conducted. | Neurological adaptations including enhanced perceptual speed, motor skills, and greater neural efficiency in motor control areas. |
Acute Alcohol Consumers | Systemic toxicity from alcohol and its metabolites (e.g., acetaldehyde). | Genetic variants in alcohol metabolism genes (ADH, ALDH) influence response; epigenetic modifications (DNA methylation) affect gene expression. | Altered gene expression in the brain (neuroinflammation, synaptic plasticity) and liver (lipid metabolism, inflammation). | Alterations in proteins involved in detoxification, lipid metabolism, neurotransmitter signaling, and oxidative stress response. | Gut microbiome dysbiosis, characterized by changes in bacterial diversity and increased intestinal permeability. | Distinct molecular damage signatures concentrated in the liver and brain, related to detoxification pathways, neurotoxicity, and inflammation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakharkar, A.; Chen, R.; LeRoy, E.; Nelson, T.M.; Proszynski, J.; Kim, J.; Park, J.; Arikatla, M.R.; Mathyk, B.; Mason, C.E. Multi-Omics Profiling of Individuals Sustaining Extreme Physical Stressors. Life 2025, 15, 1377. https://doi.org/10.3390/life15091377
Sakharkar A, Chen R, LeRoy E, Nelson TM, Proszynski J, Kim J, Park J, Arikatla MR, Mathyk B, Mason CE. Multi-Omics Profiling of Individuals Sustaining Extreme Physical Stressors. Life. 2025; 15(9):1377. https://doi.org/10.3390/life15091377
Chicago/Turabian StyleSakharkar, Anurag, Robert Chen, Erik LeRoy, Theodore M. Nelson, Jacqueline Proszynski, JangKeun Kim, Jiwoon Park, Mohith Reddy Arikatla, Begum Mathyk, and Christopher E. Mason. 2025. "Multi-Omics Profiling of Individuals Sustaining Extreme Physical Stressors" Life 15, no. 9: 1377. https://doi.org/10.3390/life15091377
APA StyleSakharkar, A., Chen, R., LeRoy, E., Nelson, T. M., Proszynski, J., Kim, J., Park, J., Arikatla, M. R., Mathyk, B., & Mason, C. E. (2025). Multi-Omics Profiling of Individuals Sustaining Extreme Physical Stressors. Life, 15(9), 1377. https://doi.org/10.3390/life15091377