Exploring Continuous Glucose Monitoring in Gestational Diabetes: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Question and Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Selection of Studies
2.5. Risk of Bias (Quality) Assessment
2.6. Strategy for Data Synthesis
3. Results
4. Discussion
4.1. GMS and Maternal Weight Gain
4.2. CGMS and Hypoglycaemia
4.3. CGMS and PT
4.4. CGMS and Associated Complications
4.5. CGMS and Fetal/Neonatal Weight
4.6. CGMS and Fetal/Neonatal Complications
5. Other Findings
5.1. Future Directions
5.2. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADRR | Average daily risk range |
AUC | Area under the curve |
BGRI | Blood glucose risk index |
BMI | Body mass index |
CG | Control group |
CGMS | Continuous glucose monitoring systems |
CI | Confidence interval |
DM | Diabetes mellitus |
GDM | Gestational diabetes mellitus |
GW | Gestational weeks |
HbA1c | A1c fraction of the haemoglobin |
HP | Hyperglycaemia patterns |
HSSV | Hours per day spent in severe variability |
LAGE | Largest amplitude of glycaemic excursions |
LGA | Large for gestational age |
MAD% | Percentage of mean absolute differences |
MAGE | Mean amplitude of glycaemic excursions |
MAGE2 | MAGE value in the 5th week |
MBG | Mean blood glucose |
MODD | Mean of daily differences |
NICU | Neonatal intensive care unit |
NS | Not specified |
OGTT | Oral glucose tolerance test |
OR | Odds ratio |
PIH | Pregnancy induced hypertension |
PPH | Postpartum haemorrhage |
PT | Pharmacological treatment |
PTB | Preterm birth |
PTL | Preterm labour |
RDS | Respiratory distress syndrome |
RT-CGMS | Real-time CGMS |
SD | Standard deviation |
SDBG | SD of blood glucose |
Se | Sensitivity |
Sp | Specificity |
SMBG | Self-monitoring blood glucose |
T1DM | Type 1 DM |
T2DM | Type 2 DM |
TAR | Time above range |
TBR | Time below range |
TIH | Time in hyperglycaemia |
References
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. 1), S27–S49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dabelea, D.; Hanson, R.L.; Lindsay, R.S.; Pettitt, D.J.; Imperatore, G.; Gabir, M.M.; Roumain, J.; Bennett, P.H.; Knowler, W.C. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships. Diabetes 2000, 49, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.K.; Lynch, C.D.; Powe, C.E.; Costantine, M.M.; Thung, S.F.; Gabbe, S.G.; Grobman, W.A.; Landon, M.B. Risk of Adverse Pregnancy Outcomes Among Pregnant Individuals with Gestational Diabetes by Race and Ethnicity in the United States, 2014–2020. JAMA 2022, 327, 1356–1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stotland, N.E.; Caughey, A.B.; Breed, E.M.; Escobar, G.J. Risk factors and obstetric complications associated with macrosomia. Int. J. Gynaecol. Obstet. 2004, 87, 220–226, Erratum in Int. J. Gynaecol. Obstet. 2005, 90, 88. [Google Scholar] [CrossRef] [PubMed]
- Usami, T.; Yokoyama, M.; Ueno, M.; Iwama, N.; Sagawa, N.; Kawano, R.; Waguri, M.; Sameshima, H.; Hiramatsu, Y.; Sugiyama, T.; et al. Comparison of pregnancy outcomes between women with early-onset and late-onset gestational diabetes in a retrospective multi-institutional study in Japan. J. Diabetes Investig. 2020, 11, 216–222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dudley, D.J. Diabetic-associated stillbirth: Incidence, pathophysiology, and prevention. Obstet. Gynecol. Clin. N. Am. 2007, 34, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Bohîlțea, R.E.; Mihai, B.M.; Szini, E.; Șucaliuc, I.A.; Badiu, C. Diagnosis and Management of Fetal and Neonatal Thyrotoxicosis. Medicina 2022, 59, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neacsu, A.; Herghelegiu, C.G.; Voinea, S.; Dimitriu, M.C.T.; Ples, L.; Bohiltea, R.E.; Braila, A.D.; Nastase, L.; Bacalbasa, N.; Chivu, L.I.; et al. Umbilical cord lactate compared with pH as predictors of intrapartum asphyxia. Exp. Ther. Med. 2021, 21, 80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, J.M.; Allshouse, A.A.; Cassimatis, I.; Smid, M.C.; Arslan, E.; Thorsten, V.; Parker, C.; Varner, M.W.; Dudley, D.J.; Saade, G.R.; et al. Characteristics of Stillbirths Associated with Diabetes in a Diverse U.S. Cohort. Obs. Gynecol. 2020, 136, 1095–1102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vääräsmäki, M.; Pouta, A.; Elliot, P.; Tapanainen, P.; Sovio, U.; Ruokonen, A.; Hartikainen, A.L.; McCarthy, M.; Järvelin, M.R. Adolescent manifestations of metabolic syndrome among children born to women with gestational diabetes in a general-population birth cohort. Am. J. Epidemiol. 2009, 169, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, P.; Chao, L.C.; Cree-Green, M.; Dart, A.B.; King, M.; Looker, H.C.; Magliano, D.J.; Nadeau, K.J.; Pinhas-Hamiel, O.; Shah, A.S.; et al. Youth-onset type 2 diabetes mellitus: An urgent challenge. Nat. Rev. Nephrol. 2023, 19, 168–184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- HAPO Study Cooperative Research Group; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.R.; Ekbom, P.; Damm, P.; Glümer, C.; Frandsen, M.M.; Jensen, D.M.; Mathiesen, E.R. HbA1c levels are significantly lower in early and late pregnancy. Diabetes Care 2004, 27, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Weisz, B.; Shrim, A.; Homko, C.J.; Schiff, E.; Epstein, G.S.; Sivan, E. One hour versus two hours postprandial glucose measurement in gestational diabetes: A prospective study. J. Perinatol. 2005, 25, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Bancher-Todesca, D.; Berger, A.; Repa, A.; Lechleitner, M.; Weitgasser, R. Gestationsdiabetes (GDM) [Gestational diabetes mellitus]. Wien. Klin. Wochenschr. 2016, 128 (Suppl. 2), 103–112. [Google Scholar] [CrossRef] [PubMed]
- Sandu, C.; Bica, C.; Salmen, T.; Stoica, R.; Bohiltea, R.; Gherghiceanu, F.; Pacu, I.; Stefan, S.; Serafinceanu, C.; Stoian, A.P. Gestational diabetes-modern management and therapeutic approach (Review). Exp. Ther. Med. 2021, 21, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salmen, B.M.; Reurean-Pintilei, D.; Trofin, D.; Durdu, C.E.; Neagu, A.C.; Bohiltea, R.E. Investigating the Role of Skin Autofluorescence in Gestational Diabetes Mellitus: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 3022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olczuk, D.; Priefer, R. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 181–187. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. 1), S126–S144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feig, D.S.; Donovan, L.E.; Corcoy, R.; Murphy, K.E.; Amiel, S.A.; Hunt, K.F.; Asztalos, E.; Barrett, J.F.R.; Sanchez, J.J.; de Leiva, A.; et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial. Lancet 2017, 390, 2347–2359, Erratum in Lancet 2017, 390, 2346. https://doi.org/10.1016/S0140-6736(17)32712-5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwiatkowska, M.K.; Kopka, M.; Cyganek, N.; Matejko, B.; Krawczyk, M.; Witek, P.; Cyganek, K. The one-center experience comparing glucose monitoring in patients with gestational diabetes mellitus utilizing flash glucose monitoring (FGM) versus traditional self-blood glucose monitoring (SBGM). Ginekol. Pol. 2025, 96, 7. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Yi, S.; Wei, Y.; Jiang, Y.; Bao, S.; Lu, J.; Chen, D. Effect of FSL-CGM on Maternal and Neonatal Outcomes in GDM: A Propensity Score Matching Study in Hangzhou, China. Diabetes Ther. 2025, 16, 1385–1397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryo, E.; Yatsuki, K.; Seto, M.; Kamata, H.; Yonaga, Y. Continuous monitoring of fetal gross movement and maternal glucose level using newly developed methods. AJOG Glob. Rep. 2023, 3, 100197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussain, F.N.; Raymond, S.; Feldman, K.M.; Scarpelli-Shchur, S.; Strauss, T.S.; Al-Ibraheemi, Z.; Brustman, L. Comparison of an Intermittently Scanned (Flash) Continuous Glucose Monitoring System to Standard Self-Monitoring of Capillary Blood Glucose in Gestational Diabetes Mellitus. Am. J. Perinatol. 2023, 40, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Oztop, N.; Kubat Uzum, A.; Celik, S.; Idiz, C.; Tutuncu, Y.; Bagdemir, E.; Dinçcağ, N. Determining the importance of glycemic variability in gestational diabetes mellitus using various techniques. J. Istanb. Fac. Med. 2023, 86, 44–51. [Google Scholar] [CrossRef]
- Gupta, Y.; Singh, C.; Goyal, A.; Mani, K.; Bharti, J.; Singhal, S.; Kachhawa, G.; Kulshrestha, V.; Kumari, R.; Mahey, R.; et al. Continuous glucose monitoring system profile of women diagnosed as gestational diabetes mellitus by International Association of Diabetes and Pregnancy Study Groups criteria and labeled as normoglycemic by alternate criteria in early pregnancy. J. Diabetes Investig. 2022, 13, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, Y.; Singh, C.; Goyal, A.; Kalaivani, M.; Bharti, J.; Singhal, S.; Kachhawa, G.; Kulshrestha, V.; Kumari, R.; Mahey, R.; et al. Continuous Glucose Monitoring System Profile of Women with Gestational Diabetes Mellitus Missed Using Isolated Fasting Plasma Glucose-Based Strategies Alternative to WHO 2013 Criteria: A Cross-Sectional Study. Diabetes Ther. 2022, 13, 1835–1846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, S.Y.; Žurauskienė, J.; Wei, D.M.; Chen, N.N.; Lu, J.H.; Kuang, Y.S.; Liu, H.H.; Cazier, J.B.; Qiu, X. Identification of maternal continuous glucose monitoring metrics related to newborn birth weight in pregnant women with gestational diabetes. Endocrine 2021, 74, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, D.; Wang, X. The effects of the instantaneous scanning glucose monitoring system on hypoglycemia, weight gain, and health behaviors in patients with gestational diabetes: A randomised trial. Ann. Palliat. Med. 2021, 10, 5714–5720. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.M.; Feig, D.S.; Murphy, H.R.; Law, G.R.; CONCEPTT Collaborative Group. Continuous Glucose Monitoring in Pregnancy: Importance of Analyzing Temporal Profiles to Understand Clinical Outcomes. Diabetes Care 2020, 43, 1178–1184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Márquez-Pardo, R.; Torres-Barea, I.; Córdoba-Doña, J.A.; Cruzado-Begines, C.; García-García-Doncel, L.; Aguilar-Diosdado, M.; Baena-Nieto, M.G. Continuous Glucose Monitoring and Glycemic Patterns in Pregnant Women with Gestational Diabetes Mellitus. Diabetes Technol. Ther. 2020, 22, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Sola-Gazagnes, A.; Faucher, P.; Jacqueminet, S.; Ciangura, C.; Dubois-Laforgue, D.; Mosnier-Pudar, H.; Roussel, R.; Larger, E. Disagreement between capillary blood glucose and flash glucose monitoring sensor can lead to inadequate treatment adjustments during pregnancy. Diabetes Metab. 2020, 46, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Milln, J.M.; Walugembe, E.; Ssentayi, S.; Nkabura, H.; Jones, A.G.; Nyirenda, M.J. Comparison of oral glucose tolerance test and ambulatory glycaemic profiles in pregnant women in Uganda with gestational diabetes using the FreeStyle Libre flash glucose monitoring system. BMC Pregnancy Childbirth 2020, 20, 635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, C.; Gupta, Y.; Goyal, A.; Kalaivani, M.; Garg, V.; Bharti, J.; Singhal, S.; Kachhawa, G.; Kulshrestha, V.; Kumari, R.; et al. Glycemic profile of women with normoglycemia and gestational diabetes mellitus during early pregnancy using continuous glucose monitoring system. Diabetes Res. Clin. Pract. 2020, 169, 108409. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.S.; Mlynarczyk, M.A.; de Veciana, M.; Green, L.M.; Baraki, D.I.; Abuhamad, A.Z. RT Continuous Glucose Monitoring in Gestational Diabetes: A Randomized Controlled Trial. Am. J. Perinatol. 2019, 36, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Panyakat, W.S.; Phatihattakorn, C.; Sriwijitkamol, A.; Sunsaneevithayakul, P.; Phaophan, A.; Phichitkanka, A. Correlation Between Third Trimester Glycemic Variability in Non-Insulin-Dependent Gestational Diabetes Mellitus and Adverse Pregnancy and Fetal Outcomes. J. Diabetes Sci. Technol. 2018, 12, 622–629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, Q.; Sun, Z.; Yang, Y.; Yu, H.; Ding, H.; Wang, S. Effect of a CGMS and SMBG on Maternal and Neonatal Outcomes in Gestational Diabetes Mellitus: A Randomized Controlled Trial. Sci. Rep. 2016, 6, 19920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alfadhli, E.; Osman, E.; Basri, T. Use of a RT continuous glucose monitoring system as an educational tool for patients with gestational diabetes. Diabetol. Metab. Syndr. 2016, 8, 48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, F.; Lv, L.; Liang, Z.; Wang, Y.; Wen, J.; Lin, X.; Zhou, Y.; Mai, C.; Niu, J. Continuous glucose monitoring effects on maternal glycemic control and pregnancy outcomes in patients with gestational diabetes mellitus: A prospective cohort study. J. Clin. Endocrinol. Metab. 2014, 99, 4674–4682. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Secher, A.L.; Ringholm, L.; Andersen, H.U.; Damm, P.; Mathiesen, E.R. The effect of real-time continuous glucose monitoring in pregnant women with diabetes: A randomized controlled trial. Diabetes Care 2013, 36, 1877–1883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Law, G.R.; Alnaji, A.; Alrefaii, L.; Endersby, D.; Cartland, S.J.; Gilbey, S.G.; Jennings, P.E.; Murphy, H.R.; Scott, E.M. Suboptimal Nocturnal Glucose Control Is Associated with Large for Gestational Age in Treated Gestational Diabetes Mellitus. Diabetes Care 2019, 42, 810–815. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. 1), S306–S320. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Fu, Y.; Lu, S.; Shuai, M.; Miao, Z.; Gou, W.; Shen, L.; Liang, Y.; Xu, F.; Tian, Y.; et al. Continuous glucose monitoring-derived glycemic metrics and adverse pregnancy outcomes among women with gestational diabetes: A prospective cohort study. Lancet Reg. Health West. Pac. 2023, 39, 100823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hinkle, S.N.; Mumford, S.L.; Grantz, K.L.; Mendola, P.; Mills, J.L.; Yeung, E.H.; Pollack, A.Z.; Grandi, S.M.; Sundaram, R.; Qiao, Y.; et al. Gestational weight change in a diverse pregnancy cohort and mortality over 50 years: A prospective observational cohort study. Lancet 2023, 402, 1857–1865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain with Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. JAMA 2017, 317, 2207–2225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bohiltea, R.E.; Zugravu, C.A.; Nemescu, D.; Turcan, N.; Paulet, F.P.; Gherghiceanu, F.; Ducu, I.; Cirstoiu, M.M. Impact of obesity on the prognosis of hypertensive disorders in pregnancy. Exp. Ther. Med. 2020, 20, 2423–2428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewandowska, M.; Więckowska, B.; Sajdak, S. Pre-Pregnancy Obesity, Excessive Gestational Weight Gain, and the Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus. J. Clin. Med. 2020, 9, 1980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Starling, A.P.; Brinton, J.T.; Glueck, D.H.; Shapiro, A.L.; Harrod, C.S.; Lynch, A.M.; Siega-Riz, A.M.; Dabelea, D. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study. Am. J. Clin. Nutr. 2015, 101, 302–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nehring, I.; Lehmann, S.; von Kries, R. Gestational weight gain in accordance to the IOM/NRC criteria and the risk for childhood overweight: A meta-analysis. Pediatr. Obes. 2013, 8, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Park, B.Y.; Foster, S.E.; Caughey, A.B. The association between gestational weight gain and risk of stillbirth: A population-based cohort study. Ann. Epidemiol. 2017, 27, 638–644.e1, Erratum in Ann. Epidemiol. 2018, 28, 420. https://doi.org/10.1016/j.annepidem.2018.03.018. [Google Scholar] [CrossRef] [PubMed]
- Şanlı, E.; Kabaran, S. Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders. Curr. Genom. 2019, 20, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Shiadeh, S.M.J.; Goretta, F.; Svedin, P.; Jansson, T.; Mallard, C.; Ardalan, M. Long-term impact of maternal obesity on the gliovascular unit and ephrin signaling in the hippocampus of adult offspring. J. Neuroinflammation 2024, 21, 39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asif, S.; Shaukat, M.; Khalil, K.; Javed, H.; Safwan, M.; Alam, K.; Fatima, S.; Chohan, P.; Muhammad Hanif, H.; Mahmmoud Fadelallah Eljack, M.; et al. Hypoglycemia and hyperglycemia in neonatal encephalopathy: A narrative review. Medicine 2024, 103, e39488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kestilä, K.K.; Ekblad, U.U.; Rönnemaa, T. Continuous glucose monitoring versus self-monitoring of blood glucose in the treatment of gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2007, 77, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Vidarsdottir, H.; Geirsson, R.T.; Hardardottir, H.; Valdimarsdottir, U.; Dagbjartsson, A. Obstetric and neonatal risks among extremely macrosomic babies and their mothers. Am. J. Obs. Gynecol. 2011, 204, 423.e1–423.e6. [Google Scholar] [CrossRef] [PubMed]
- Fishel Bartal, M.; Ashby Cornthwaite, J.; Ghafir, D.; Ward, C.; Nazeer, S.A.; Blackwell, S.C.; Pedroza, C.; Chauhan, S.P.; Sibai, B.M. Continuous glucose monitoring in individuals undergoing gestational diabetes screening. Am. J. Obs. Gynecol. 2023, 229, 441.e1–441.e14. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Diabetes in Pregnancy: Management from Preconception to the Postnatal Period. Available online: https://www.nice.org.uk/guidance/ng3/chapter/recommendations#gestational-diabetes (accessed on 12 August 2025).
Author (Reference) | Selection | Comparability | Outcome | Total Score | Quality | |||||
---|---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Demonstration That Outcome of Interest Was Not Present at Start of Study | Comparability of Cohorts Based on the Design or Analysis | Assessment of Outcome | Was Follow-Up Long Enough for Outcomes to Occur | Adequacy of Follow-Up of Cohorts | |||
Kwiatkowska et al. [23], 2025 | * | * | * | * | * | * | * | * | 8 | Good |
Du et al. [24], 2025 | * | * | * | * | * | * | * | - | 7 | Good |
Ryo et al. [25], 2023 | - | - | - | - | * | * | * | * | 4 | Poor |
Hussain et al. [26], 2023 | * | - | * | * | * | * | * | - | 6 | Good |
Oztop et al. [27], 2023 | * | * | * | * | * | * | * | - | 7 | Good |
Gupta et al. [28], 2022 | - | - | - | - | - | * | * | * | 3 | Poor |
Gupta et al. [29], 2022 | - | - | - | - | - | * | * | * | 3 | Poor |
Shen et al. [30], 2021 | * | * | * | * | * | * | * | - | 7 | Good |
Zhang et al. [31], 2021 | * | * | * | * | * | * | * | - | 7 | Good |
Marquez-Pardo et al. [32], 2020 | * | * | * | * | - | * | * | * | 7 | Good |
Scott et al. [33], 2020 | - | - | - | - | * | * | * | * | 4 | Poor |
Sola-Gazagnes et al. [34], 2020 | * | - | - | - | * | - | * | * | 4 | Poor |
Milln et al. [35], 2020 | * | * | * | * | * | - | - | - | 4 | Poor |
Singh et al. [36], 2020 | - | - | - | - | * | - | * | * | 3 | Poor |
Lane et al. [37], 2019 | * | * | * | * | * | * | * | * | 8 | Good |
Panyakat et al. [38], 2018 | * | * | - | * | * | * | * | * | 7 | Good |
Wei et al. [39], 2016 | * | * | * | * | * | * | * | * | 8 | Good |
Alfadhli et al. [40], 2016 | * | * | * | * | * | * | - | * | 7 | Good |
Yu et al. [41], 2014 | * | * | * | * | * | * | * | * | 8 | Good |
First Author, Publication Year | Country | Sample Size; Groups | Study Period | CGMS Model | GW at Sensor Mounting; GDM Diagnosis Method | Sensor Wearing Length |
---|---|---|---|---|---|---|
Kwiatkowska [23], 2025 | Poland | 277 GDM: 53 CGMS, 224 CG SMBG | January 2023–June 2023 | Abbot Free-Style Libre (Abbott Park, IL, USA.) | 24–28 GW; 75 g glucose OGTT | From diagnosis until delivery |
Du [24], 2025 | China | 3062 GDM: 466 CGMS, 2596 CG SMBG | November 2021–October 2022 | Abbot Free-Style Libre | 24–28 GW; 75 g glucose OGTT | 14 days |
Hussain [26], 2023 | United States | 41 GDM | NS | Abbot Free-Style Libre | NS | 14 days |
Oztop [27], 2023 | Turkey | 31 GDM (CGMS and SMBG) | NS | Medtronic Enlite Glucose Sensor®, (Galway, Ireland) | 35 GW, GDM diagnosis was according to the Turkish Society of Endocrinology and Metabolism Diabetes Mellitus guidelines | 72 h |
Shen [30], 2021 | China | 97 CGM | January 2017–November 2018 | Abbott Freestyle Libre | 22–28 GW, 75 g glucose OGTT | 5–14 days |
Zhang [31], 2021 | China | 55 CGM 55 CG (SMBG) | April 2019–April 2020 | Abbott Diabetes Care Ltd. | 24–28 GW, NS | 2 weeks |
Marquez-Pardo [32], 2020 | Spain | 77 GDM | February 2016–July 2018 | Medtronic iPro™ 2 CGMS | 30.2 ± 2.16; 50 g glucose OGTT load test followed by 100 g glucose OGTT diagnosis test | 6 days |
Lane [37], 2019 | United States | 12 CGMS blinded * 11 RT CGMS | December 2017–May 2018 | Medtronic iPro 2 | 24–27+6 GW; 50 g glucose test ≥ 135 mg/dL, followed by 100 g glucose OGTT or 50 g glucose test ≥ 200 mg/dL | 4 weeks |
Panyakat [38], 2018 | Thailand | 47 GDM | 1 August–31 December 2016 | iPro2® CGMS | 28–32 GW; 50 g glucose load test, followed by 100 g glucose OGTT | At least 72 h; 85.5 ± 12.83 h |
Wei [39], 2016 | China | 51 CGM: early subgroup (2nd trimester) 24, latter subgroup (3rd trimester) 27; 55 SMBG | September 2011–December 2012 | Gold Medtronic MiniMed | 24–28 GW, 75 g glucose OGTT | 48–72 h |
Alfadhli [40], 2016 | Saudi Arabia | 60 CGM 62 SMBG | October 2011–June 2014 | Guardian® RT CGMS (Medtronic MiniMed) | 26 ± 5 GW; IADPSG criteria | 3–7 days within 2 weeks after the GDM diagnosis (mean duration 66.8 ± 2.3 h) |
Yu [41], 2014 | China | 336 GDM; 189 SMBG (7 times/day)—CG and 147 CGMS and SMBG | April 2011–August 2012 | Medtronic Minimed | 24–28 GW; 75 g glucose OGTT | 72 h per week, two consecutive weeks, after that, 72 h each 2 to 4 weeks; in the fifth week all patients underwent CGMS for 72 h |
First Author, Publication Year | Adverse Pregnancy Outcome | Outcome | p Value |
---|---|---|---|
Kwiatkowska [23], 2025 | Lower MBG in the 2nd and 3rd trimester compared to CG | 100.3 ± 9.31 vs. 107.84 ± 9.06 mg/dL and 100.27 ± 12.63 vs. 109.79 ± 7.73 | p < 0.001 and p < 0.001 |
Lower TAR in the 2nd and 3rd trimester compared to CG | 2.86 ± 2.8% vs. 9.13 ± 8.74% and 8.49 ± 6.76% vs. 3.22 ± 2.96% | p < 0.0013 and p < 0.001 | |
Earlier basal insulin therapy compared to CG | 15 (11.5–27) vs. 27 (16–30) GW | p < 0.001 | |
Higher number of insulin treated patients compared to CG | 98.1% vs. 81.3% | p = 0.005 | |
Newborns with bigger body length compared to CG | 54 (53–56) vs. 53 (51–55) cm | p = 0.005 | |
Du [24], 2025 | Neonatal hypoglycaemia | 7.7% vs. 12.6% in the CG | p < 0.05 |
Neonatal hyperbilirubinemia | 16.5% vs. 21.6% in the CG | p < 0.05 | |
NICU admission | 49.6% vs. 64.5% in the CG | p < 0.05 | |
Lower WG | 11.8 ± 6.0 vs. 12.9 ± 6.3 kg in the CG | p < 0.05 | |
Lower WG in the normal weight subgroup | 9.6 ± 3.2 vs. 10.2 ± 4.5 kg in the CG | p < 0.05 | |
Lower fasting blood glucose before delivery | 4.73 ± 1.43 vs. 4.95 ± 1.59 mmol/L in the CG | p = 0.037 | |
Better TIR in the last 6 days of CGMS compared to the first 6 days of CGMS | 97.0 (86.8–99.3) vs. 84.75 (68.9–9.6) % | p < 0.001 | |
Higher MBG in the last 6 days of CGMS compared to the first 6 days of CGMS | 5.35 ± 0.83 vs. 5.06 ± 1.02 mmol/L | p < 0.001 | |
Better glucose management indicators in the last 6 days of CGMS compared to the first 6 days of CGMS | 36.87 ± 4.63 vs. 37.98 ± 3.9 mmol/L | p = 0.001 | |
Lower ADRR in the last 6 days of CGMS compared to the first 6 days of CGMS | 12.57 ± 4.54 vs. 18.8 ± 6.86 mmol/L | p > 0.001 | |
Lower MAGE in the last 6 days of CGMS compared to the first 6 days of CGMS | 2.8 ± 0.79 vs. 2.95 ± 0.84 | p = 0.013 | |
Lower MODD in the last 6 days of CGMS compared to the first 6 days of CGMS | 0.84 ± 0.28 vs. 0.9 ± 0.28 | p = 0.002 | |
Lower LAGE in the last 6 days of CGMS compared to the first 6 days of CGMS | 5.99 ± 1.59 vs. 6.72 ± 1.5 | p < 0.001 | |
Lower BGRI in the last 6 days of CGMS compared to the first 6 days of CGMS | 2.73 (1.81–3.87) vs. 4.39 (2.73–6.47) | p < 0.001 | |
Hussain [26], 2023 | NS | Mean glucose values: capillary blood glucose—102.0 ± 20.5 and intermittently scanned continuous glucose monitor 89.4 ± 20.1 mg/dL | NS |
Oztop [27], 2023 | Mean glucose level (CGMS vs. SMBG six times a day for 72 h) | 86.1 ± 10.3 mg/dL vs. 82.9 ± 10.2 mg/dL; r = 0.767 | p < 0.001 |
AUC >140 mg/dL and mean birth weight | r = −0.428 | p = 0.016 | |
MAD% and babies’ mean head circumference | r = −0.459 | p = 0.009 | |
Shen [30], 2021 | HSSV was found positively associated with fasting glucose | r = 0.39 | p = 0.0001 |
HSSV and 2 h glucose | r = 0.27 | p = 0.0093 | |
HSSV and prepregnancy BMI | r = 0.25 | p = 0.0118 | |
Each 1 SD (3.91 h) elevation in HSSV increases birth weight percentile | 6.3 (95% CI 0.4, 12.2) | NS | |
Each 1 SD (0.53 mmol/L) elevation in mean nighttime glycemia level increases birth weight percentile | 6.0 (95% CI 0.4, 11.5) | NS | |
Zhang [31], 2021 | Hypoglycaemia CGMS group vs. CG | 3 cases (5.45%) vs. 12 cases (21.82%) | p = 0.012 |
WG (ideal WG in relation to prepregnancy BMI): CGMS group vs. CG | 50 cases (90.91%) vs. 39 cases (70.91%) | p = 0.008 | |
Compliance rate for CGMS group vs. CG | 94.55% vs. 74.55% | p = 0.004 | |
Marquez-Pardo [32], 2020 | TIH after lunch and macrosomia | OR 1.04, 95% CI (1.01–1.08) | p = 0.035 |
TIH and LGA infants | OR 1.05, 95% CI (1.01–1.09) | p = 0.010 | |
PT and TAR | OR 1.24, 95% CI (1.06–1.45) | p = 0.006 | |
PT and HP before breakfast | OR 1.04 95% CI (1.02–1.06) | p < 0.001 | |
PT and HP after breakfast | OR 1.04 95% CI (1.01–1.08) | p = 0.006 | |
PT and HP after dinner | OR 1.02 95% CI (1.01–1.04) | p = 0.012 | |
PT and HP over night | OR 1.13 95% CI (1.05–1.22) | p = 0.001 | |
Lane [37], 2019 | Shorter periods in hypoglycaemia in the RT group vs. blinded in the 1st week, respectively, in the 4th week | 532.9 ± 581.6 vs. 1410.5 ± 2871 min, respectively, 274.5 ± 317.4 vs. 492.4 ± 409 | p = 0.3, respectively, p = 0.2 |
Gestational hypertension blinded group vs. RT CGMS | 3 cases (25%) vs. 1 case (9.1%) | p = 0.6 | |
Preeclampsia blinded group vs. RT CGM | 2 cases (16.7%) vs. 1 case (9.1%) | p = 1 | |
Fetal macrosomia blinded group vs. RT CGM | 0 vs. 2 cases (18.2%) | p = 0.2 | |
Panyakat [38], 2018 | LGA, birth weight, primary caesarean section, cephalopelvic disproportion, PIH, PPH, PTL, PTB, neonatal hypoglycaemia, RDS, NICU admission | No correlation found between glycaemic parameters and pregnancy outcomes | p > 0.05 |
Gestational WG and birth weight percentiles | r = 0.437 | p = 0.002 | |
Maternal height and birth weight percentiles | r = 0.369 | p = 0.011 | |
Wei [39], 2016 | Lower excessive WG vs. CG | 33.3% vs. 56.4% | p = 0.039 |
Initiated CGMS earlier gained less weight | p = 0.017 | ||
Alfadhli [40], 2016 | Decrease in the mean sensor glucose, respectively, SD of sensor glucose in the CGMS group in the last day of sensor wearing | - | p = 0.016, respectively, p = 0.034 |
Yu [41], 2014 | SD of blood glucose; MAGE; and MODD in the CGMS group in the 5th week compared to the first week | 0.8 ± 0.3 vs. 1.3 ± 0.4 mmol/L; 1.8 ± 0.6 vs. 3.0 ± 1.1 mmol/L; 1.0 ± 0.2 vs. 1.4 ± 0.4 | p < 0.001; p < 0.001; p < 0.001 |
Hypoglycaemia > 30 min/day in the CGMS group vs. CG | 3.4% vs. 19.4% | p < 0.001 | |
Preeclampsia | 5 cases (3.4%) vs. 19 cases (10.1%) in the CG | p = 0.019 | |
Primary caesarean delivery | 51 cases (34.7%) vs. 88 cases (46.6%) in the CG | p = 0.028 | |
Mean infant birth weight | 3138 ± 484 g vs. 3345 ± 508 g in the CG | p < 0.001 | |
Premature delivery | 7 cases (4.8%) vs. 22 cases (11.8%) in the CG | p = 0.024 | |
Birth weight percentile | 66 (35–82) vs. 82 (64–91) in the CG | p < 0.001 | |
Macrosomia | 6 (4.1%) vs. 20 (10.8%) in the CG | p = 0.025 | |
LGA | 20 (13.7%) vs. 48 (25.8%) in the CG | p = 0.01 | |
Neonatal hypoglycaemia | 8 (5.5%) vs. 26 (14%) in the CG | p = 0.011 | |
Neonatal hyperbilirubinemia | 4 (2.7%) vs. 18 (9.7%) in the CG | p = 0.012 | |
Respiratory distress syndrome | 2 (1.4%) vs. 11 (5.9%) in the CG | p = 0.034 | |
Composite neonatal outcome | 40 (27.4%) vs. 92 (49.5%) in the CG | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmen, B.-M.; Reurean-Pintilei, D.; Salmen, T.; Bohîlțea, R.-E. Exploring Continuous Glucose Monitoring in Gestational Diabetes: A Systematic Review. Life 2025, 15, 1369. https://doi.org/10.3390/life15091369
Salmen B-M, Reurean-Pintilei D, Salmen T, Bohîlțea R-E. Exploring Continuous Glucose Monitoring in Gestational Diabetes: A Systematic Review. Life. 2025; 15(9):1369. https://doi.org/10.3390/life15091369
Chicago/Turabian StyleSalmen, Bianca-Margareta, Delia Reurean-Pintilei, Teodor Salmen, and Roxana-Elena Bohîlțea. 2025. "Exploring Continuous Glucose Monitoring in Gestational Diabetes: A Systematic Review" Life 15, no. 9: 1369. https://doi.org/10.3390/life15091369
APA StyleSalmen, B.-M., Reurean-Pintilei, D., Salmen, T., & Bohîlțea, R.-E. (2025). Exploring Continuous Glucose Monitoring in Gestational Diabetes: A Systematic Review. Life, 15(9), 1369. https://doi.org/10.3390/life15091369