FGF21–MAPK1 Imbalance Disrupts Hepatic Lipid Metabolism in Dairy Cow Ketosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequencing Sample Acquisition and Initial Handling
2.2. SNP Typing and Bioinformatics Analysis Based on SuperGBS Sequencing
2.3. Genome-Wide Association Analysis of SNPs with Clinical Ketosis
2.4. Independent Sample Study
2.5. Tissues and Cell
2.6. Oil Red O Staining for Visualizing Lipid Morphology
2.7. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis
2.8. Western Blotting (WB) Analysis
2.9. Bovine Hepatocytes Exposed with BHB
2.10. RNA Interference
2.11. FGF21-Fc Fusion Protein Treatment
2.12. Statistical Analysis
3. Results
3.1. Association Analysis Between Seventeen SNPs and Glucose and Lipid Metabolism Genes in Chinese Holstein Cows
3.2. Association Analysis Between Four Candidate Genes and Clinical Ketosis in Chinese Holstein Cows
3.3. MAPK1 Plays an Important Role in Lipid Metabolism in Both Ketotic Cow Livers and Bovine Hepatocytes
3.4. MAPK1 Plays a Crucial Role in Lipid Metabolism Disorders in the Liver Caused by Ketosis in Dairy Cows
3.5. The FGF21–MAPK1 Signaling Pathway Participates in Lipid Metabolism Disorders in the Liver Caused by Ketosis in Dairy Cows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steeneveld, W.; Amuta, P.; Van Soest, F.J.S.; Jorritsma, R.; Hogeveen, H. Estimating the combined costs of clinical and subclinical ketosis in dairy cows. PLoS ONE 2020, 15, e0230448. [Google Scholar] [CrossRef]
- Loiklung, C.; Sukon, P.; Thamrongyoswittayakul, C. Global prevalence of subclinical ketosis in dairy cows: A systematic review and meta-analysis. Res. Vet. Sci. 2022, 144, 66–76. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B.B.; Xu, C.; Zhang, H.Y.; Xia, C. Effects of ketosis in dairy cows on blood biochemical parameters, milk yield and composition, and digestive capacity. J. Vet. Res. 2019, 63, 555–560. [Google Scholar] [CrossRef]
- Ghavi Hossein-Zadeh, N. A meta-analysis of the genetic contribution estimates to major indicators for ketosis in dairy cows. Res. Vet. Sci. 2022, 153, 8–16. [Google Scholar] [CrossRef]
- Venjakob, P.L.; Heuwieser, W.; Borchardt, S. Associations between days in the close-up group and milk production, transition cow diseases, reproductive performance, culling, and behavior around calving of Holstein dairy cows. J. Dairy Sci. 2023, 106, 7056–7075. [Google Scholar] [CrossRef]
- Tang, R.; Yang, W.C.; Song, J.H.; Xiang, K.H.; Li, S.; Zhao, C.J.; Zhang, N.S.; Fu, Y.H.; Hu, X.Y. The rumen microbiota contributed to the development of mastitis induced by subclinical ketosis. Microb. Pathog. 2024, 187, 106509. [Google Scholar] [CrossRef] [PubMed]
- Raboisson, D.; Mounie, M.; Maigne, E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci. 2014, 97, 7547–7563. [Google Scholar] [CrossRef] [PubMed]
- Koeck, A.; Jamrozik, J.; Schenkel, F.S.; Moore, R.K.; Lefebvre, D.M.; Kelton, D.F.; Miglior, F. Genetic analysis of milk β-hydroxybutyrate and its association with fat-to-protein ratio, body condition score, clinical ketosis, and displaced abomasum in early first lactation of Canadian Holsteins. J. Dairy Sci. 2014, 97, 7286–7292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, M.; Meng, M.; Ma, N.; Xie, W.; Shen, X.; Li, Z.; Chang, G. Subclinical ketosis leads to lipid metabolism disorder by downregulating the expression of acetyl-coenzyme A acetyltransferase 2 in dairy cows. J. Dairy Sci. 2023, 106, 9892–9909. [Google Scholar] [CrossRef]
- Andersson, L. Subclinical ketosis in dairy cows. Vet. Clin. North Am. Food Anim. Pract. 1988, 4, 233–251. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Loor, J.J.; Bucktrout, R.; Shu, X.; Jia, H.; Dong, J.; Zuo, R.; Liu, G.; Li, X.; et al. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. J. Dairy Sci. 2019, 102, 1682–1692. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, G.; Du, X.; Shi, Z.; Jin, M.; Sha, X.; Li, X.; Wang, Z.; Li, X. Expression patterns of hepatic genes involved in lipid metabolism in cows with subclinical or clinical ketosis. J. Dairy Sci. 2019, 102, 1725–1735. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 298. [Google Scholar] [CrossRef]
- Andersson, L.; Boström, P.; Ericson, J.; Rutberg, M.; Magnusson, B.; Marchesan, D.; Ruiz, M.; Asp, L.; Huang, P.; Frohman, M.A.; et al. PLD1 and ERK2 regulate cytosolic lipid droplet formation. J. Cell Sci. 2006, 119, 2246–2257. [Google Scholar] [CrossRef]
- Wang, L.; Wei, L.; Chen, X.; Xiong, J. Arachidonic acid suppresses lung cancer cell growth and modulates lipid metabolism and the ERK/PPARγ signaling pathway. Lipids Health Dis. 2025, 24, 114. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Q.; Chen, Y.; Yang, W.; Xia, C.; Yu, H.; Zhu, K.; Shen, T.; Zhang, Z. FGF-21: Promising biomarker for detecting ketosis in dairy cows. Vet. Res. Commun. 2016, 40, 49–54. [Google Scholar] [CrossRef]
- Lu, W.; Li, X.; Luo, Y. FGF21 in obesity and cancer: New insights. Cancer Lett. 2021, 499, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Fisher, F.M.; Chee, M.J.; Tan, T.G.; Ouaamari, A.E.; Adams, A.C.; Najarian, R.; Kulkarni, R.N.; Benoist, C.; Flier, J.S.; et al. Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS ONE 2016, 11, e0148252. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Tian, H.; Lam, K.S.L.; Lin, S.; Hoo, R.C.L.; Konishi, M.; Itoh, N.; Wang, Y.; Bornstein, S.R.; Xu, A.; et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013, 17, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Santschi, D.E.; Lacroix, R.; Durocher, J.; Duplessis, M.; Moore, R.K.; Lefebvre, D.M. Prevalence of elevated milk β-hydroxybutyrate concentrations in Holstein cows measured by Fourier-transform infrared analysis in Dairy Herd Improvement milk samples and association with milk yield and components. J. Dairy Sci. 2016, 99, 9263–9270. [Google Scholar] [CrossRef]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Jensen, N.E.; Ostergård, H. Analysis of associations between major histocompatibility complex (BoLA) class I haplotypes and subclinical mastitis of dairy cows. J. Dairy Sci. 1995, 78, 1684–1692. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Karrow, N.; Mallard, B.A. Biological effect of varying peptide binding affinity to the BoLA-DRB3*2703 allele. Genet. Sel. Evol. GSE 2003, 35 (Suppl. 1), S51–S65. [Google Scholar] [CrossRef]
- Kubosaki, A.; Gross, S.; Miura, J.; Saeki, K.; Zhu, M.; Nakamura, S.; Hendriks, W.; Notkins, A.L. Targeted disruption of the IA-2β gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes 2004, 53, 1684–1691. [Google Scholar] [CrossRef]
- Cai, T.; Hirai, H.; Zhang, G.; Zhang, M.; Takahashi, N.; Kasai, H.; Satin, L.S.; Leapman, R.D.; Notkins, A.L. Deletion of Ia-2 and/or Ia-2β in mice decreases insulin secretion by reducing the number of dense core vesicles. Diabetologia 2011, 54, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ji, Y.; Zhang, L.; Zhang, Y.; Zhang, S.; An, Y.; Liu, P.; Zheng, Y. Resistance to obesity by repression of VEGF gene expression through induction of brown-like adipocyte differentiation. Endocrinology 2012, 153, 3123–3132. [Google Scholar] [CrossRef] [PubMed]
- Elias, I.; Franckhauser, S.; Ferré, T.; Vilà, L.; Tafuro, S.; Muñoz, S.; Roca, C.; Ramos, D.; Pujol, A.; Riu, E.; et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 2012, 61, 1801–1813. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wernstedt Asterholm, I.; Kusminski, C.M.; Bueno, A.C.; Wang, Z.V.; Pollard, J.W.; Brekken, R.A.; Scherer, P.E. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl. Acad. Sci. USA 2012, 109, 5874–5879. [Google Scholar] [CrossRef]
- Veech, R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 309–319. [Google Scholar] [CrossRef]
- White, H.M. The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows. Animals 2015, 5, 793–802. [Google Scholar] [CrossRef]
- Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014, 120, 3446–3456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; He, J.; Xu, C.; Zu, L.; Jiang, H.; Pu, S.; Guo, X.; Xu, G. Mechanisms of metformin inhibiting lipolytic response to isoproterenol in primary rat adipocytes. J. Mol. Endocrinol. 2009, 42, 57–66. [Google Scholar] [CrossRef]
- Kanikarla-Marie, P.; Jain, S.K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic. Biol. Med. 2016, 95, 268–277. [Google Scholar] [CrossRef]
- Yokoo, H.; Saitoh, T.; Shiraishi, S.; Yanagita, T.; Sugano, T.; Minami, S.; Kobayashi, H.; Wada, A. Distinct effects of ketone bodies on down-regulation of cell surface insulin receptor and insulin receptor substrate-1 phosphorylation in adrenal chromaffin cells. J. Pharmacol. Exp. Ther. 2003, 304, 994–1002. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, L.; Lin, X.; Zhou, X.; Lu, B.; Liu, C.; Lei, C.; Zhou, F.; Zhao, Q.; Prochownik, E.V.; et al. USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep. 2021, 37, 110174. [Google Scholar] [CrossRef]
- McLean, E.; Roo, C.; Maag, A.; Coble, M.; Cano, J.; Liu, R. ERK1/2 inhibition alleviates diabetic cardiomyopathy by suppressing fatty acid metabolism. Front. Biosci. 2025, 30, 26700. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.F.; Zheng, G.H.; Wang, A.M.; Sun, C.H.; Qin, S.P.; Zhuang, J.; Lu, J.; Ma, D.F.; Zheng, Y.L. Attenuation of hepatic steatosis by purple sweet potato colour is associated with blocking Src/ERK/C/EBPβ signalling in high-fat-diet-treated mice. Appl. Physiol. Nutr. Metab. 2017, 42, 1082–1091. [Google Scholar] [CrossRef]
- Miao, Y.; Zhong, Y.; Li, Y.; Qin, H.; Yang, L.; Cao, G.; Tang, Y.; Yu, T.; Fan, D.; Lu, Y.; et al. Inhibition of HSP20 ameliorates steatotic liver disease by stimulating ERK2-dependent autophagy. Diabetes 2024, 73, 909–925. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Gui, Y.; Zou, T.; Xi, S.; Guo, X. Fluoride regulates the differentiation and atrophy through FGF21/ERK signaling pathway in C2C12 cells. Ecotoxicol. Environ. Saf. 2023, 252, 114626. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhong, M.Y.; Liu, Y.X.; Yu, J.Y.; Wang, Y.B.; Zhang, X.J.; Sun, H.P. Branched-chain amino acids promote hepatic Cyp7a1 expression and bile acid synthesis via suppressing FGF21-ERK pathway. Acta Pharmacol. Sin. 2025, 46, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Pashaj, A.; Xia, M.; Moreau, R. Reversal of obesity-induced hypertriglyceridemia by (R)-α-lipoic acid in ZDF (fa/fa) rats. Biochem. Biophys. Res. Commun. 2013, 439, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Antonellis, P.J.; Hayes, M.P.; Adams, A.C. Fibroblast growth factor 21-null mice do not exhibit an impaired response to fasting. Front. Endocrinol. 2016, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhao, C.; Tan, P.; Liu, S.; Huang, Y.; Zeng, F.; Ma, P.; Guo, Y.; Zhao, B.; Wang, J. FGF21 reduces lipid accumulation in bovine hepatocytes by enhancing lipid oxidation and reducing lipogenesis via AMPK signaling. Animals 2022, 12, 939. [Google Scholar] [CrossRef]
- Caixeta, L.S.; Giesy, S.L.; Krumm, C.S.; Perfield, J.W., 2nd; Butterfield, A.; Boisclair, Y.R. Fibroblast growth factor-21 (FGF21) administration to early-lactating dairy cows. II. Pharmacokinetics, whole-animal performance, and lipid metabolism. J. Dairy Sci. 2019, 102, 11597–11608. [Google Scholar] [CrossRef] [PubMed]
CHR | POS | Gene | Function | Reference |
---|---|---|---|---|
1 | 95,777,224 | GHSR | Insulin secretion or glucose tolerance | Gray SM et al., 2019 |
1 | 120,339,915 | AGTR1 | Insulin secretion | Shoemaker R et al., 2019 |
Promotes hepatic mRNA expression of cholesterol–metabolism-related genes | Pellegrin M et al., 2018 | |||
4 | 120,051,703 | PTPRN2 | Inhibit glucose-stimulated insulin secretion | Wang Y et al., 2010 |
Insulin signaling | Torii S et al., 2018 | |||
7 | 97,574,524 | GLRX | A new target for diabetes mellitus Type 2 treatment | Petry SF et al., 2017 |
11 | 9,371,465 | TACR1 | Glucose metabolism | Karagiannides I et al., 2011 |
13 | 19,864,372 | NRP1 | Weight gain and glucose tolerance | Wilson AM et al., 2018 |
15 | 4,715,091 | PDGFD | Promotes cell proliferation, cell migration, and expression of inflammatory factors in adventitial fibroblasts | Zhang ZB et al., 2018 |
15 | 32,076,300 | GRIK4 | Glutamatergic synapse | Catches JS et al., 2012 |
17 | 74,014,223 | MAPK1 | Insulin secretion | Niu B et al., 2016 |
19 | 54,453,831 | SOCS3 | Mediates insulin and leptin | Yang Z et al., 2012 |
23 | 7,799,625 | IP6K3 | Ip6k3(-/-) mice had lower blood glucose, less insulin, decreased fat, lower weight | Yusuke M et al., 2016 |
23 | 17,316,741 | VEGFA | Regulates adipose development and function in energy metabolism | Jin H et al., 2018 |
23 | 27,671,377 | BoLA | Type 1 diabetes mellitus | Finer S et al., 2016 |
24 | 48,201,784 | ZBTB7C | A crucial metabolic regulator of blood glucose homeostasis | Won-II C et al., 2019 |
29 | 22,755,876 | SLC17A6 | Vglut2 conditional knockout mice showed less interest in fatty rewards and decreased sugar consumption | Schweizer N et al., 2016 |
29 | 41,070,494 | FADS2 | Hepatic lipid accumulation; secretion of very low-density lipoprotein (VLDL) | Hayashi Y et al., 2018 |
30 | 62,655,807 | ACSL4 | Adipose tissue inflammation and insulin resistance | Elizabeth A K et al., 2018 |
Locus Name | SNP | A1/A2 | Freq.A1 | He | Ho | PIC | BETA | p Value |
---|---|---|---|---|---|---|---|---|
LOC107133317-MAPK1 | rs74014223 | T/G | 0.913 | 0.1597 | 0.175 | 0.1469 | 0.181 | 3.74 × 10−5 |
TNFSF10-GHSR | rs95777224 | A/G | 0.946 | 0.1023 | 0.1081 | 0.097 | 0.236 | 1.17 × 10−5 |
IP6K3 | rs7799625 | T/C | 0.054 | 0.1023 | 0.1081 | 0.097 | 0.212 | 0.000148 |
SLC17A6-ANO5 | rs22755876 | C/T | 0.060 | 0.112 | 0.119 | 0.1057 | 0.211 | 0.000186 |
PDGFD | rs4715091 | G/T | 0.941 | 0.112 | 0.119 | 0.1057 | 0.188 | 0.000197 |
PGS1-SOCS3 | rs54453831 | A/C | 0.917 | 0.1528 | 0.1667 | 0.1411 | 0.157 | 0.00021 |
PTPRN2 | rs120051703 | C/T | 0.769 | 0.355 | 0.4103 | 0.292 | 0.113 | 0.000218 |
BoLA | rs27671377 | A/G | 0.597 | 0.4811 | 0.6944 | 0.3654 | 0.118 | 0.000266 |
FADS2 | rs41070494 | G/A | 0.842 | 0.2668 | 0.3171 | 0.2312 | 0.132 | 0.000459 |
GRIK4 | rs32076300 | G/A | 0.872 | 0.2235 | 0.2051 | 0.1986 | 0.121 | 0.000523 |
ZBTB7C | rs48201784 | C/G | 0.081 | 0.149 | 0.1622 | 0.1379 | 0.162 | 0.000664 |
CPB1-AGTR1 | rs120339915 | G/A | 0.915 | 0.1562 | 0.122 | 0.144 | 0.128 | 0.000692 |
GLRX-ELL2 | rs97574524 | G/A | 0.907 | 0.1687 | 0.186 | 0.1545 | 0.146 | 0.000701 |
VEGFA-C23H6orf223 | rs17316741 | C/T | 0.865 | 0.2337 | 0.2162 | 0.2064 | 0.119 | 0.000816 |
ACSL4-LOC781152 | rs62655807 | T/C | 0.927 | 0.1356 | 0.1463 | 0.1264 | 0.143 | 0.000876 |
PARD3-NRP1 | rs19864372 | A/T | 0.919 | 0.1495 | 0.1628 | 0.1384 | 0.145 | 0.000951 |
FHL2-TACR1 | rs9371465 | G/A | 0.540 | 0.4969 | 0.5526 | 0.3734 | 0.089 | 0.000998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.-J.; Yang, F.; Chen, Z.-X.; Wang, Z.-P.; Wang, Z.-X.; Deng, Z.-H.; Xu, C.-J.; Chen, F.-H.; Zhang, W.; Liu, Y.; et al. FGF21–MAPK1 Imbalance Disrupts Hepatic Lipid Metabolism in Dairy Cow Ketosis. Life 2025, 15, 1339. https://doi.org/10.3390/life15091339
Xu J-J, Yang F, Chen Z-X, Wang Z-P, Wang Z-X, Deng Z-H, Xu C-J, Chen F-H, Zhang W, Liu Y, et al. FGF21–MAPK1 Imbalance Disrupts Hepatic Lipid Metabolism in Dairy Cow Ketosis. Life. 2025; 15(9):1339. https://doi.org/10.3390/life15091339
Chicago/Turabian StyleXu, Jun-Jie, Fan Yang, Zhi-Xi Chen, Zhi-Peng Wang, Zi-Xuan Wang, Zi-Han Deng, Chen-Jie Xu, Fang-Hui Chen, Wei Zhang, Yang Liu, and et al. 2025. "FGF21–MAPK1 Imbalance Disrupts Hepatic Lipid Metabolism in Dairy Cow Ketosis" Life 15, no. 9: 1339. https://doi.org/10.3390/life15091339
APA StyleXu, J.-J., Yang, F., Chen, Z.-X., Wang, Z.-P., Wang, Z.-X., Deng, Z.-H., Xu, C.-J., Chen, F.-H., Zhang, W., Liu, Y., & Cai, Y.-F. (2025). FGF21–MAPK1 Imbalance Disrupts Hepatic Lipid Metabolism in Dairy Cow Ketosis. Life, 15(9), 1339. https://doi.org/10.3390/life15091339