Real-World Outcomes and Prognostic Factors of Polymyxin B Hemoperfusion in Severe Sepsis and Septic Shock: A Seven-Year Single-Center Cohort Study from Taiwan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Population
- Age < 20 years.
- Pregnancy.
- Participation in another clinical trial within one month.
- Receipt of organ transplantation within one year.
- Anticipated survival < 30 days (e.g., advanced malignancy as assessed by the attending physician).
- Cardiopulmonary resuscitation within four weeks prior to ICU admission.
- Do-not-resuscitate (DNR) order or palliative care decision at admission.
- Diagnosed HIV infection.
- Active uncontrolled bleeding within 24 h.
- Brain death at admission.
- Child–Pugh C liver failure.
- Use of blood purification therapy (CVVH, hemodialysis, hemofiltration, plasma exchange) within 24 h prior to enrollment.
- Hemophilia.
- History of allergy to polymyxin B, heparin, or extracorporeal circuit materials.
2.3. Patient Flow
2.4. Data Collection
2.5. PMX-HP Intervention
2.6. Organ Support Protocols
2.7. Outcome Measures
- All-cause 28-day mortality after PMX-HP initiation.
- ICU and hospital mortality.
- ICU and hospital length of stay.
- Requirement and timing of CRRT and extracorporeal membrane oxygenation (ECMO).
- Changes in vasoactive-inotropic score (VIS) before (T2) and 24 h after (T3) PMX-HP.
- Additional clinical endpoints as per protocol (e.g., ventilator-free days, laboratory trends).
2.8. Statistical Analysis
2.9. Missing Data Handling
2.10. Ethics Statement
3. Results
3.1. Patient Flow
3.2. Baseline Characteristics
3.3. Microbiological Resistance and Antibiotic Usage
3.4. Clinical Outcomes
3.5. Comparison Between Survivors and Non-Survivors
3.6. Hemodynamic Response and VIS Score
3.7. Prognostic Factors for Mortality
3.8. Figures and Tables
4. Discussion
4.1. Comparison with International Guidelines, RCTs, and Meta-Analyses
4.2. Asian and Taiwanese Clinical Reality
4.3. Subgroup and Real-World Stratification
4.4. Health Economics and Policy Implications
4.5. Prognostic Indicators and Practical Recommendations
4.6. Study Limitations
4.7. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing sepsis as a global health priority—A WHO resolution. N. Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Lee, C.C.; Yo, C.H.; Lee, M.G.; Tsai, K.C.; Lee, S.H.; Chen, Y.S.; Lee, W.C.; Hsu, T.C.; Lee, S.H.; Chang, S.S. Adult sepsis—A nationwide study of trends and outcomes in a population of 23 million people. J. Infect. 2017, 75, 409–419. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Meyhoff, T.S.; Hjortrup, P.B.; Møller, M.H.; Haase, N.; Perner, A.; Wetterslev, J.; Sivapalan, P.; Laake, J.H.; Cronhjort, M.; Jakob, S.M.; et al. Restriction of intravenous fluid in ICU patients with septic shock (CLASSIC trial). N. Engl. J. Med. 2022, 386, 2459–2470. [Google Scholar] [CrossRef]
- Yu, C.W.; Chang, S.S.; Lai, C.C.; Wu, J.Y.; Yen, D.W.; Lee, M.T.G.; Yeh, C.C.; Chung, J.Y.; Lin, Y.J.; Lee, C.C. Epidemiology of emergency department sepsis: A national cohort study between 2001 and 2012. Shock 2019, 51, 619–624. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.A.; Trzeciak, S.; et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: The EUPHRATES randomized clinical trial. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Yang, P.; Wang, R.; Chen, T.; Li, L. The role of polymyxin B-immobilized hemoperfusion in reducing mortality and enhancing hemodynamics in patients with sepsis and septic shock: A systematic review and meta-analysis. Heliyon 2024, 10, e33735. [Google Scholar] [CrossRef] [PubMed]
- Shoji, H.; Ferrer, R. Potential survival benefit and early recovery from organ dysfunction with polymyxin B hemoperfusion: Perspectives from a real-world big data analysis and the supporting mechanisms of action. J. Anesth. Analg. Crit. Care 2022, 2, 27. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.C.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes of sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Cho, H.; Park, D.W.; Moon, S.; Kim, J.Y.; Ahn, S.; Lee, S.-G.; Park, J. Vasoactive-inotropic score as an early predictor of mortality in adult patients with sepsis. J. Clin. Med. 2021, 10, 495. [Google Scholar] [CrossRef]
- Wang, G.; He, Y.; Guo, Q.; Zhao, Y.; He, J.; Chen, Y.; Chen, W.; Zhou, Y.; Peng, Z.; Deng, K.; et al. Continuous renal replacement therapy with the adsorptive oXiris filter may be associated with lower 28-day mortality in sepsis: A systematic review and meta-analysis. Crit. Care 2023, 27, 275. [Google Scholar] [CrossRef]
- Qi, J.; Wu, W.; Wang, J.; Guo, X.; Xia, C.; Sallustio, F. Selection of timing of continuous renal replacement therapy in patients with acute kidney injury: A meta-analysis of randomized controlled trials. PLoS ONE 2025, 20, e0320351. [Google Scholar] [CrossRef]
- Venkatesh, B.; Finfer, S.; Cohen, J.; Rajbhandari, D.; Arabi, Y.M.; Bellomo, R.; Billot, L.; Correa, M.; Glass, P.; Harward, M.; et al. Adjunctive glucocorticoid therapy in patients with septic shock. N. Engl. J. Med. 2018, 378, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign. bundle: 2018 update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef]
- Fowler, A.A., III; Truwit, J.D.; Hite, R.D.; Morris, P.E.; Dewilde, C.; Priday, A.; Fisher, B.; Thacker, L.R., II; Natarajan, R.; Brophy, D.F.; et al. Effect of vitamin C infusion on organ failure and biomarkers in patients with sepsis and severe ARDS (CITRIS-ALI): A randomized clinical trial. JAMA 2019, 322, 1261–1270. [Google Scholar] [CrossRef]
- Fujii, T.; Luethi, N.; Young, P.J.; Frei, D.R.; Eastwood, G.M.; French, C.J.; Deane, A.M.; Shehabi, Y.; Hajjar, L.A.; Oliveira, G.; et al. Effect of vitamin C, thiamine, and hydrocortisone on ventilator- and vasopressor-free days in septic shock (VITAMINS trial). JAMA 2020, 323, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Renault, A.; Brun-Buisson, C.; Megarbane, B.; Quenot, J.P.; Siami, S.; Cariou, A.; Forceville, X.; Schwebel, C.; Martin, C.; et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N. Engl. J. Med. 2018, 378, 809–818. [Google Scholar] [CrossRef]
- Hernández, G.; Ospina-Tascón, G.A.; Damiani, L.P.; Estenssoro, E.; Dubin, A.; Hurtado, J.; Friedman, G.; Castro, R.; Alegría, L.; Teboul, J.-L.; et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: The ANDROMEDA-SHOCK randomized clinical trial. JAMA 2019, 321, 654–664. [Google Scholar] [CrossRef]
- Khanna, A.; English, S.W.; Wang, X.S.; Ham, K.; Tumlin, J.; Szerlip, H.; Busse, L.W.; Altaweel, L.; Albertson, T.E.; Mackey, C.; et al. Angiotensin II for the treatment of vasodilatory shock. N. Engl. J. Med. 2017, 377, 419–430. [Google Scholar] [CrossRef]
- Sevransky, J.E.; Rothman, R.E.; Hager, D.N.; Bernard, G.R.; Brown, S.M.; Buchman, T.G.; Busse, L.W.; Coopersmith, C.M.; DeWilde, C.; Ely, E.W.; et al. Effect of vitamin C, thiamine, and hydrocortisone on ventilator- and vasopressor-free days in patients with sepsis (VICTAS trial). JAMA 2021, 325, 742–750. [Google Scholar] [CrossRef]
- Lamontagne, F.; Masse, M.H.; Menard, J.; Sprague, S.; Pinto, R.; Heyland, D.K.; Cook, D.J.; Battista, M.-C.; Day, A.G.; Guyatt, G.H.; et al. Intravenous vitamin C in adults with sepsis in the intensive care unit (LOVIT trial). N. Engl. J. Med. 2022, 386, 2387–2398. [Google Scholar] [CrossRef] [PubMed]
- Terayama, T.; Yamakawa, K.; Umemura, Y.; Aihara, M.; Fujimi, S. Polymyxin B hemoperfusion for sepsis and septic shock: A systematic review and meta-analysis. Surg. Infect. 2017, 18, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA 2017, 318, 1241–1249. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016, 2, 16045. [Google Scholar] [CrossRef] [PubMed]
- van der Poll, T.; van de Veerdonk, F.L.; Scicluna, B.P.; Netea, M.G. The immunology of sepsis. Immunity 2017, 47, 7–17. [Google Scholar] [CrossRef]
- Chen, J.J.; Lai, P.C.; Lee, T.H.; Huang, Y.T. Blood purification for adult patients with severe infection or sepsis/septic shock: A network meta-analysis of randomized controlled trials. Crit. Care Med. 2023, 51, 1777–1789. [Google Scholar] [CrossRef]
- Prescott, H.C.; Angus, D.C. Enhancing recovery from sepsis: A review. JAMA 2018, 319, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Yamakawa, K.; Hashiguchi, N.; Noda, T. Sepsis-induced coagulopathy (SIC) score: A new tool to predict coagulopathy in sepsis. J. Intensive Care 2017, 5, 50. [Google Scholar] [CrossRef]
- Patil, N.K.; Bohannon, J.K.; Sherwood, E.R. Targeting Immune Cell Checkpoints as a Therapeutic Strategy for Sepsis. Cells 2020, 9, 2291. [Google Scholar] [CrossRef]
- De Luca, D.; van Kaam, A.H.; Tingay, D.G.; E Courtney, S.; Danhaive, O.; Carnielli, V.P.; Zimmermann, L.J.; Kneyber, M.C.J.; Tissieres, P.; Brierley, J.; et al. Reframing sepsis immunobiology for novel therapeutics. Lancet Respir. Med. 2017, 5, 851–866. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of clinical criteria for sepsis (Sepsis-3) in a cohort of US hospital patients. JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef]
- Lamontagne, F.; Richards-Belle, A.; Thomas, K.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Camsooksai, J.; Darnell, R.; Gordon, A.C.; Henry, D.; et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension (65 trial). JAMA 2020, 323, 938–949. [Google Scholar] [CrossRef]
Characteristics | Total (n = 64) | p Value | Min, Max, and IQR |
---|---|---|---|
Age, years, mean (SD) | 66.1 ± 12.3 | max 94, min 37, IQR 59–76 | |
Gender | 0.294 | ||
Male | 43 (67.2%) | ||
Female | 21 (32.8%) | ||
Body weight, kg, mean (SD) | 66.5 ± 15.2 | max 119.7, min 42, IQR 57.3–72.9 | |
APACHE II score | <0.0001 | ||
APACHE II at ICU admission, median (IQR) | 26 (21–32) | max 38, min 11 | |
APACHE II ≥ 12, ICU admission | 3 (4.7%) | ||
APACHE II < 12, ICU admission | 61 (95.3%) | ||
Number of PMX-HP sessions | <0.0001 | ||
1 session | 9 (14.1%) | ||
2 sessions | 51 (79.7%) | ||
3 sessions | 2 (3.1%) | ||
4 sessions | 2 (3.1%) | ||
PMX used ≥ 2 sessions | 0.0012 |
Outcomes | Total (n = 64) | p Value | Mean ± SD |
---|---|---|---|
ICU length of stay, median (IQR), days | 9.3 (4.4–21.1) | 16 ± 18.6 | |
Hospital length of stay, median (IQR), days | 20.5 (8–34.6) | 28 ± 29.2 | |
Hospital mortality, n (%) | 34 (53.1%) | 0.6171 | |
ICU mortality, n (%) | 34 (53.1%) | 0.6171 | |
28-day mortality after PMX-HP, n (%) | 30 (46.9%) | 0.6171 | |
CRRT within 24 h after shock, n (%) | 29 (45.3%) | 0.0783 | |
CRRT within 28 d after shock, n (%) | 43 (67.2%) | 0.006 | |
ECMO use, n (%) | 3 (4.7%) | <0.0001 |
Characteristics | Survivors (n = 30) | Non-Survivors (n = 34) | p Value 1 | p Value 2 | Min, Max, IQR | Normality | Test 1 | Test 2 |
---|---|---|---|---|---|---|---|---|
Age, years, mean (SD) | 63.4 ± 14.3 | 68.5 ± 9.8 | 0.098 | yes | logistic | t-test | ||
Gender | 0.0299 | 0.0266 | n/s | n/a | logistic | chi-square | ||
Male, n (%) | 16 (53.3%) | 27 (79.4%) | n/a | logistic | chi-square | |||
Female, n (%) | 14 (46.7%) | 7 (29.6%) | n/a | logistic | chi-square | |||
Body weight, kg, median (IQR) | 61.35 (51.5–70) | 68.35 (54.3–74.5) | 0.5036 | no | logistic | Mann-Whitney U | ||
APACHE II at ICU admission, mean (SD) | 24.2 ± 6 | 27.5 ± 6.5 | 0.0489 | 0.0437 | yes | logistic | t-test | |
APACHE II ≥ 12, ICU admission, n (%) | 29 (96.7%) | 32 (94.1%) | ||||||
APACHE II < 12, ICU admission, n (%) | 1 (3.3%) | 2 (5.9%) | ||||||
Number of PMX-HP sessions, n (%) | 0.0653 | 0.0243 | n/a | logistic | chi-square | |||
1 session | 1 (3.3%) | 8 (23.5%) | ||||||
2 sessions | 27 (90%) | 24 (70.6%) | ||||||
3 sessions | 0 (0%) | 2 (5.9%) | ||||||
4 sessions | 2 (6.7%) | 0 (0%) | ||||||
PMX used ≥ 2 sessions, n (%) | 0.4412 | 0.4402 | n/a | chi-square |
Outcome/Variable | Survivors (n = 30) | Non-Survivors (n = 34) | p Value 1 | p Value 2 | OR (Univariate) |
---|---|---|---|---|---|
ICU length of stay, median (IQR), days | 9.3 (7.1–19.9) | 9.5 (3–23) | 0.7848 | 0.7887 | |
Hospital length of stay, median (IQR), days | 27.9 (18–53.3) | 13 (4.5–23) | 0.0074 | 0.0009 | |
CRRT within 24 h after shock, n (%) | 10 (33.3%) | 19 (55.9%) | 0.0733 | 0.0227 | 2.533 |
CRRT within 28 d after shock, n (%) | 15 (50.0%) | 28 (82.4%) | 0.0078 | 0.0059 | 4.667 |
ECMO use, n (%) | 1 (3.3%) | 2 (5.9%) | 0.6346 | 0.6302 | 1.812 |
VIS score change T3–T2 > 0, n (%) | 2 (6.7%) | 12 (35.3%) | 0.0035 | 0.0057 | 1.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.-H.; Hu, T.-Y.; Kuo, L.-K. Real-World Outcomes and Prognostic Factors of Polymyxin B Hemoperfusion in Severe Sepsis and Septic Shock: A Seven-Year Single-Center Cohort Study from Taiwan. Life 2025, 15, 1317. https://doi.org/10.3390/life15081317
Chang W-H, Hu T-Y, Kuo L-K. Real-World Outcomes and Prognostic Factors of Polymyxin B Hemoperfusion in Severe Sepsis and Septic Shock: A Seven-Year Single-Center Cohort Study from Taiwan. Life. 2025; 15(8):1317. https://doi.org/10.3390/life15081317
Chicago/Turabian StyleChang, Wei-Hung, Ting-Yu Hu, and Li-Kuo Kuo. 2025. "Real-World Outcomes and Prognostic Factors of Polymyxin B Hemoperfusion in Severe Sepsis and Septic Shock: A Seven-Year Single-Center Cohort Study from Taiwan" Life 15, no. 8: 1317. https://doi.org/10.3390/life15081317
APA StyleChang, W.-H., Hu, T.-Y., & Kuo, L.-K. (2025). Real-World Outcomes and Prognostic Factors of Polymyxin B Hemoperfusion in Severe Sepsis and Septic Shock: A Seven-Year Single-Center Cohort Study from Taiwan. Life, 15(8), 1317. https://doi.org/10.3390/life15081317