Evaluation of Circulating Levels of ICAM-1 in Obstructive Sleep Apnea (OSA) Adults: Systematic Review, Meta-Analysis, and Trial Sequential Analysis of Link Between OSA and Cardiovascular Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Eligibility Criteria
2.3. Quality Score
2.4. Radial Plot
2.5. Statistical Analyses
3. Results
3.1. Study Selection Process Summary
3.2. Characteristics of Articles Included in the Meta-Analysis
3.3. Blood Levels of ICAM-1 in Cases and Controls
3.4. Forest Plot Analysis of ICAM-1 Blood Levels in Cases vs. Controls
3.5. Radial Plot Analysis of ICAM-1 Blood Levels in Cases vs. Controls
3.6. Trial Sequential Analysis of ICAM-1 Blood Levels in Cases vs. Controls
3.7. Stability of Pooled Data in ICAM-1 Analysis
3.8. Subgroup Analysis
3.9. Meta-Regression Analysis
3.10. Publication Bias
4. Discussion
Limitations
- High Heterogeneity: Despite various adjustments, heterogeneity (I2 = 100%) remains significant, indicating substantial variability across studies, which may stem from differences in methodology, populations, or study designs.
- Publication Bias: Evidence of publication bias, as suggested by Begg’s (p = 0.036) and Egger’s (p = 0.016) tests, points to the underrepresentation of smaller studies with null results, potentially influencing the pooled outcomes.
- Data Variability: Differences in demographic factors (e.g., ethnicity, AHI severity, blood sample type) create challenges in drawing universally applicable conclusions.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faber, J.; Faber, C.; Faber, A.P. Obstructive sleep apnea in adults. Dent. Press J. Orthod. 2019, 24, 99–109. [Google Scholar] [CrossRef]
- Sia, C.-H.; Hong, Y.; Tan, L.W.; van Dam, R.M.; Lee, C.-H.; Tan, A. Awareness and knowledge of obstructive sleep apnea among the general population. Sleep Med. 2017, 36, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Ayas, N.T.; Owens, R.L.; Kheirandish-Gozal, L. Update in sleep medicine 2014. Am. J. Respir. Crit. Care Med. 2015, 192, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Zasadzińska-Stempniak, K.; Zajączkiewicz, H.; Kukwa, A. Prevalence of obstructive sleep apnea in the young adult population: A systematic review. J. Clin. Med. 2024, 13, 1386. [Google Scholar] [CrossRef]
- Veasey, S.C.; Rosen, I.M. Obstructive sleep apnea in adults. N. Engl. J. Med. 2019, 380, 1442–1449. [Google Scholar] [CrossRef]
- Imani, M.M.; Sadeghi, M.; Farokhzadeh, F.; Khazaie, H.; Brand, S.; Dürsteler, K.M.; Brühl, A.; Sadeghi-Bahmani, D. Evaluation of Blood Levels of C-Reactive Protein Marker in Obstructive Sleep Apnea: A Systematic Review, Meta-Analysis and Meta-Regression. Life 2021, 11, 362. [Google Scholar] [CrossRef]
- Imani, M.M.; Sadeghi, M.; Khazaie, H.; Emami, M.; Sadeghi Bahmani, D.; Brand, S. Evaluation of serum and plasma interleukin-6 levels in obstructive sleep apnea syndrome: A meta-analysis and meta-regression. Front. Immunol. 2020, 11, 1343. [Google Scholar] [CrossRef]
- Rezaie, L.; Maazinezhad, S.; Fogelberg, D.J.; Khazaie, H.; Sadeghi-Bahmani, D.; Brand, S. Compared to individuals with mild to moderate obstructive sleep apnea (OSA), individuals with severe OSA had higher BMI and respiratory-disturbance scores. Life 2021, 11, 368. [Google Scholar] [CrossRef]
- Golshah, A.; Imani, M.M.; Sadeghi, M.; Karami Chalkhooshg, M.; Brühl, A.B.; Sadeghi Bahmani, L.; Brand, S. Effect of continuous positive airway pressure on changes of plasma/serum ghrelin and evaluation of these changes between adults with obstructive sleep apnea and controls: A meta-analysis. Life 2023, 13, 149. [Google Scholar] [CrossRef]
- Parish, J.M.; Somers, V.K. (Eds.) Obstructive sleep apnea and cardiovascular disease. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Lattimore, J.-D.L.; Celermajer, D.S.; Wilcox, I. Obstructive sleep apnea and cardiovascular disease. J. Am. Coll. Cardiol. 2003, 41, 1429–1437. [Google Scholar] [CrossRef]
- Bauters, F.; Rietzschel, E.R.; Hertegonne, K.B.; Chirinos, J.A. The link between obstructive sleep apnea and cardiovascular disease. Curr. Atheroscler. Rep. 2016, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.K.; Bhuiyan, A.R.; Jones, E.A. Association and risk factors for obstructive sleep apnea and cardiovascular diseases: A systematic review. Diseases 2021, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Ohga, E.; Nagase, T.; Tomita, T.; Teramoto, S.; Matsuse, T.; Katayama, H.; Ouchi, Y. Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. J. Appl. Physiol. 1999, 87, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Tietjens, J.R.; Claman, D.; Kezirian, E.J.; De Marco, T.; Mirzayan, A.; Sadroonri, B.; Goldberg, A.N.; Long, C.; Gerstenfeld, E.P.; Yeghiazarians, Y. Obstructive sleep apnea in cardiovascular disease: A review of the literature and proposed multidisciplinary clinical management strategy. J. Am. Heart Assoc. 2019, 8, e010440. [Google Scholar] [CrossRef]
- Fu, Y.; Xia, Y.; Yi, H.; Xu, H.; Guan, J.; Yin, S. Meta-analysis of all-cause and cardiovascular mortality in obstructive sleep apnea with or without continuous positive airway pressure treatment. Sleep Breath. 2017, 21, 181–189. [Google Scholar] [CrossRef]
- Lawson, C.; Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 2009, 61, 22–32. [Google Scholar] [CrossRef]
- Ramos, T.N.; Bullard, D.C.; Barnum, S.R. ICAM-1: Isoforms and phenotypes. J. Immunol. 2014, 192, 4469–4474. [Google Scholar] [CrossRef]
- Luc, G.; Arveiler, D.; Evans, A.; Amouyel, P.; Ferrieres, J.; Bard, J.-M.; Elkhalil, L.; Fruchart, J.-C.; Ducimetiere, P. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: The PRIME Study. Atherosclerosis 2003, 170, 169–176. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, V.; Kumari, P.; Singh, R.; Chopra, H.; Emran, T.B. Novel insights on the role of VCAM-1 and ICAM-1: Potential biomarkers for cardiovascular diseases. Ann. Med. Surg. 2022, 84, 104802. [Google Scholar] [CrossRef]
- Jude, E.B.; Douglas, J.T.; Anderson, S.G.; Young, M.J.; Boulton, A.J. Circulating cellular adhesion molecules ICAM-1, VCAM-1, P-and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur. J. Intern. Med. 2002, 13, 185–189. [Google Scholar] [CrossRef]
- Demerath, E.; Towne, B.; Blangero, J.; Siervogel, R. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann. Hum. Biol. 2001, 28, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.P.; Bai, J.; Zhang, Y.L.; Yang, X.L.; Xia, Y.L.; Lin, Q.Y.; Li, H.-H. Blockade of intercellular adhesion molecule-1 prevents angiotensin II-induced hypertension and vascular dysfunction. Lab. Investig. 2020, 100, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Ursavaş, A.; Karadağ, M.; Rodoplu, E.; Yilmaztepe, A.; Oral, H.B.; Gözü, R.O. Circulating ICAM-1 and VCAM-1 levels in patients with obstructive sleep apnea syndrome. Respiration 2007, 74, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.-J.; Ballantyne, C.M.; Sharrett, A.R.; Smith, L.C.; Davis, C.E.; Gotto, A.M., Jr.; Boerwinkle, E. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997, 96, 4219–4225. [Google Scholar] [CrossRef]
- Nadeem, R.; Molnar, J.; Madbouly, E.M.; Nida, M.; Aggarwal, S.; Sajid, H.; Naseem, J.; Loombaet, R. Serum inflammatory markers in obstructive sleep apnea: A meta-analysis. J. Clin. Sleep Med. 2013, 9, 1003–1012. [Google Scholar] [CrossRef]
- Imani, M.M.; Sadeghi, M.; Gholamipour, M.A.; Brühl, A.B.; Sadeghi-Bahmani, D.; Brand, S. Evaluation of Blood Intercellular Adhesion Molecule-1 (ICAM-1) Level in Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. Medicina 2022, 58, 1499. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ott. Hosp. Res. Inst. 2011, 2, 1–12. [Google Scholar]
- Galbraith, R. Graphical display of estimates having differing standard errors. Technometrics 1988, 30, 271–281. [Google Scholar] [CrossRef]
- Imberger, G.; Thorlund, K.; Gluud, C.; Wetterslev, J. False-positive findings in Cochrane meta-analyses with and without application of trial sequential analysis: An empirical review. BMJ Open 2016, 6, e011890. [Google Scholar] [CrossRef] [PubMed]
- Wetterslev, J.; Jakobsen, J.C.; Gluud, C. Trial sequential analysis in systematic reviews with meta-analysis. BMC Med. Res. Methodol. 2017, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Sadafi, S.; Choubsaz, P.; Kazemeini, S.M.M.; Imani, M.M.; Sadeghi, M. Glutathione S-transferase theta 1 (GSTT1) deletion polymorphism and susceptibility to head and neck carcinoma: A systematic review with five analyses. BMC Cancer 2024, 24, 885. [Google Scholar] [CrossRef] [PubMed]
- Sadafi, S.; Ebrahimi, A.; Sadeghi, M.; Aleagha, O.E. Association between tumor necrosis factor-alpha polymorphisms (rs361525, rs1800629, rs1799724, 1800630, and rs1799964) and risk of psoriasis in studies following Hardy-Weinberg equilibrium: A systematic review and meta-analysis. Heliyon 2023, 9, e17552. [Google Scholar] [CrossRef]
- Golshah, A.; Sadeghi, E.; Sadeghi, M. Association of Tumor Necrosis Factor-Alpha, interleukin-1β, Interleukin-8, and interferon-γ with obstructive sleep apnea in both children and adults: A Meta-analysis of 102 articles. J. Clin. Med. 2024, 13, 1484. [Google Scholar] [CrossRef]
- Imani, M.M.; Sadeghi, M.; Mohammadi, M.; Brühl, A.B.; Sadeghi-Bahmani, D.; Brand, S. Association of blood MCP-1 levels with risk of obstructive sleep apnea: A systematic review and meta-analysis. Medicina 2022, 58, 1266. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials. 2015, 45, 139–145. [Google Scholar] [CrossRef]
- Bravo, M.d.l.P.; Serpero, L.D.; Barceló, A.; Barbé, F.; Agustí, A.; Gozal, D. Inflammatory proteins in patients with obstructive sleep apnea with and without daytime sleepiness. Sleep Breath. 2007, 11, 177–185. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Spanevello, A.; Sabato, R.; Depalo, A.; Palladino, G.P.; Bergantino, L.; Barbaro, M.P.F. Systemic and airway inflammation in sleep apnea and obesity: The role of ICAM-1 and IL-8. Transl. Res. 2010, 155, 35–43. [Google Scholar] [CrossRef]
- Chang, Y.T.; Lin, H.C.; Chang, W.N.; Tsai, N.W.; Huang, C.C.; Wang, H.C.; Kung, C.-T.; Su, Y.-J.; Lin, W.-C.; Cheng, B.-C.; et al. Impact of inflammation and oxidative stress on carotid intima-media thickness in obstructive sleep apnea patients without metabolic syndrome. J. Sleep Res. 2017, 26, 151–158. [Google Scholar] [CrossRef]
- Chen, H.-L.; Lu, C.-H.; Lin, H.-C.; Chen, P.-C.; Chou, K.-H.; Lin, W.-M.; Tsai, N.-W.; Su, Y.-J.; Friedman, M.; Lin, C.-P.; et al. White matter damage and systemic inflammation in obstructive sleep apnea. Sleep 2015, 38, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Chetan, I.M.; Vesa S, C.; Domokos Gergely, B.; Beyer, R.S.; Tomoaia, R.; Cabau, G.; Vulturar, D.M.; Pop, D.; Todea, D. Increased Levels of VCAM-1 in Patients with High Cardiovascular Risk and Obstructive Sleep Apnea Syndrome. Biomedicines 2023, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, B.; Wang, P. Expression of myeloperoxidase and intercellular adhesion molecule-1 in elderly patients with obstructive sleep apnea-hypopnea syndrome. Chin. J. Gerontol. 2017, 37, 5090–5092. [Google Scholar]
- da Silva Araújo, L.; Fernandes, J.F.R.; Klein, M.R.S.T.; Sanjuliani, A.F. Obstructive sleep apnea is independently associated with inflammation and insulin resistance, but not with blood pressure, plasma catecholamines, and endothelial function in obese subjects. Nutrition 2015, 31, 1351–1357. [Google Scholar] [CrossRef]
- El-Solh, A.A.; Mador, M.J.; Sikka, P.; Dhillon, R.S.; Amsterdam, D.; Grant, B.J. Adhesion molecules in patients with coronary artery disease and moderate-to-severe obstructive sleep apnea. Chest 2002, 121, 1541–1547. [Google Scholar] [CrossRef]
- Fadaei, R.; Azadi, S.M.; Laher, I.; Khazaie, H. Increased Levels of ANGPTL3 and CTRP9 in Patients with Obstructive Sleep Apnea and Their Relation to Insulin Resistance and Lipid Metabolism and Markers of Endothelial Dysfunction. Lab. Med. 2023, 54, 83–89. [Google Scholar] [CrossRef]
- Huang, G.; Luo, Y.; Chen, L.; Fu, L.; Yang, Y. Determination of sICAM-1 level in patients with sleep apnea syndrome and clinical discussion. Chin. J. Gerontol. 2005, 25, 1019–1020. [Google Scholar]
- Yue, H.; Yu, Q.; Zhang, J. Relationship between Hypertension and Serum Cytokines in the Patients with Obstructive Sleep Apnea Hypopnea Syndrome. Chin. Gen. Pract. 2012, 15, 1338–1341. [Google Scholar]
- Zhu, H.; Zhang, D.; Li, J.; Xing, H. Changes of serum inflammatory factors in patients with obstructive sleep apnea-hypopnea syndrome. Chin. J. Ethnomed. Ethnopharm. 2010, 19, 62. [Google Scholar]
- Wu, J. Effect of fudosteine as an adjuvant therapy for OSAS with hypertension and its influence on serum inflammatory factors. Mod. Diagn. Treat. 2019, 19, 3448–3450. [Google Scholar]
- Jin, F.; Liu, J.; Zhang, X.; Cai, W.; Zhang, Y.; Zhang, W.; Yang, J.; Lu, G.; Zhang, X. Effect of continuous positive airway pressure therapy on inflammatory cytokines and atherosclerosis in patients with obstructive sleep apnea syndrome. Mol. Med. Rep. 2017, 16, 6334–6339. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Z.; Zhang, W.R.; Wang, T.C.; Lu, H.X.; Wang, Y.; Wang, X. The role of adhesion molecules in the pathogenic mechanisms of hypertension in obstructive sleep apnea-hypopnea syndrome. Zhonghua Jie He He Hu Xi Za Zhi 2004, 27, 511–514. [Google Scholar] [PubMed]
- Liu, L.; Li, J.; Zhang, X. Relationship between levels of circulating ICAM-1, VCAM-1 and L-selectin and cardiovascular diseases in patients with OSAS. Chin. J. Mod. Med. 2002, 12, 4–6. [Google Scholar]
- Zhang, L.; Liu, C.; Hao, Y. The Role of Adhesion Molecules in the Pathogenic Mechanisms of Coronary Heart Disease and Obstructive Sleep Apnea-hypopnea Syndrome. Med. J. Wuhan Univ. 2005, 26, 710–713. [Google Scholar]
- Liu, Z.; Xu, Y.; Hua, Q.; Wang, Y.; Liu, R.; Yang, Z. Additive effects of obstructive sleep apnea syndrome and hypertension on inflammatory reaction. Afr. J. Biotechnol. 2011, 10, 11738. [Google Scholar]
- Xu, M.; Huang, P.; Li, D.; Huang, X. Constant positive airway pressure treated coronary heart disease with obstructive sleep apnea syndrome and changed levels of intercellular adhesion molecules. Lingnan J. Cardiovasc. Dis. 2007, 13, 97–101. [Google Scholar]
- Nikitidou, O.; Daskalopoulou, E.; Papagianni, A.; Vlachogiannis, E.; Dombros, N.; Liakopoulos, V. The impact of OSA and CPAP treatment on cell adhesion molecules' night-morning variation. Sleep Breath. 2021, 25, 1301–1307. [Google Scholar] [CrossRef]
- Ohga, E.; Tomita, T.; Wada, H.; Yamamoto, H.; Nagase, T.; Ouchi, Y. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J. Appl. Physiol. 2003, 94, 179–184. [Google Scholar] [CrossRef]
- Santamaria-Martos, F.; Benítez, I.; Girón, C.; Barbé, F.; Martínez-García, M.-A.; Hernández, L.; Montserrat, J.M.; Nagore, E.; Martorell, A.; Campos-Rodriguez, F.; et al. Biomarkers of carcinogenesis and tumour growth in patients with cutaneous melanoma and obstructive sleep apnoea. Eur. Respir. J. 2018, 51, 1701885. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Li, K.; Wu, H.; Zhan, X.; Fang, F.; Qin, Y.; Wei, Y. ESM-1 promotes adhesion between monocytes and endothelial cells under intermittent hypoxia. J. Cell Physiol. 2019, 234, 1512–1521. [Google Scholar] [CrossRef]
- Sun, H.; Du, Y.; Zhang, L.; Yu, H.; Jiao, X.; Lv, Q.; Li, F.; Wang, Y.; Sun, Q.; Hu, C.; et al. Increasing circulating ESM-1 and adhesion molecules are associated with earlystage atherosclerosis in OSA patients: A cross-sectional study. Sleep Med. 2022, 98, 114–120. [Google Scholar] [CrossRef]
- Li, W.; Jiang, C. Changes of serum cytokines in patients with obstructive sleep apnea syndrome after continuous positive airway pressure therapy. Chin. J. Gerontol. 2013, 33, 1559–1561. [Google Scholar]
- Cai, W.; Zhang, X.; Yang, J.; Jin, F.; Zhu, W.; Zhang, W.; Zhang, X. Association between plasma inflammatory factors levels and atherosclerosis in patients with obstructive sleep apnea syndrome. Chronic Pathematol. J. 2016, 17, 1074–1077. [Google Scholar]
- Xiao, B.; Liu, J.; Wang, Y.; Wu, B.; Chen, X. Expression of intercellular adhesion molecule-1 and myeloperoxidase in peripheral blood and its significance in elderly patients with OSAHS. Lin Chuang er bi yan hou tou Jing wai ke za zhi=J. Clin. Otorhinolaryngol. Head Neck Surg. 2017, 31, 1269–1272. [Google Scholar]
- Li, X.; Tan, Z.; Yue, W. Effect of depression on the expression of serum ICAM-1 and NO in patients with OSAHS. Acta Acad. Med Weifang 2013, 35, 104–106. [Google Scholar]
- Fan, X.; Du, F.; Tian, J. Role of inflammatory mediators in the relationship between OSAHS and coronary heart disease. Shandong Med. 2008, 48, 74–75. [Google Scholar]
- Yu, Y.; Ren, Y.; He, D.; Wei, J.; Xu, X. Analysis of changes in inflammatory factors and related factors in patients with type 2 diabetes and obstructive sleep apnea syndrome. Pract. Prev. Med. 2016, 23, 1482–1485. [Google Scholar]
- Liu, Y.; Liu, Y.; Qian, X.; Li, H.; Wei, M. Effect of continuous positive airway pressure on blood ICAM-1 in obstructive sleep apnea syndrome patients. Int. J. Lab. Med. 2013, 34, 398–399. [Google Scholar]
- Ling, Y.; Tao, Z.; He, X.; Dong, Y.; Li, Z.; Wang, X. The Study of Cell adhesion molecule-1 in obstructive sleep apnea syndrome expression. Chin. Contemp. Med. 2010, 17, 7–8. [Google Scholar]
- Zamarrón, C.; Riveiro, A.; Gude, F. Circulating levels of vascular endothelial markers in obstructive sleep apnoea syndrome. Eff. Nasal Contin. Posit. Airw. Pressure. Arch. Med. Sci. 2011, 7, 1023–1028. [Google Scholar]
- Casale, M.; Pappacena, M.; Rinaldi, V.; Bressi, F.; Baptista, P.; Salvinelli, F. Obstructive sleep apnea syndrome: From phenotype to genetic basis. Curr. Genom. 2009, 10, 119–126. [Google Scholar] [CrossRef]
- Gunta, S.P.; Jakulla, R.S.; Ubaid, A.; Mohamed, K.; Bhat, A.; López-Candales, A.; Norgard, N.; Bil, J. Obstructive sleep apnea and cardiovascular diseases: Sad realities and untold truths regarding care of patients in 2022. Cardiovasc. Ther. 2022, 2022, 6006127. [Google Scholar] [CrossRef]
- Yacoub, M.; Youssef, I.; Salifu, M.O.; McFarlane, S.I. Cardiovascular disease risk in obstructive sleep apnea: An update. J. Sleep Disord. Ther. 2018, 7, 283. [Google Scholar] [CrossRef] [PubMed]
- Peres, B.U.; Hirsch Allen, A.; Daniele, P.; Humphries, K.H.; Taylor, C.; Laher, I.; Almeida, F.; Jen, R.; Sandford, A.J.; van Eeden, S.F.; et al. Circulating levels of cell adhesion molecules and risk of cardiovascular events in obstructive sleep apnea. PLoS ONE 2021, 16, e0255306. [Google Scholar] [CrossRef] [PubMed]
- Pak, V.M.; Grandner, M.A.; Pack, A.I. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease. Sleep Med. Rev. 2014, 18, 25–34. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, I.M.; de Maat, M.P.; Bots, M.L.; Breteler, M.M.; Meijer, J.; Kiliaan, A.J.; Hofman, A.; Wittemanet, J.C.M. Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: The Rotterdam Study. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 838–842. [Google Scholar] [CrossRef]
- Ridker, P.M.; Hennekens, C.H.; Roitman-Johnson, B.; Stampfer, M.J.; Allen, J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 1998, 351, 88–92. [Google Scholar] [CrossRef]
First Author, Publication Year | Ethnicity | Case, Mean | Control, Mean | Sample | NOS Score | ||||
---|---|---|---|---|---|---|---|---|---|
Age, yrs | BMI, kg/m2 | AHI, Events/h | Age, yrs | BMI, kg/m2 | AHI, Events/h | ||||
Bravo, 2007 [39] | Caucasian | 52.3 | 30.9 | 48.9 | 47.4 | 28.4 | 2.5 | Serum | 8 |
Carpagnano, 2010 [40] | Caucasian | 47.3 | 42.6 | 48.8 | 45.9 | 34.5 | 3.9 | Plasma | 7 |
Chang, 2017 [41] | Asian | 43.8 | 25.1 | 35.6 | 39.9 | 24.4 | 2.4 | Serum | 9 |
Chen, 2015 [42] | Asian | 38.6 | 27.13 | 58.89 | 38.21 | 23.84 | 2.86 | Serum | 9 |
Chetan, 2023 [43] | Caucasian | 60 | 34 | 28.6 | 55 | 29 | 2.8 | Serum | 7 |
Zhang, 2017 [44] | Asian | 70.1 | 25.31 | 11.07 | 68.7 | 24.92 | 1.75 | Serum | 7 |
68.9 | 25.12 | 27.74 | |||||||
70.3 | 29.53 | 58.83 | |||||||
da Silva Araújo, 2015 [45] | Mixed | 39.6 | 34.39 | 20.16 | 32.5 | 34.54 | 2.55 | Serum | 6 |
El-Solh, 2002 [46] | Mixed | 61.2 | 31.47 | 39.91 | 59.3 | 29.02 | 3.93 | Plasma | 9 |
Fadaei, 2023 [47] | Caucasian | 45.97 | 26.7 | 18.9 | 45.63 | 26.1 | 2.25 | Serum | 9 |
Huang, 2005 [48] | Asian | 51.0 | - | ≥5 | 49.0 | - | <5 | Plasma | 7 |
Yue, 2012 [49] | Asian | 44.36 | 26.8 | 26.20 | 45.50 | 27.80 | 3.20 | Serum | 9 |
Zhu, 2010 [50] | Asian | >18 | - | ≥5 | >18 | - | <5 | Serum | 5 |
Wu, 2019 [51] | Asian | 54.9 | 25.8 | 35.6 | 53.6 | 23.6 | 3.5 | Serum | 8 |
Jin, 2017 [52] | Asian | 55.28 | 26.74 | 38.01 | 56.13 | 25.19 | 3.62 | Plasma | 9 |
Li, 2004 [53] | Asian | 41 | 29 | 53 | 45 | 26.9 | <5 | Serum | 7 |
Liu, 2002 [54] | Asian | 51.6 | 27.1 | 32.7 | 52.2 | 26.8 | 2.2 | Serum | 9 |
Zhang, 2005 [55] | Asian | 67 | 28 | ≥5 | 68 | 26 | <5 | Serum | 7 |
Liu, 2011 [56] | Asian | 41.2 | 28.3 | 48.8 | 43.5 | 26.1 | <5 | Serum | 8 |
Xu, 2007 [57] | Asian | >18 | - | 32 | >18 | - | 2.1 | Serum | 6 |
Nikitidou, 2021 [58] | Caucasian | 44.2 | 30.8 | 48.4 | 40.2 | 25.3 | 3.6 | Serum | 8 |
Ohga, 2003 [59] | Asian | 47.8 | 29.4 | 38.9 | 48.9 | 28.4 | 3.1 | Serum | 9 |
Santamaria-Martos, 2018 [60] | Caucasian | 57.67 | 28.07 | 9.33 | 44.4 | 24.87 | 1.89 | Serum | 6 |
65.17 | 28.67 | 28.6 | |||||||
Sun, 2019 [61] | Asian | 43.84 | 27.59 | 57.57 | 44.8 | 23.42 | 2.62 | Serum | 7 |
Sun, 2022 [62] | Asian | 47.5 | 25.13 | 5–15 | |||||
48 | 26.67 | 15–30 | |||||||
45 | 29.03 | >30 | 48 | 23.67 | <5 | Plasma | 6 | ||
Ursavaş, 2007 [25] | Caucasian | 52 | 30.8 | 50.5 | 49 | 28.8 | 1.9 | Serum | 8 |
Li, 2013 [63] | Asian | 48.27 | 34.32 | 5–15 | 46.13 | 33.83 | <5 | Serum | 7 |
47.44 | 32.24 | 15–30 | |||||||
45.74 | 33.51 | >30 | |||||||
Cai, 2016 [64] | Asian | 47 | 27.9 | 10.8 | 46 | 26.5 | 2.1 | Plasma | 9 |
44 | 27.4 | 29.5 | |||||||
43 | 27.6 | 64 | |||||||
Xiao, 2017 [65] | Asian | 70.1 | 25.31 | 11.07 | 68.7 | 24.92 | 1.75 | Serum | 8 |
68.9 | 25.12 | 27.74 | |||||||
70.3 | 29.53 | 58.83 | |||||||
Li, 2013 [66] | Asian | 47.08 | 29.30 | ≥5 | 44.05 | 25.07 | <5 | Serum | 7 |
Fan, 2008 [67] | Asian | 47.6 | 27.1 | ≥5 | 50.3 | 25.0 | <5 | Serum | 7 |
Yu, 2016 [68] | Asian | 60.5 | 25.32 | 28.53 | 58.2 | 23.45 | 1.48 | Serum | 8 |
Liu, 2013 [69] | Asian | 45.80 | 26.99 | 40.87 | 48.30 | 27.33 | 3.05 | Serum | 9 |
Ling, 2010 [70] | Asian | 47.6 | - | ≥5 | 47.6 | - | <5 | Serum | 7 |
Zamarrón, 2011 [71] | Caucasian | 50.1 | 29.9 | 45.2 | 44.1 | 27.6 | <5 | Serum | 8 |
First Author, Publication Year | Case (Number) | Control (Number) | Case (Mean ± SD), ng/mL | Control (Mean ± SD), ng/mL |
---|---|---|---|---|
Bravo, 2007 [39] | 22 | 20 | 263.0 ± 46.9 | 221.0 ± 38.01 |
Carpagnano, 2010 [40] | 12 | 10 | 100.1 ± 3.6 | 93.3 ± 2.6 |
Chang, 2017 [41] | 121 | 27 | 214.6 ± 78.1 | 138.9 ± 33.0 |
Chen, 2015 [42] | 20 | 14 | 206.93 ± 81.03 | 176.67 ± 35.24 |
Chetan, 2023 [43] | 80 | 37 | 118.66 ± 31.85 | 124 ± 59.25 |
Zhang, 2017 [44] | Mild: 25 Mod: 25 Sev: 26 | 25 | 361.7 ± 21.84 518.41 ± 30.46 711.27 ± 32.67 | 342.71 ± 17.76 |
da Silva Araújo, 2015 [45] | 33 | 20 | 105.23 ± 31.19 | 101.38 ± 33.23 |
El-Solh, 2002 [46] | 15 | 15 | 367.4 ± 85.2 | 252.8 ± 68.4 |
Fadaei, 2023 [47] | 74 | 27 | 295.46 ± 85.78 | 198.11 ± 48.65 |
Huang, 2005 [48] | 35 | 20 | 282.1 ± 43.0 | 206.7 ± 6.5 |
Yue, 2012 [49] | 20 | 40 | 623.90 ± 99.43 | 453.53 ± 67.14 |
Zhu, 2010 [50] | 25 | 35 | 836.72 ± 134.56 | 248.61 ± 54.75 |
Wu, 2019 [51] | 72 | 34 | 346.36 ± 15.78 | 123.78 ± 5.14 |
Jin, 2017 [52] | 100 | 50 | 357.92 ± 10.52 | 91.68 ± 53.29 |
Li, 2004 [53] | 30 | 30 | 513 ± 244 | 355 ± 119 |
Liu, 2002 [54] | 12 | 12 | 395 ± 45 | 205 ± 50 |
Zhang, 2005 [55] | 30 | 30 | 245.22 ± 71.19 | 176.17 ± 25.48 |
Liu, 2011 [56] | 20 | 20 | 118.3 ± 18.3 | 55.3 ± 19.0 |
Xu, 2007 [57] | 54 | 53 | 317 ± 122 | 183 ± 68 |
Nikitidou, 2021 [58] | 20 | 10 | 471.2 ± 204.5 | 243.6 ± 39.9 |
Ohga, 2003 [59] | 20 | 10 | 448.57 ± 153.79 | 222.14 ± 114.79 |
Santamaria-Martos, 2018 [60] | Mild: 109 Mod-sev: 119 | 132 | 148.37 ± 77.8 88.0 ± 75.67 | 90.55 ± 66.32 |
Sun, 2019 [61] | 44 | 24 | 570.17 ± 366.45 | 147.39 ± 185.94 |
Sun, 2022 [62] | Mild: 29 Mod: 33 Sev: 99 | 56 | 575.6 ± 388.09 496.02 ± 331.82 624.6 ± 357.45 | 149.21 ± 255.45 |
Ursavaş, 2007 [25] | 39 | 34 | 480.1 ± 216.7 | 303.4 ± 98.6 |
Li, 2013 [63] | Mild: 21 Mod: 23 Sev: 39 | 35 | 111.24 ± 35.57 159.37 ± 27.00 219.34 ± 42.39 | 110.92 ± 37.29 |
Cai, 2016 [64] | Mild: 20 Mod: 20 Sev: 20 | 20 | 453 ± 128 587 ± 140 739 ± 170 | 335 ± 183 |
Xiao, 2017 [65] | Mild: 31 Mod: 31 Sev: 31 | 31 | 361.70 ± 21.84 518.41 ± 30.46 711.27 ± 32.67 | 342.71 ± 17.76 |
Li, 2013 [66] | 25 | 20 | 2512.28 ± 859.62 | 1801.55 ± 795.38 |
Fan, 2008 [67] | 31 | 28 | 717.3 ± 157.9 | 175.5 ± 18.9 |
Yu, 2016 [68] | 78 | 78 | 821.27 ± 118.90 | 243.16 ± 53.75 |
Liu, 2013 [69] | 20 | 20 | 105.26 ± 37.47 | 99.98 ± 18.78 |
Ling, 2010 [70] | 30 | 30 | 761.30 ± 86.41 | 411.20 ± 111.60 |
Zamarrón, 2011 [71] | 20 | 18 | 251.67 ± 69.62 | 221.0 ± 48.15 |
Variable | Subgroup (No. of Studies) | Mean Difference | 95%CI | p-Value | I2 | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Ethnicity | Asian (34) | 223.53 | 179.17 | 267.89 | <0.00001 | 100% |
Caucasian (9) | 50.66 | 24.64 | 76.67 | 0.0001 | 93% | |
Mixed (2) | 56.01 | −52.34 | 164.36 | 0.31 | 93% | |
Sample size | ≥100 (10) | 186.38 | 103.68 | 269.08 | <0.00001 | 100% |
<100 (35) | 181.88 | 139.61 | 224.16 | <0.00001 | 100% | |
Mean AHI in cases, events/h | ≥30 (21) | 180.97 | 115.92 | 246.02 | <0.00001 | 100% |
<30 (17) | 135.54 | 81.04 | 190.04 | <0.00001 | 99% | |
Blood sample | Serum (35) | 169.29 | 125.00 | 213.58 | <0.00001 | 100% |
Plasma (10) | 238.53 | 148.42 | 328.65 | <0.00001 | 99% |
Variable | Coefficient | 95% Lower | 95% Upper | Z-Value | 2-Sided p-Value |
---|---|---|---|---|---|
Publication year | −0.0009 | −0.0775 | 0.0757 | −0.02 | 0.9826 |
Sample size | 0.3228 | −0.5487 | 1.1942 | 0.73 | 0.4679 |
Mean AHI in cases | 3.6421 | 0.5408 | 6.7433 | 2.30 | 0.0213 |
Value | Studies Trimmed | Fixed-Effects | Random-Effects | Q Value | ||||
---|---|---|---|---|---|---|---|---|
Point Estimate | Lower Limit | Upper Limit | Point Estimate | Lower Limit | Upper Limit | |||
Observed | - | 76.427 | 74.499 | 78.355 | 183.976 | 143.371 | 224.579 | 13,268.783 |
Adjusted | 22 | 15.741 | 14.021 | 17.461 | 29.675 | −14.561 | 73.912 | 33,739.560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imani, M.M.; Imani, A.; Sadeghi, M.; Brühl, A.B.; Brand, S. Evaluation of Circulating Levels of ICAM-1 in Obstructive Sleep Apnea (OSA) Adults: Systematic Review, Meta-Analysis, and Trial Sequential Analysis of Link Between OSA and Cardiovascular Disease. Life 2025, 15, 1278. https://doi.org/10.3390/life15081278
Imani MM, Imani A, Sadeghi M, Brühl AB, Brand S. Evaluation of Circulating Levels of ICAM-1 in Obstructive Sleep Apnea (OSA) Adults: Systematic Review, Meta-Analysis, and Trial Sequential Analysis of Link Between OSA and Cardiovascular Disease. Life. 2025; 15(8):1278. https://doi.org/10.3390/life15081278
Chicago/Turabian StyleImani, Mohammad Moslem, Arya Imani, Masoud Sadeghi, Annette Beatrix Brühl, and Serge Brand. 2025. "Evaluation of Circulating Levels of ICAM-1 in Obstructive Sleep Apnea (OSA) Adults: Systematic Review, Meta-Analysis, and Trial Sequential Analysis of Link Between OSA and Cardiovascular Disease" Life 15, no. 8: 1278. https://doi.org/10.3390/life15081278
APA StyleImani, M. M., Imani, A., Sadeghi, M., Brühl, A. B., & Brand, S. (2025). Evaluation of Circulating Levels of ICAM-1 in Obstructive Sleep Apnea (OSA) Adults: Systematic Review, Meta-Analysis, and Trial Sequential Analysis of Link Between OSA and Cardiovascular Disease. Life, 15(8), 1278. https://doi.org/10.3390/life15081278