Genome-Wide Identification and Drought Stress-Responsive Expression Profiling of the FAD Gene Family in Pear
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of the PbrFAD3 Gene Family in Pears
2.2. Protein Characterization and Sequences Analyses
2.3. Conserved Motif, Gene Structure, and Promoter Cis-Acting Element Analysis
2.4. Chromosomal Localization Analysis, Synteny Analysis, and Protein–Protein Interaction Prediction
2.5. Phylogenetic Tree Construction
2.6. Plant Materials
2.7. Quantitative Expression Analysis by RT-qPCR
3. Results
3.1. Physicochemical Properties and Subcellular Localization Prediction of Pear PbrFAD Gene Family Members
3.2. Phylogenetic Analysis of the Pear PbrFAD Gene Family
3.3. Motif and Gene Structure Analysis of the Pear PbrFAD Family
3.4. Analysis of Cis-Acting Elements in the Promoters of Pear PbrFAD Genes
3.5. Chromosomal Localization of the Pear PbrFAD Gene Family
3.6. Comparative Genomic Analysis of Synteny in the Pear PbrFAD Gene Family
3.7. Protein–Protein Interaction Network Analysis of Pear PbrFADs
3.8. Quantitative Real-Time PCR (qRT-PCR) Analysis of Pear PbrFAD Gene Family Expression Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Movahedi, A.; Xu, S.; Zhang, Y.; Liu, G.; Aghaei-Dargiri, S.; Zefrehei, M.G.; Zhu, S.; Yu, C.; Chen, Y.; et al. Genome-Wide Characterization and Expression Analysis of Fatty acid Desaturase Gene Family in Poplar. Int. J. Mol. Sci. 2022, 23, 11109. [Google Scholar] [CrossRef]
- Kim, H.; Rodriguez-Navas, C.; Kollipara, R.K.; Kapur, P.; Pedrosa, I.; Brugarolas, J.; Kittler, R.; Ye, J. Unsaturated Fatty Acids Stimulate Tumor Growth through Stabilization of β-Catenin. Cell Rep. 2015, 13, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Suri, K.; Singh, B.; Kaur, A.; Yadav, M.P.; Singh, N. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chem. 2020, 326, 126974. [Google Scholar] [CrossRef] [PubMed]
- Babenko, L.M.; Shcherbatiuk, M.M.; Skaterna, T.D.; Kosakivska, I.V. Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr. Biochem. J. 2017, 89, 5–21. [Google Scholar] [CrossRef] [PubMed]
- E, Z.; Chen, C.; Yang, J.; Tong, H.; Li, T.; Wang, L.; Chen, H. Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 19445. [Google Scholar] [CrossRef]
- Cao, T.; Du, Q.; Ge, R.; Li, R. Genome-wide identification and characterization of FAD family genes in barley. PeerJ 2024, 12, e16812. [Google Scholar] [CrossRef]
- Kazaz, S.; Barthole, G.; Domergue, F.; Ettaki, H.; To, A.; Vasselon, D.; De Vos, D.; Belcram, K.; Lepiniec, L.; Baud, S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. Plant Cell 2020, 32, 3613–3637. [Google Scholar] [CrossRef]
- Zhang, Y.; Maximova, S.N.; Guiltinan, M.J. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. Front. Plant Sci. 2015, 6, 239. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, S. Genome-wide identification, characterization and in-silico profiling of genes encoding FAD (fatty acid desaturase) proteins in chickpea (Cicer arietinum L.). Plant Gene 2019, 18, 100180. [Google Scholar] [CrossRef]
- Román, Á.; Andreu, V.; Hernández, M.L.; Lagunas, B.; Picorel, R.; Martínez-Rivas, J.M.; Alfonso, M. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. J. Exp. Bot. 2012, 63, 4973–4982. [Google Scholar] [CrossRef]
- Yara, A.; Yaeno, T.; Hasegawa, M.; Seto, H.; Montillet, J.-L.; Kusumi, K.; Seo, S.; Iba, K. Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. Plant Cell Physiol. 2007, 48, 1263–1274. [Google Scholar] [CrossRef]
- Wang, H.; Yu, C.; Tang, X.; Wang, L.; Dong, X.; Meng, Q. Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. J. Integr. Plant Biol. 2010, 52, 568–577. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, F.; Sun, X.; Wang, B.; Liu, J.; Ni, X.; Hu, C.; Deng, G.; Tong, Z.; Zhang, Y.; et al. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. Int. J. Biol. Macromol. 2022, 204, 661–676. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H.; et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23, 396–408. Available online: http://www.genome.org/cgi/doi/10.1101/gr.144311.112 (accessed on 20 May 2025). [CrossRef] [PubMed]
- Hu, K.; Zhang, Z.; Li, G.; Zhao, S.; Zhang, Y.; Wang, Q.; Cheng, F. Identification of GSK3 Family Genes in Pear and Their Expression Analysis Under Drought Stress. Life 2025, 15, 349. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; López, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Matsuda, O.; Sakamoto, H.; Hashimoto, T.; Iba, K. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J. Biol. Chem. 2005, 280, 3597–3604. [Google Scholar] [CrossRef]
- Dar, A.A.; Choudhury, A.R.; Kancharla, P.K.; Arumugam, N. The FAD2 Gene in Plants: Occurrence, Regulation, and Role. Front. Plant Sci. 2017, 8, 1789. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Zhu, J.-Q.; Zhu, Q.; Liu, H.; Gao, X.-S.; Zhang, H.-X. Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2009, 390, 469–474. [Google Scholar] [CrossRef]
- Kachroo, P.; Venugopal, S.C.; Navarre, D.A.; Lapchyk, L.; Kachroo, A. Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol. 2005, 139, 1717–1735. [Google Scholar] [CrossRef]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Hajiahmadi, Z.; Abedi, A.; Wei, H.; Sun, W.; Ruan, H.; Zhuge, Q.; Movahedi, A. Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC Genom. 2020, 21, 778. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, B.; Wang, R.; Win, A.N.; Li, J.; Chai, Y. Genome-Wide Survey and Characterization of Fatty Acid Desaturase Gene Family in Brassica napus and Its Parental Species. Appl. Biochem. Biotechnol. 2018, 184, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-J.; Cao, N.; Zhang, Z.-G.; Shang, Q.-M.; Shi, H. Characterization of the Fatty Acid Desaturase Genes in Cucumber: Structure, Phylogeny, and Expression Patterns. PLoS ONE 2016, 11, e149917. [Google Scholar] [CrossRef]
- Wu, X.; Cui, Z.; Li, X.; Yu, Z.; Lin, P.; Xue, L.; Khan, A.; Ou, C.; Deng, Z.; Zhang, M.; et al. Identification and characterization of PAL genes involved in the regulation of stem development in Saccharum spontaneum L. BMC Genom. Data 2024, 25, 38. [Google Scholar] [CrossRef]
- Zhao, F.J. Genome-Wide Identification and Expression Analysis of the FAD Gene Family in Cultivated Strawberry. Bachelor’s Thesis, Hebei University of Engineering, Handan, China, 2023. [Google Scholar]
- Feng, J.; Dong, Y.; Liu, W.; He, Q.; Daud, M.K.; Chen, J.; Zhu, S. Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Sci. Rep. 2017, 7, 45711. [Google Scholar] [CrossRef]
- Hao, Y.; Zong, X.; Ren, P.; Qian, Y.; Fu, A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 7152. [Google Scholar] [CrossRef]
- Zhang, M.; Barg, R.; Yin, M.; Gueta-Dahan, Y.; Leikin-Frenkel, A.; Salts, Y.; Shabtai, S.; Ben-Hayyim, G. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005, 44, 361–371. [Google Scholar] [CrossRef]
- Lindemose, S.; O’Shea, C.; Jensen, M.K.; Skriver, K. Structure, function and networks of transcription factors involved in abiotic stress responses. Int. J. Mol. Sci. 2013, 14, 5842–5878. [Google Scholar] [CrossRef] [PubMed]
Name | Forward Primers (5′-3′) | Reverse Primers (5′-3′) |
---|---|---|
Actin | GCGGTTATGCCCTCCCTC | CGATTTCCCGTTCAGCAGTAG |
PbrFAD1 | ACGCGCACCAACATCCAATA | TCCCTCCTCCACGTCCAAAT |
PbrFAD14 | AATGGCCCAGTGGGGTTATG | CCGGACCCATTTTGACTTCC |
PbrFAD19 | ACGGATCATTGCAAGCGGAT | CAGCTGTGGGTTACTTGTCG |
PbrFAD22 | GCCATGCGGCTCGTTTATTT | TTTCAACCCAAAAGCCGCC |
PbrFAD23 | CACCCACAAAGCCTGGAGAT | TGAAGAACTGGTCGAGGTGC |
PbrFAD24 | ACGTCTGTCTGTTTCCTAGCG | ATCTGTCACTCGTCGCTCTTC |
PbrFAD25 | TTGCGGCGAACTATGGAAGT | AGCTAAAGCAGGCAAGGTGT |
PbrFAD28 | TTGCGGCGAACTATGGAAGT | ATCCCCGACCCTGTCCATTA |
PbrFAD30 | CCTGCCGACACACCTTTAGT | GTTCGAAAACCCTTCTCGGC |
Gene Name | Sequence ID | Number of Amino Acid | Molecular Weight | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
PbrFAD1 | Pbr009536.1 | 449 | 51,350.4 | 8.88 | 34.81 | 94.45 | 0.037 | Plas |
PbrFAD2 | Pbr019246.1 | 447 | 51,283.19 | 8.51 | 41.77 | 89.19 | 0.002 | Plas |
PbrFAD3 | Pbr041422.1 | 449 | 51,416.48 | 8.88 | 34.48 | 92.94 | 0.03 | Plas |
PbrFAD4 | Pbr034778.1 | 370 | 42,904.29 | 8.73 | 32.82 | 84.84 | −0.182 | E.R. |
PbrFAD5 | Pbr000682.1 | 447 | 51,253.17 | 8.65 | 41.67 | 89.19 | −0.006 | Plas |
PbrFAD6 | Pbr042189.1 | 442 | 50,222.47 | 8.96 | 38.37 | 81.33 | −0.282 | Chlo |
PbrFAD7 | Pbr021630.1 | 447 | 51,589.82 | 7.43 | 38.84 | 78.26 | −0.293 | Chlo |
PbrFAD8 | Pbr029449.1 | 387 | 44,507.52 | 8.93 | 42.43 | 81.32 | 0.077 | Chlo |
PbrFAD9 | Pbr029451.1 | 453 | 51,523.93 | 8.93 | 39.21 | 81.7 | −0.268 | Plas |
PbrFAD10 | Pbr010914.1 | 389 | 44,907.75 | 8.95 | 44.23 | 87.89 | −0.067 | E.R. |
PbrFAD11 | Pbr004162.1 | 443 | 50,758.89 | 9.12 | 42.77 | 83.93 | −0.136 | Chlo |
PbrFAD12 | Pbr005175.1 | 453 | 51,449.74 | 8.75 | 39.39 | 80.18 | −0.268 | Plas |
PbrFAD13 | Pbr005172.1 | 382 | 43,897.72 | 8.9 | 37.04 | 86.02 | −0.035 | Plas |
PbrFAD14 | Pbr005174.1 | 382 | 43,828.48 | 8.46 | 38.76 | 87.02 | −0.026 | Pero |
PbrFAD15 | Pbr039381.1 | 357 | 41,306.13 | 8.27 | 31.79 | 80 | −0.336 | Chlo |
PbrFAD16 | Pbr029387.1 | 284 | 32,206.16 | 9.06 | 44.79 | 87.15 | 0.095 | Vacu |
PbrFAD17 | Pbr005597.1 | 304 | 35,002.43 | 9.58 | 39.05 | 91.71 | 0.024 | Chlo |
PbrFAD18 | Pbr008511.1 | 312 | 35,894.55 | 9.67 | 34.78 | 89.26 | −0.01 | Cyto |
PbrFAD19 | Pbr033732.1 | 394 | 45,209.18 | 9.57 | 45.61 | 83.43 | −0.131 | Plas |
PbrFAD20 | Pbr033731.1 | 394 | 45,228.14 | 9.59 | 47.26 | 82.44 | −0.132 | Plas |
PbrFAD21 | Pbr028873.1 | 311 | 36,193.45 | 9.3 | 28.19 | 94.6 | −0.059 | Plas |
PbrFAD22 | Pbr035830.1 | 312 | 36,642.03 | 9.15 | 31.6 | 91.47 | −0.097 | Plas |
PbrFAD23 | Pbr019851.1 | 321 | 37,098.78 | 9.35 | 27.84 | 93.8 | −0.068 | Plas |
PbrFAD24 | Pbr034249.1 | 299 | 34,942.71 | 9.17 | 31.32 | 90.3 | 0.143 | Plas |
PbrFAD25 | Pbr005674.1 | 288 | 33,425.63 | 9.1 | 32.82 | 83.61 | 0.036 | Plas |
PbrFAD26 | Pbr005593.1 | 299 | 34,765.36 | 9.07 | 30.4 | 89.33 | 0.134 | Plas |
PbrFAD27 | Pbr005591.1 | 268 | 30,598.65 | 9.36 | 34.61 | 99.29 | 0.219 | Plas |
PbrFAD28 | Pbr042237.1 | 277 | 30,929.16 | 7.81 | 51.62 | 82.71 | −0.265 | Mito |
PbrFAD29 | Pbr001965.1 | 309 | 34,104.06 | 6.69 | 48.19 | 93.07 | 0.002 | Chlo |
PbrFAD30 | Pbr033270.2 | 314 | 34,699.62 | 6.94 | 50.3 | 89.75 | −0.091 | E.R. |
PbrFAD31 | Pbr024876.2 | 395 | 44,487.69 | 5.93 | 38.77 | 80.33 | −0.404 | Chlo |
PbrFAD32 | Pbr024899.1 | 395 | 44,444.67 | 5.82 | 39.11 | 81.32 | −0.383 | Chlo |
PbrFAD33 | Pbr001251.1 | 405 | 46,358.82 | 6.32 | 38.14 | 84.07 | −0.428 | Chlo |
PbrFAD34 | Pbr009762.1 | 318 | 36,337.42 | 5.41 | 34.13 | 84.06 | −0.397 | Cyto |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Li, Z.; Zeng, Y.; Zhu, Y.; Chu, W.; Wu, R.; Wang, Q. Genome-Wide Identification and Drought Stress-Responsive Expression Profiling of the FAD Gene Family in Pear. Life 2025, 15, 1279. https://doi.org/10.3390/life15081279
Zhang Z, Li Z, Zeng Y, Zhu Y, Chu W, Wu R, Wang Q. Genome-Wide Identification and Drought Stress-Responsive Expression Profiling of the FAD Gene Family in Pear. Life. 2025; 15(8):1279. https://doi.org/10.3390/life15081279
Chicago/Turabian StyleZhang, Ziyi, Zhikun Li, Yan Zeng, Yutong Zhu, Wenxuan Chu, Ruigang Wu, and Qingjiang Wang. 2025. "Genome-Wide Identification and Drought Stress-Responsive Expression Profiling of the FAD Gene Family in Pear" Life 15, no. 8: 1279. https://doi.org/10.3390/life15081279
APA StyleZhang, Z., Li, Z., Zeng, Y., Zhu, Y., Chu, W., Wu, R., & Wang, Q. (2025). Genome-Wide Identification and Drought Stress-Responsive Expression Profiling of the FAD Gene Family in Pear. Life, 15(8), 1279. https://doi.org/10.3390/life15081279