Clinical Impact of Blood Pressure Variability in Kidney Transplant Patients: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
- a.
- Disruption of the autonomic nervous system;
- b.
- Disruption of the circadian rhythm;
- c.
- Water and sodium dysregulation;
- d.
2. Materials and Methods
2.1. Literature Search
- ‘Nocturnal hypertension’;
- ‘Reverse dipping’;
- ‘Non-dipping’;
- ‘Kidney transplantation’;
- ‘Renal transplantation’;
- ‘Renal outcome’;
- ‘Decline in kidney function’;
- ‘Kidney allograft failure/loss’;
- ‘Cardiovascular event’;
- ‘All-cause mortality’.
2.2. Study Selection Process
- Studies comprising adult patients age ≥18;
- Studies published in English;
- Studies reporting ABPM outcomes in CKD and KT patients;
- Randomized controlled trials and prospective and retrospective cohort studies.
- Studies involving pediatric populations or animals;
- Literature reviews;
- Case reports;
- Non-comparable observational studies.
2.3. Outcome Measures
- eGFR;
- BP profiles (dipping, non-dipping, and reverse dipping) recorded by ABPM in CKD and KT patients;
- Acute rejection episodes;
- RRI;
- 24 h proteinuria;
- Serum cholesterol and triglyceride levels.
2.4. Statistical Analysis
3. Results
3.1. Prevalence of Blood Pressure Patterns in CKD and KT Patients
3.2. Blood Pressure Profiles and Rejection Risk in KT Patients
3.3. Blood Pressure Profiles and Estimated Glomerular Filtration Rate in KT Patients
3.4. Blood Pressure Profiles and Proteinuria
3.5. Blood Pressure Profiles and Renal Resistive Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ABPM | Ambulatory blood pressure monitoring |
BMI | Body mass index |
BP | Blood pressure |
CI | Confidence intervals |
CKD | Chronic kidney disease |
CrCl | Creatinine clearance |
CRP | C-reactive protein |
eGFR | Estimated glomerular filtration rate |
HTN | Hypertension |
KT | Kidney transplant |
OR | Odds ratio |
RRI | Renal resistive index |
SMD | Standardized mean differences |
References
- Johansen, K.L.; Chertow, G.M.; Gilbertson, D.T.; Herzog, C.A.; Ishani, A.; Israni, A.K.; Ku, E.; Li, S.; Li, S.; Liu, J.; et al. US Renal Data System 2021 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2022, 79, A8–A12. [Google Scholar] [CrossRef]
- Park, C.H.; Jhee, J.H.; Chun, K.H.; Seo, J.; Lee, C.J.; Park, S.H.; Hwang, J.T.; Han, S.H.; Kang, S.W.; Park, S.; et al. Nocturnal systolic blood pressure dipping and progression of chronic kidney disease. Hypertens. Res. 2024, 47, 215–224. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, K.W.; Joo, Y.S.; Ryu, J.; Jung, H.Y.; Jeong, K.H.; Kim, M.G.; Ju, M.K.; Han, S.; Lee, J.S.; et al. Impact of Blood Pressure on Allograft Function and Survival in Kidney Transplant Recipients. Transpl. Int. 2024, 37, 12574. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, M.T.; Beddhu, S.; Nobakht, E.; Rahman, M.; Raj, D.S. Ambulatory Blood Pressure in Chronic Kidney Disease: Ready for Prime Time. Kidney Int. Rep. 2016, 1, 94–104. [Google Scholar] [CrossRef]
- Kario, K.; Hoshide, S.; Chia, Y.C.; Buranakitjaroen, P.; Siddique, S.; Shin, J.; Turana, Y.; Park, S.; Tsoi, K.; Chen, C.H.; et al. Guidance on ambulatory blood pressure monitoring: A statement from the HOPE Asia Network. J. Clin. Hypertens. 2021, 23, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Pisano, A.; Mallamaci, F.; D’Arrigo, G.; Bolignano, D.; Wuerzner, G.; Ortiz, A.; Burnier, M.; Kanaan, N.; Sarafidis, P.; Persu, A.; et al. Assessment of hypertension in kidney transplantation by ambulatory blood pressure monitoring: A systematic review and meta-analysis. Clin. Kidney J. 2022, 15, 31–42. [Google Scholar] [CrossRef]
- Kanbay, M.; Turkmen, K.; Ecder, T.; Covic, A. Ambulatory blood pressure monitoring: From old concepts to novel insights. Int. Urol. Nephrol. 2012, 44, 173–182. [Google Scholar] [CrossRef]
- Huart, J.; Persu, A.; Lengelé, J.P.; Krzesinski, J.M.; Jouret, F.; Stergiou, G.S. Pathophysiology of the Nondipping Blood Pressure Pattern. Hypertension 2023, 80, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Turgut, F.; Karakurt, F.; Isik, B.; Alkan, R.; Akcay, A.; Yigitoglu, R.; Covic, A. Relation between serum thyroid hormone and ‘nondipper’ circadian blood pressure variability. Kidney Blood Press. Res. 2007, 30, 416–420. [Google Scholar] [CrossRef]
- Fabbian, F.; Smolensky, M.H.; Tiseo, R.; Pala, M.; Manfredini, R.; Portaluppi, F. Dipper and non-dipper blood pressure 24-hour patterns: Circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol. Int. 2013, 30, 17–30. [Google Scholar] [CrossRef]
- Zeman, M.; Dulková, K.; Bada, V.; Herichová, I. Plasma melatonin concentrations in hypertensive patients with the dipping and non-dipping blood pressure profile. Life Sci. 2005, 76, 1795–1803. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Azancot, M.A.; Ramos, N.; Moreso, F.J.; Ibernon, M.; Espinel, E.; Torres, I.B.; Fort, J.; Seron, D. Hypertension in chronic kidney disease: The influence of renal transplantation. Transplantation 2014, 98, 537–542. [Google Scholar] [CrossRef]
- Wajdlich, M.B.F. Evaluation of the relationship between circadian blood pressure profile and natriuresis in patients with chronic kidney disease and renal transplant recipients. Arter. Hypertens. 2017, 21, 171–179. [Google Scholar]
- Ibernon, M.; Moreso, F.; Sarrias, X.; Sarrias, M.; Grinyó, J.M.; Fernandez-Real, J.M.; Ricart, W.; Serón, D. Reverse dipper pattern of blood pressure at 3 months is associated with inflammation and outcome after renal transplantation. Nephrol. Dial. Transplant. 2012, 27, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Amer, H.; Taler, S.J.; Cosio, F.G.; Griffin, M.D.; Grande, J.P.; Larson, T.S.; Schwab, T.R.; Stegall, M.D.; Textor, S.C. Diurnal blood pressure changes one year after kidney transplantation: Relationship to allograft function, histology, and resistive index. J. Am. Soc. Nephrol. 2007, 18, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Gherzi, M.; Amidone, M.; Massarino, F.; Cannella, G. Association of arterial hypertension with renal target organ damage in kidney transplant recipients: The predictive role of ambulatory blood pressure monitoring. Transplantation 2009, 87, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
- Jaques, D.A.; Saudan, P.; Martinez, C.; Andres, A.; Martin, P.Y.; Pechere-Bertschi, A.; Ponte, B. Relationship between renal function and blood pressure dipping status in renal transplant recipients: A longitudinal study. BMC Nephrol. 2021, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Sezer, S.; Karakan, S.; Çolak, T.; Haberal, M. Nocturnal nondipping hypertension is related to dyslipidemia and increased renal resistivity index in renal transplant patients. Transplant. Proc. 2011, 43, 530–532. [Google Scholar] [CrossRef]
- Farmer, C.K.; Goldsmith, D.J.; Cox, J.; Dallyn, P.; Kingswood, J.C.; Sharpstone, P. An investigation of the effect of advancing uraemia, renal replacement therapy and renal transplantation on blood pressure diurnal variability. Nephrol. Dial. Transplant. 1997, 12, 2301–2307. [Google Scholar] [CrossRef]
- Pogue, V.; Rahman, M.; Lipkowitz, M.; Toto, R.; Miller, E.; Faulkner, M.; Rostand, S.; Hiremath, L.; Sika, M.; Kendrick, C.; et al. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension 2009, 53, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Mojón, A.; Ayala, D.E.; Piñeiro, L.; Otero, A.; Crespo, J.J.; Moyá, A.; Bóveda, J.; de Lis, J.P.; Fernández, J.R.; Hermida, R.C. Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol. Int. 2013, 30, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, S.; Garofalo, C.; Gabbai, F.B.; Chiodini, P.; Signoriello, S.; Paoletti, E.; Ravera, M.; Bussalino, E.; Bellizzi, V.; Liberti, M.E.; et al. Dipping Status, Ambulatory Blood Pressure Control, Cardiovascular Disease, and Kidney Disease Progression: A Multicenter Cohort Study of CKD. Am. J. Kidney Dis. 2023, 81, 15–24.e1. [Google Scholar] [CrossRef]
- Csiky, B.; Kovács, T.; Wágner, L.; Vass, T.; Nagy, J. Ambulatory blood pressure monitoring and progression in patients with IgA nephropathy. Nephrol. Dial. Transplant. 1999, 14, 86–90. [Google Scholar] [CrossRef]
- Timio, M.; Lolli, S.; Verdura, C.; Monarca, C.; Merante, F.; Guerrini, E. Circadian blood pressure changes in patients with chronic renal insufficiency: A prospective study. Ren. Fail. 1993, 15, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.B.; Hix, J.K.; Vidt, D.G.; Brotman, D.J. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch. Intern. Med. 2006, 166, 846–852. [Google Scholar] [CrossRef]
- Liu, M.; Takahashi, H.; Morita, Y.; Maruyama, S.; Mizuno, M.; Yuzawa, Y.; Watanabe, M.; Toriyama, T.; Kawahara, H.; Matsuo, S. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol. Dial. Transplant. 2003, 18, 563–569. [Google Scholar] [CrossRef]
- Brown, T.M.; McLachlan, E.; Piggins, H.D. Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons. Neuroscience 2008, 154, 839–847. [Google Scholar] [CrossRef]
- Mohandas, R.; Douma, L.G.; Scindia, Y.; Gumz, M.L. Circadian rhythms and renal pathophysiology. J. Clin. Investig. 2022, 132, e148277. [Google Scholar] [CrossRef]
- Agarwal, R.; Light, R.P. Sleep and activity in chronic kidney disease: A longitudinal study. Clin. J. Am. Soc. Nephrol. 2011, 6, 1258–1265. [Google Scholar] [CrossRef]
- Sinha, A.D.; Agarwal, R. The complex relationship between CKD and ambulatory blood pressure patterns. Adv. Chronic Kidney Dis. 2015, 22, 102–107. [Google Scholar] [CrossRef]
- van de Borne, P.; Tielemans, C.; Collart, F.; Vanherweghem, J.L.; Degaute, J.P. Twenty-four-hour blood pressure and heart rate patterns in chronic hemodialysis patients. Am. J. Kidney Dis. 1993, 22, 419–425. [Google Scholar] [CrossRef]
- Mendoza-Romo-Ramírez, M.A.; García-Hernández, J.A.; Rodríguez-Quilantán, F.J.; Ávila-Infante, A.; Bartolo-Sánchez, F.D.; Silva-Ortiz, J.A.; Valdés-Méndez, J.A. Non-dipper effect in hypertense patients after renal transplantation by 24-hour ambulatory blood pressure monitoring. Cirugía Y Cir. 2021, 89, 769–775. [Google Scholar] [CrossRef]
- Lipkin, G.W.; Tucker, B.; Giles, M.; Raine, A.E. Ambulatory blood pressure and left ventricular mass in cyclosporin- and non-cyclosporin-treated renal transplant recipients. J. Hypertens. 1993, 11, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, M.; Kido, R.; Shibagaki, Y.; Yasuda, T.; Nakazawa, R.; Sasaki, H.; Sato, Y.; Chikaraishi, T.; Kimura, K. Kidney function, albuminuria and cardiovascular risk factors in post-operative living kidney donors: A single-center, cross-sectional study. Clin. Exp. Nephrol. 2011, 15, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Drexler, Y.R.; Bomback, A.S. Definition, identification and treatment of resistant hypertension in chronic kidney disease patients. Nephrol. Dial. Transplant. 2014, 29, 1327–1335. [Google Scholar] [CrossRef]
- Tatar, E.; Uslu, A.; Tasli, F.; Karatas, M. Relationship between diurnal blood pressure and renal histopathological changes in white coat hypertension. J. Nephrol. 2017, 30, 551–556. [Google Scholar] [CrossRef]
- Elung-Jensen, T.; Strandgaard, S.; Kamper, A.L. Longitudinal observations on circadian blood pressure variation in chronic kidney disease stages 3–5. Nephrol. Dial. Transplant. 2008, 23, 2873–2878. [Google Scholar] [CrossRef]
Study | Study Design | Selection | Comparability | Outcome | Total Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Representative of Exposed Cohort | Selection of Non-Exposed Cohort | Ascertainment of Exposure | Outcome Not Present at Start | Main Factor | Additional Factor | Assessment of Outcome | Follow-Up > 1 Year | Follow-Up Adequate | |||
Azancot, 2014 [13] | Observational Cohort | * | * | * | * | * | * | * | 7 | ||
Wajdlich, 2017 [14] | Prospective Observational | * | * | * | * | * | * | 6 | |||
Ibernon, 2012 [15] | Prospective Cohort | * | * | * | * | * | * | * | 7 | ||
Wadei, 2007 [16] | Retrospective Cohort | * | * | * | * | * | * | * | * | 8 | |
Paoletti, 2009 [17] | Observational cohort | * | * | * | * | * | * | * | * | 8 | |
Jaques, 2021 [18] | Retrospective cohort | * | * | * | * | * | * | * | * | 8 | |
Sezer, 2011 [19] | Cross-sectional | * | * | * | * | * | * | 6 |
Study | Study Design | Follow-Up Duration | Number of Participants/Population Characteristics | Outcome Measures | Key Findings |
---|---|---|---|---|---|
Azancot et al. (2014) [13] | Observational cohort study | Cross-sectional data collection |
| Office and 24 h ABPM:
|
|
Wajdlich et al. (2017) [14] | Prospective observational study | Cross-sectional data collection |
|
|
|
Ibernon et al. (2012) [15] | Prospective cohort study | 45 ± 11 months |
|
| In RTRs, the reverse-dipping pattern was associated with renal target organ damage and an increased left ventricular mass, which are important and common risk factors for graft loss and CV events. |
Wadei et al. (2007) [16] | Retrospective cohort study | 1-year post-transplantation |
|
|
|
Paoletti et al. (2009) [17] | Observational cohort study | 1-year post-transplantation |
|
|
|
Jaques et al. (2021) [18] | Retrospective cohort study | 2 years after the initial ABPM measurement, with visits at 1 year and 2 years post- ABPM |
|
|
|
Sezer et al. (2011) [19] | Cross-sectional study | Cross-sectional data collection |
|
|
|
What Is Known? |
|
What Is Unknown? |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanbay, M.; Costache, A.D.; Brinza, C.; Aktas, O.; Bayici, B.Z.; Odemis, S.; Genc, C.; Burlacu, A.; Costache Enache, I.I.; Covic, A.S.; et al. Clinical Impact of Blood Pressure Variability in Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Life 2025, 15, 1271. https://doi.org/10.3390/life15081271
Kanbay M, Costache AD, Brinza C, Aktas O, Bayici BZ, Odemis S, Genc C, Burlacu A, Costache Enache II, Covic AS, et al. Clinical Impact of Blood Pressure Variability in Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Life. 2025; 15(8):1271. https://doi.org/10.3390/life15081271
Chicago/Turabian StyleKanbay, Mehmet, Alexandru Dan Costache, Crischentian Brinza, Ozgur Aktas, Busra Z. Bayici, Sevde Odemis, Candan Genc, Alexandru Burlacu, Irina Iuliana Costache Enache, Andreea Simona Covic, and et al. 2025. "Clinical Impact of Blood Pressure Variability in Kidney Transplant Patients: A Systematic Review and Meta-Analysis" Life 15, no. 8: 1271. https://doi.org/10.3390/life15081271
APA StyleKanbay, M., Costache, A. D., Brinza, C., Aktas, O., Bayici, B. Z., Odemis, S., Genc, C., Burlacu, A., Costache Enache, I. I., Covic, A. S., Sarafidis, P., Kuwabara, M., & Covic, A. (2025). Clinical Impact of Blood Pressure Variability in Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Life, 15(8), 1271. https://doi.org/10.3390/life15081271