Is Biologic Therapy an Effective Tool for Achieving Remission in Severe Asthma? A Retrospective Study in Central Romania
Abstract
1. Introduction
2. Methods
2.1. Inclusion Criteria
- -
- A confirmed diagnosis of severe asthma according to the GINA guidelines and national reimbursement criteria in Romania.
- -
- Eligibility for biologic treatment based on predefined thresholds, including ≥2 exacerbations/year despite high-dose ICSs/LABAs, a blood eosinophil count of ≥300/μL (for anti-IL-5 agents), or elevated total IgE levels with proven allergy (for omalizumab).
- -
- Patients who had completed at least one year of biologic therapy.
- -
- Patients who had at least one follow-up at 1 year (ACT questionnaire, exacerbations, biomarkers, biomarkers, and respiratory function tests).
2.2. Exclusion Criteria
- -
- Patients with a diagnosis of severe asthma but without criteria for inclusion in biologic treatment.
- -
- Patients who had not completed 1 year of treatment at the time of assessment or for whom data were not available to assess remission.
2.3. Clinical Remission Was Assessed According to the Following
- I.
- ACT questionnaire analysis (at baseline, 3 and 6 months, and 1 year). An ACT score above 20 points was considered clinical remission.
- II.
- Assessment of exacerbations during the first 12 months of treatment. The absence of exacerbations during the 12-month follow-up period of treatment was considered remission.
- III.
- The use of systemic corticosteroids (either chronic or intermittent treatment; for those with intermittent treatment, such as short courses of systemic corticosteroids, the cumulative dose per 12 months was calculated).
- IV.
- Functional assessment by analyzing FEV1 values at baseline (T0), at 3 and 6 months, and at 12 months after initiation (T3). Clinical remission was considered at FEV1 values above 80%.
2.4. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Asthma—GINA. 2024 GINA Main Report. Available online: https://ginasthma.org/2024-report/ (accessed on 15 March 2025).
- Lommatzsch, M.; Brusselle, G.G.; Canonica, G.W.; Jackson, D.J.; Nair, P.; Buhl, R.; Virchow, J.C. Disease-modifying anti-asthmatic drugs. Lancet 2022, 399, 1664–1668. [Google Scholar] [CrossRef]
- Thomas, D.; McDonald, V.M.; Pavord, I.D.; Gibson, P.G. Asthma Remission: What Is It and How Can It Be Achieved? Eur. Respir. J. 2022, 60, 2102583. [Google Scholar] [CrossRef]
- Lommatzsch, M.; Virchow, J.C. Asthma remission: A call for a globally standardised definition. Lancet Respir. Med. 2025, 13, 2–3. [Google Scholar] [CrossRef]
- Lommatzsch, M.; Buhl, R.; Canonica, G.W.; Ribas, C.D.; Nagase, H.; Brusselle, G.G.; Jackson, D.J.; Pavord, I.D.; Korn, S.; Milger, K.; et al. Pioneering a paradigm shift in asthma management: Remission as a treatment goal. Lancet Respir. Med. 2024, 12, 96–99. [Google Scholar] [CrossRef]
- Bourdin, A.; Brusselle, G.; Couillard, S.; Fajt, M.L.; Heaney, L.G.; Israel, E.; McDowell, P.J.; Menzies-Gow, A.; Martin, N.; Mitchell, P.D.; et al. Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. J. Allergy Clin. Immunol. Pract. 2024, 12, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Arron, J.R.; Koth, L.L.; Fahy, J.V. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.A.; Fluhr, J.W.; Ruwwe-Glösenkamp, C.; Stevanovic, K.; Bergmann, K.C.; Zuberbier, T. Role of IL-17 in atopy—A systematic review. Clin. Transl. Allergy 2021, 11, e12047. [Google Scholar] [CrossRef]
- Busse, W.W.; Kraft, M.; Rabe, K.F.; Deniz, Y.; Rowe, P.J.; Ruddy, M.; Castro, M. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur. Respir. J. 2021, 58, 2003393. [Google Scholar] [CrossRef]
- Sinyor, B.; Perez, L.C. Pathophysiology of Asthma; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551579/ (accessed on 7 November 2021).
- Porsbjerg, C.M.; Sverrild, A.; Lloyd, C.M.; Menzies-Gow, A.N.; Bel, E.H. Anti-alarmins in asthma: Targeting the airway epithelium with next-generation biologics. Eur. Respir. J. 2020, 56, 2000260. [Google Scholar] [CrossRef]
- ORDIN 1301 11/07/2008—Portal Legislativ. Available online: https://legislatie.just.ro/Public/DetaliiDocument/95626 (accessed on 29 June 2025).
- Harrison, T.W.; Chanez, P.; Menzella, F.; Canonica, G.W.; Louis, R.; Cosio, B.G.; Lugogo, N.L.; Mohan, A.; Burden, A.; McDermott, L.; et al. Onset of effect and impact on health-related quality of life, exacerbation rate, lung function, and nasal polyposis symptoms for patients with severe eosinophilic asthma treated with benralizumab (ANDHI): A randomised, controlled, phase 3b trial. Lancet Respir. Med. 2021, 9, 260–274. [Google Scholar] [CrossRef]
- Bleecker, E.R.; Wechsler, M.E.; FitzGerald, J.M.; Menzies-Gow, A.; Wu, Y.; Hirsch, I.; Goldman, M.; Newbold, P.; Zangrilli, J.G. Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. Eur. Respir. J. 2018, 52, 1800936. [Google Scholar] [CrossRef] [PubMed]
- Thieme E-Journals—Seminars in Respiratory and Critical Care Medicine/Abstract. Available online: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0042-1743290 (accessed on 17 March 2025).
- Demenciuc, N.; Budin, C.E.; Ureche, C.; Stoian, M.; Nicola-Varo, T.; Baba, D.F.; Pătrîntașu, D.E.; Deleanu, D. Differential Analysis of Hemogram Parameters and Cellular Ratios in Severe Asthma Exacerbations: A Comparative Study of Eosinophilic and Non-Eosinophilic Phenotypes. Life 2025, 15, 970. [Google Scholar] [CrossRef] [PubMed]
- Porsbjerg, C.M.; Menzies-Gow, A.N.; Tran, T.N.; Murray, R.B.; Unni, B.; Ang, S.L.A.; Alacqua, M.; Al-Ahmad, M.; Al-Lehebi, R.; Altraja, A.; et al. Global Variability in Administrative Approval Prescription Criteria for Biologic Therapy in Severe Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 1202–1216.e23. [Google Scholar] [CrossRef] [PubMed]
- Perez-de-Llano, L.; Scelo, G.; Tran, T.N.; Le, T.T.; Fagerås, M.; Cosio, B.G.; Peters, M.; Pfeffer, P.E.; Al-Ahmad, M.; Al-Lehebi, R.O.; et al. Exploring Definitions and Predictors of Severe Asthma Clinical Remission after Biologic Treatment in Adults. Am. J. Respir. Crit. Care Med. 2024, 210, 869–880. [Google Scholar] [CrossRef]
- Thomas, D.; McDonald, V.M.; Stevens, S.; Harvey, E.S.; Baraket, M.; Bardin, P.; Bowden, J.J.; Bowler, S.; Chien, J.; Chung, L.P.; et al. Biologics (mepolizumab and omalizumab) induced remission in severe asthma patients. Allergy 2024, 79, 384–392. [Google Scholar] [CrossRef]
- Pérez de Llano, L.; Marina Malanda, N.; Urrutia, I.; Martínez-Moragón, E.; Gullón-Blanco, J.A.; Díaz-Campos, R.; Esquerre, M.M.; Mena, A.H.; Cosío, B.G.; Cisneros, C.; et al. Factors associated with suboptimal response to monoclonal antibodies in severe asthma. Allergy 2023, 78, 2305–2310. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1108–1123. [Google Scholar] [CrossRef]
- Mohan, A.; Qiu, A.Y.; Lugogo, N. Long-term safety, durability of response, cessation and switching of biologics. Curr. Opin. Pulm. Med. 2024, 30, 303–312. [Google Scholar] [CrossRef]
- Shah, P.A.; Brightling, C. Biologics for severe asthma-Which, when and why? Respirology 2023, 28, 709–721. [Google Scholar] [CrossRef]
- Heaney, L.G.; Perez de Llano, L.; Al-Ahmad, M.; Backer, V.; Busby, J.; Canonica, G.W.; Christoff, G.C.; Cosio, B.G.; FitzGerald, J.M.; Heffler, E.; et al. Eosinophilic and Noneosinophilic Asthma: An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest 2021, 160, 814–830. [Google Scholar] [CrossRef]
- Agache, I.; Akdis, C.A.; Akdis, M.; Canonica, G.W.; Casale, T.; Chivato, T.; Corren, J.; Chu, D.K.; Del Giacco, S.; Eiwegger, T.; et al. EAACI Biologicals Guidelines-Recommendations for severe asthma. Allergy 2021, 76, 14–44. [Google Scholar] [CrossRef]
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef]
Demography | Benralizumab (n = 34) | Dupilumab (n = 7) | Omalizumab (n = 7) | p |
---|---|---|---|---|
Age (years) | 68 (58–73) | 65 (55–70) | 52 (41–69) | 0.08 * |
Male-n (%) | 15 (44.1%) | 2 (28.6%) | 2 (28.6%) | 0.60 ** |
BMI (kg/m2) | 27.45 (23.09–33.36) | 28.19 (24.15–31.14) | 25.71 (23.78–26.60) | 0.41 * |
Occupational exposure-n (%) | 16 (47.1%) | 2 (28.6%) | 1 (14.3%) | 0.11 ** |
Urban-n (%) | 22 (64.7%) | 6 (85.7%) | 7 (100%) | 0.11 ** |
Age of asthma onset (years) | 50 (37–59) | 50 (42–55) | 35 (15–42) | 0.06 * |
Asthma treatment (years) | 17 (11–23) | 15 (6–17) | 15 (4–39) | 0.59 * |
Smoking-n (%) | 0 (0%) | 0 (0%) | 1 (14.3%) | 0.06 ** |
Package/year index | 0 (0–11) | 8 (0–10) | 6 (3–15) | 0.28 * |
Smoking cessation (years) | 0 (0–15) | 9 (0–20) | 10 (0–13) | 0.28 * |
Asthma exacerbations in the past year | 3 (2–3) | 3 (2–3) | 2 (2–3) | 0.80 * |
Asthma-related hospitalizations | 1 (1–2) | 1 (1–2) | 1 (1–2) | 0.87 * |
ENT Comorbidities | Benralizumab (n = 34) | Dupilumab (n = 7) | Omalizumab (n = 7) | p ** |
---|---|---|---|---|
Allergic rhinitis | 10 (29.4%) | 2 (28.6%) | 2 (28.6%) | 0.99 |
Nasal polyposis | 12 (35.3%) | 1 (14.3%) | 1 (14.3%) | 0.34 |
Rhinosinusitis | 11 (32.4%) | 0 (0%) | 2 (28.6%) | 0.21 |
Previous surgical procedures | 4 (11.8%) | 0 (0%) | 0 (0%) | 0.40 |
Septal deviation | 9 (26.5%) | 2 (28.6%) | 2 (28.6%) | 0.98 |
Pulmonary comorbidities | p ** | |||
Bronchiectasis | 14 (41.2%) | 5 (71.4%) | 2 (28.6%) | 0.23 |
Pneumonia | 28 (82.4%) | 6 (85.7%) | 5 (71.4%) | 0.75 |
Lung nodules | 0 (0%) | 0 (0%) | 0 (0%) | - |
OSAS | 3 (8.8%) | 0 (0%) | 0 (0%) | 0.51 |
Pulmonary tuberculosis | 0 (0%) | 0 (0%) | 0 (0%) | - |
Other sleep disorders | 0 (0%) | 0 (0%) | 0 (0%) | - |
Metabolic comorbidities | p ** | |||
Dyslipidemia | 11 (32.4%) | 3 (42.9%) | 1 (14.3%) | 0.49 |
Obesity | 9 (26.5%) | 2 (28.6%) | 0 (0%) | 0.29 |
Type 2 diabetes | 10 (29.4%) | 0 (0%) | 0 (0%) | 0.07 |
Symptomatology | Benralizumab (n = 34) | Dupilumab (n = 7) | Omalizumab (n = 7) | p ** |
---|---|---|---|---|
Dyspnea | 34 (100%) | 7 (100%) | 7 (100%) | - |
Cough | 34 (100%) | 7 (100%) | 7 (100%) | - |
Limiting daily activities | 34 (100%) | 7 (100%) | 7 (100%) | - |
Fatigue | 34 (100%) | 7 (100%) | 7 (100%) | - |
Wheezing | 32 (94.1%) | 7 (100%) | 7 (100%) | 0.65 |
Whooping cough | 32 (94.1%) | 7 (100%) | 6 (85.7%) | 0.53 |
Night symptom | 34 (100%) | 7 (100%) | 4 (57.1%) | <0.001 |
Chest constriction | 31 (91.2%) | 4 (57.1%) | 5 (71.4%) | 0.06 |
Nasal congestion | 23 (67.6%) | 2 (28.6%) | 3 (42.9%) | 0.10 |
Symptoms associated with GERD | 0 (0%) | 1 (14.3%) | 0 (0%) | 0.06 |
Rhinorrhea | 24 (70.6%) | 3 (42.9%) | 3 (42.9%) | 0.19 |
Headache | 21 (61.8%) | 4 (57.1%) | 2 (28.6%) | 0.27 |
Angina | 4 (11.8%) | 0 (0%) | 0 (0%) | 0.40 |
Initial Spirometry Values | Benralizumab (n = 34) | Dupilumab (n = 7) | Omalizumab (n = 7) | p * |
---|---|---|---|---|
FVC (%) | 61.50 (53.15–72.30) | 63.20 (51.00–73.90) | 62.00 (51.00–100.00) | 0.76 |
FEV1 (%) | 48.00 (36.87–58.30) | 57.00 (49.00–59.00) | 69.00 (39.00–95.00) | 0.24 |
iTiff | 60.06 (51.23–68.55) | 62.00 (52.30–69.00) | 73.17 (57.97–78.00) | 0.42 |
MEF50 (%) | 18.25 (12.00–37.45) | 24.20 (17.30–32.00) | 57.00 (15.00–74.00) | 0.16 |
Clinical and Paraclinical Reference Parameters | Benralizumab (n = 34) | Dupilumab (n = 7) | Omalizumab (n = 7) | p * |
---|---|---|---|---|
Eosinophils (×103/μL) | 750 (460–1035) | 290 (130–1310) | 270 (40–730) | 0.03 |
IgE (U/mL) | 128 (75–356) | 670 (632–831) | 567 (273–801) | <0.01 |
FeNO (ppb) | 34 (25–45) | 24 (13–46) | 24 (21–40) | 0.21 |
ACT score | 12 (11–14) | 12 (11–12) | 11 (10–12) | 0.25 |
All Patients | T0 | T1 | T2 | T3 | p |
---|---|---|---|---|---|
FVC (%) | 62 (52–73) | 70 (62–92) | 84 (71–97) | 94 (83–108) | <0.001 *** |
FEV1 (%) | 50 (39–59) | 62 (52–75) | 68 (61–85) | 81 (72–96) | <0.001 *** |
ITiff | 60 (51–71) | 67 (59–74) | 69 (60–57) | 68 (63–76) | <0.001 *** |
MEF50 (%) | 20 (12–38) | 31 (23–52) | 38 (25–57) | 46 (32–67) | <0.001 *** |
Eosinophils (×103/μL) | 665 (367–1018) | 30 (0–160) | 0 (0–50) | 0 (0–30) | <0.001 *** |
ACT score | 12 (11–13) | 20 (18–22) | 22 (21–24) | 25 (24–25) | <0.001 *** |
Exacerbations | 3 (2–3) | 0 (0–0) | 0 (0–0) | 0 (0–0) | <0.001 *** |
OCS use | 11 (22.9%) | 0 (0%) | 0 (0%) | 0 (0%) | <0.001 ** |
Benralizumab (n = 34) | Dupilumab (n = 7) | Omalizumab (n = 7) | p * | |
---|---|---|---|---|
Biological remission-FeNO | 24 (70.6%) | 6 (85.7%) | 6 (85.7%) | 0.54 |
ACT clinical remission | 34 (100%) | 7 (100%) | 7 (100%) | - |
FEV1 improvement at 6 months | 11 (32.4%) | 4 (57.1%) | 1 (14.3%) | 0.23 |
FEV1 improvement at 12 months | 26 (76.5%) | 6 (85.7%) | 4 (57.1%) | 0.43 |
Complete absence of exacerbations at 12 months | 33 (97.1%) | 7 (100%) | 7 (100%) | 0.81 |
Complete absence of OCS at 12 months | 34 (100%) | 7 (100%) | 7 (100%) | - |
Complete remission after 6 months | 6 (17.6%) | 3 (42.9%) | 1 (14.3%) | 0.29 |
Complete remission after 12 months | 18 (52.9%) | 5 (71.4%) | 3 (42.9%) | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mărginean, C.; Huțanu, D.; Vultur, M.A.; Sárközi, H.-K.; Ianoși, E.-S.; Ianoși, M.B.; Safta, A.; Jimborean, G.; Budin, C.E. Is Biologic Therapy an Effective Tool for Achieving Remission in Severe Asthma? A Retrospective Study in Central Romania. Life 2025, 15, 1113. https://doi.org/10.3390/life15071113
Mărginean C, Huțanu D, Vultur MA, Sárközi H-K, Ianoși E-S, Ianoși MB, Safta A, Jimborean G, Budin CE. Is Biologic Therapy an Effective Tool for Achieving Remission in Severe Asthma? A Retrospective Study in Central Romania. Life. 2025; 15(7):1113. https://doi.org/10.3390/life15071113
Chicago/Turabian StyleMărginean, Corina, Dragoș Huțanu, Mara Andreea Vultur, Hédi-Katalin Sárközi, Edith-Simona Ianoși, Maria Beatrice Ianoși, Andreea Safta, Gabriela Jimborean, and Corina Eugenia Budin. 2025. "Is Biologic Therapy an Effective Tool for Achieving Remission in Severe Asthma? A Retrospective Study in Central Romania" Life 15, no. 7: 1113. https://doi.org/10.3390/life15071113
APA StyleMărginean, C., Huțanu, D., Vultur, M. A., Sárközi, H.-K., Ianoși, E.-S., Ianoși, M. B., Safta, A., Jimborean, G., & Budin, C. E. (2025). Is Biologic Therapy an Effective Tool for Achieving Remission in Severe Asthma? A Retrospective Study in Central Romania. Life, 15(7), 1113. https://doi.org/10.3390/life15071113